
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 11, NOVEMBER 2023 7295

Transferable Adaptive Differential Evolution
for Many-Task Optimization

Sheng-Hao Wu , Student Member, IEEE, Zhi-Hui Zhan , Senior Member, IEEE,
Kay Chen Tan , Fellow, IEEE, and Jun Zhang , Fellow, IEEE

Abstract—The evolutionary multitask optimization (EMTO)
algorithm is a promising approach to solve many-task
optimization problems (MaTOPs), in which similarity measure-
ment and knowledge transfer (KT) are two key issues. Many
existing EMTO algorithms estimate the similarity of population
distribution to select a set of similar tasks and then perform KT
by simply mixing individuals among the selected tasks. However,
these methods may be less effective when the global optima of
the tasks greatly differ from each other. Therefore, this arti-
cle proposes to consider a new kind of similarity, namely, shift
invariance, between tasks. The shift invariance is defined that the
two tasks are similar after linear shift transformation on both
the search space and the objective space. To identify and uti-
lize the shift invariance between tasks, a two-stage transferable
adaptive differential evolution (TRADE) algorithm is proposed.
In the first evolution stage, a task representation strategy is
proposed to represent each task by a vector that embeds the evo-
lution information. Then, a task grouping strategy is proposed
to group the similar (i.e., shift invariant) tasks into the same
group while the dissimilar tasks into different groups. In the
second evolution stage, a novel successful evolution experience
transfer method is proposed to adaptively utilize the suitable
parameters by transferring successful parameters among simi-
lar tasks within the same group. Comprehensive experiments are
carried out on two representative MaTOP benchmarks with a
total of 16 instances and a real-world application. The compara-
tive results show that the proposed TRADE is superior to some
state-of-the-art EMTO algorithms and single-task optimization
algorithms.

Manuscript received 21 June 2022; revised 23 August 2022 and 1 November
2022; accepted 30 December 2022. Date of publication 8 February 2023; date
of current version 17 October 2023. This work was supported in part by the
National Natural Science Foundation of China under Grant 62176094; in part
by the Guangdong Natural Science Foundation Research Team under Grant
2018B030312003; and in part by the National Research Foundation of Korea
(NRF) under Grant 2022H1D3A2A01093478. This article was recommended
by Associate Editor L. Celentano. (Corresponding authors: Zhi-Hui Zhan;
Jun Zhang.)

Sheng-Hao Wu and Zhi-Hui Zhan are with the School of Computer Science
and Engineering, South China University of Technology, Guangzhou 510006,
China, (e-mail: zhanapollo@163.com).

Kay Chen Tan is with the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong SAR (e-mail: kctan@polyu.edu.hk).

Jun Zhang is with Zhejiang Normal University, Jinhua 321004, China, and
also with Hanyang University, Ansan 15588, South Korea.

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TCYB.2023.3234969.

Digital Object Identifier 10.1109/TCYB.2023.3234969

Index Terms—Adaptive, differential evolution (DE), evolution-
ary computation (EC), evolutionary multitasking optimization,
knowledge transfer (KT), many-task optimization problem
(MaTOP), shift invariance, similarity measurement.

I. INTRODUCTION

RECENTLY, an emerging research topic, called evolution-
ary transfer optimization [1], [2], that combines transfer

learning [3], [4], [5] and evolutionary computation (EC)
[6], [7] (including evolutionary algorithms [8], [9] and swarm
intelligence [10], [11], [12]) has become attractive. In the
traditional EC paradigm, the optimization tasks are solved
one by one without considering the relatedness and similar-
ity among different tasks [13], [14]. However, it is observed
that optimization tasks seldom exist independently in prac-
tice. For example, some distinct tasks may have similarities
in the function landscape or problem structure. Therefore, it
is motivated that evolutionary transfer optimization can use
the optimization experience or the domain knowledge in solv-
ing some tasks (i.e., source tasks) to improve the search
performance on other similar tasks (i.e., target tasks). The tech-
nique that reuses information from source tasks to help solve
target tasks is called knowledge transfer (KT) [15], [16].

Among different types of optimization problems, the mul-
titask optimization problem is one of the most representative
problems related to evolutionary transfer optimization. In the
multitask optimization problem, multiple optimization tasks
are required to be solved simultaneously with the assump-
tion that there are similarities between the tasks to some
extent. Therefore, a new paradigm called evolutionary mul-
titask optimization (EMTO) has emerged to solve multitask
optimization problems [17]. Different from traditional EC
algorithms, an EMTO algorithm not only contains an EC
algorithm as the base solver but also contains a KT method.
Some successful designs of KT methods have helped EMTO
algorithms to achieve superior performance in solving multi-
task optimization problems [18], [19]. Moreover, these EMTO
algorithms have also shown effectiveness and efficiency in
solving real-world application problems [20], [21].

Based on the success of the EMTO algorithm, researchers
begin to consider a kind of more complex optimization
problem with many tasks (i.e., more than three tasks) to be
solved, which is called the many-task optimization problem
(MaTOP). The MaTOP is a challenging problem because the
many tasks may contain some unrelated or misleading tasks. If

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4312-2521
https://orcid.org/0000-0003-0862-0514
https://orcid.org/0000-0002-6802-2463
https://orcid.org/0000-0001-7835-9871

7296 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 11, NOVEMBER 2023

unrelated tasks are mistakenly selected to perform KT between
tasks, the performance of EMTO algorithms may deteriorate.

Like the multitask optimization problem [22], [23], two
important issues need to be considered in solving MaTOP.

Issue 1: How to measure the similarity between the source
tasks and the target task. There are multiple available source
tasks in MaTOP that can be used to transfer knowledge to
the target task. This is more challenging than MTOP which
has only one or two source tasks. However, the similari-
ties between these many source tasks and the target task are
not known in advance. Then, how to measure the similari-
ties between the source tasks and the target task to help find
out which is the most suitable source task for transferring
knowledge is an important issue.

Issue 2: How to transfer knowledge from source tasks to
help the search process on the target task. Given that the source
task and the target task are similar according to a similarity
measurement, how to perform effective KT between the two
tasks is still important. If the KT between tasks is not properly
designed, the KT may lead to a negative effect called negative
transfer. The negative transfer indicates that the interaction
between tasks deteriorates the optimization performance on
the target task compared to the independent search process.

To address these two issues, some EMTO algorithms have
been proposed in the literature to solve MaTOP [24], [25].
Moreover, these EMTO algorithms have been successfully
applied to solve real-world MaTOP, such as diversified robotic
morphology designs [26]; fuzzy cognitive maps [27]; and
robotic arm control [28], [29]. However, there are two remain-
ing challenges and research gaps in solving MaTOP.

First, although some similarity measurements have been
proposed in [30] and [31], they mainly consider the simi-
larity/dissimilarity between the population distributions in a
common search space of the source task and the target task.
That is, if the two populations are closely distributed in the
unified search space, the two tasks are regarded as similar.
We denote this kind of population distribution-based similarity
measurement (PDSM). If the global optimal solutions of the
two tasks are highly similar (e.g., intersections in the global
optimum), PDSM works well since the elite individuals of
one task can be easily reused to improve the fitness of other
tasks. However, in real-world problems, the global optimal
solutions of different tasks may differ greatly from each other.
Moreover, PDSM relies on the population distribution at the
current generation. However, due to the randomness of the evo-
lution process, the similarity measurement based on population
distribution estimation at the only current generation may be
unstable and unreliable. Furthermore, due to the limited size of
the sample (i.e., the population size), there may exist an esti-
mation error in the population distribution. Therefore, PDSM
may not always be useful.

Second, although existing EMTO frameworks mainly use
multiple populations for solving MaTOP and allow multiple
populations to use different EC algorithms, many researchers
adopt the EC algorithm with fixed parameter settings as the
base solver for all populations. Differential evolution (DE)
is a well-known EC algorithm which has many improved
variants [32], [33] and applications in complex problems,

such as large-scale [34], [35]; multimodal [36], [37]; many-
objective [38]; and real-world problems [39], [40]. Hence, we
use DE as the base solver in this article. However, previous
studies [41], [42] have shown that the parameters (e.g., F
and Cr) of the DE algorithm are sensitive to the problem
to be solved. For example, when using DE as the base
solver, different problems may require different parameter set-
tings of F and Cr to achieve the best optimization results.
However, it is unknown in advance what kind of problem
we are facing and, therefore, it is difficult to set up suit-
able parameters. Fortunately, when dealing with MaTOP, there
are some similarities between the tasks. Therefore, it is moti-
vated that we can set up different parameters for different
populations to solve different tasks, and then we can observe
the performance of different parameters so as to transfer the
well-performing parameters as successful evolution experi-
ences (i.e., the parameter setting of F and Cr) between the
similar tasks. This way, the parameters of DE can be adaptively
adjusted to distinguish better F and Cr. To the best of our
knowledge, although some efforts have been proposed in the
literature to transfer solution knowledge or meta-knowledge
among the tasks [18], [19], no research efforts have been paid
to study the transfer of successful evolution experience (e.g.,
EC algorithm parameters) among the tasks to solve MaTOP.

To address the above challenges and fill the research gap,
we propose a two-stage transferable adaptive DE (TRADE) to
solve MaTOP effectively and efficiently. The main contribu-
tions of this article are as follows.

First, different from PDSM which merely considers the simi-
larity in population distributions, we propose to consider a new
kind of similarity between tasks, namely, shift invariance. The
shift invariance means that the two tasks are similar after linear
shift transformation on both the search space and the objec-
tive space. The proposed similarity measurement is called shift
invariance-based similarity measurement (SISM). To the best
of our knowledge, no studies have been taken to study utilizing
the shift invariance between tasks to effectively solve MaTOP.

Second, to identify and capture the shift invariance between
tasks, we propose a novel task representation strategy (TRS)
together with a task grouping strategy (TGS) which are carried
out in the first evolution stage. Specifically, TRADE first uses
the same EC algorithm in all the populations to correspond-
ingly solve all tasks for a few generations to collect evolution
information for representing the tasks. That is, the populations
of all the tasks use the same EC algorithm but evolve indepen-
dently without any KT. Afterward, the TRS uses the obtained
evolution information to represent each task as a feature vec-
tor. Then, the TGS divides the tasks into multiple groups based
on the task feature vectors, where the tasks within the same
group are regarded to be similar (i.e., shift invariant) in the
function landscapes.

Third, to effectively reuse the knowledge from similar
tasks within the same group to improve the search efficiency,
we propose a novel KT method, called successful evolution
experience transfer (SEET), in the second evolution stage.
Specifically, the populations of the tasks in the second evo-
lution stage of TRADE use EC algorithms with different
parameters and are evolved with the SEET method to transfer

WU et al.: TRADE FOR MANY-TASK OPTIMIZATION 7297

knowledge of successful evolution experience (i.e., successful
parameters). To perform the SEET method, we first propose
an evolution quality analysis strategy to distinguish which
populations of the tasks evolve well or poorly within each
group. Then, the successful parameter settings of the well-
evolved populations identified by evolution quality analysis are
regarded as knowledge of successful evolution experience and
are transferred to the poorly evolved populations to produce
promising offspring within each group.

The remainder of this article is organized as follows.
Section II gives the introduction of the related work on
MaTOP, DE, and the motivation of this article. Section III
introduces the definition of the SISM and the details of the
proposed TRADE algorithm. Section IV carries out exper-
imental studies to show the effectiveness of the proposed
TRADE. The conclusion is given in Section V.

II. PRELIMINARY

The notations with their descriptions used in this article are
given in Table S.I in the supplemental material.

A. Many-Task Optimization Problem

1) Problem Formulation: Suppose there are NT single-
objective optimization tasks in a MaTOP and the task k (k = 1,
. . . , NT) denoted as Tk can be formulated as

min yk = fk(xk)

s.t. xk ∈ Xk,Xk ⊆ R
Dk (1)

where fk(·) is the objective function of Tk,Xk is the search
space of Tk, and Dk is the dimensionality of the search space.

The MaTOP is the extension of the multitask optimization
problem that contains more than three tasks (NT > 3) to be
solved. The output of an EMTO algorithm for solving MaTOP
contains NT optimized solutions denoted as {x∗

1, . . . , x∗
NT} for

all the NT tasks. In this article, we consider the optimization
tasks in the continuous search space bounded by a box con-
straint. The lower bound and upper bound of dimension d
(d = 1, . . . , Dk) of Tk are denoted as LBk,d and UBk,d. Since
the search spaces of these tasks may be different, the solu-
tions (i.e., xk of Tk) are encoded into a unified search space
U ⊆ [0, 1]DU where DU = max{D1, . . . , DNT}. The encoded
solution of Tk is denoted as uk and calculated as

uk,d = (
xk,d − LBk,d

)
/
(
UBk,d − LBk,d

)
(2)

where uk,d is the dth dimension of uk. Conversely, when a
solution uk on Tk is to be evaluated, it should be decoded
to obtain the solution xk in the original search space Xk. If
Dk < DU , only the first Dk dimensions of uk are decoded to
obtain the solution xk.

2) Multipopulation Framework for MaTOP: Although there
are EMTO algorithms using a single population, most of the
EMTO algorithms for MaTOP in the literature are generally
implemented in a multipopulation framework [25], [30]. The
basic multipopulation framework for MaTOP (MP4MaT) in the
literature is summarized and shown in Algorithm 1. The input of
the MP4MaT framework contains a task set T containing tasks
to be solved, a base solver set A containing EC algorithms

Algorithm 1 MP4MaT Framework
Input: T = {Tk}NT

k=1 : Task set;
A = {EAi}NS

i=1 : Base solver set;
MAXNFE: Maximum number of fitness evaluations;

Output: X∗ = {
x∗

k

}NT
k=1: The best solutions for each task;

1: Begin
2: NFE = 0; //Number of fitness evaluations
3: For k = 1 to NT Do
4: Initialize population POPk for task k in U ⊆ [0, 1]DU ;
5: Assign a base solver EAτk (τk ∈ {1, . . . , NS}) for task k;
6: End For
7: While NFE < MAXNFE Do
8: For k = 1 to NT Do
9: If target task k will perform KT

10: Select source tasks for KT based on a similarity measurement;
11: Produce offspring by KT method from source tasks;
12: Else
13: Produce offspring by EAτk ;
14: End If
15: Evaluate POPk and update NFE and x∗

k ;
16: Undergo selection process and update POPk;
17: End For
18: End While
19: End

(EAs) with different parameter settings, and the maximum
number of fitness evaluations (MAXNFEs) for optimization
of all the tasks. The number of the base solvers in A is
denoted as NS. The EMTO algorithm based on MP4MaT first
initializes a population for each task in the unified search space
U ⊆ [0, 1]DU and assigns a base solver from the base solver set
A = {EAi}NS

i=1 for each task (lines 3–6). The assigned index for
Tk is denoted as τk ∈ {1, . . . , NS}. Then, the evolution process
of every task begins. In a generation, MP4MaT should decide
whether to perform KT on each task. If Tk (k = 1, . . . , NT)
is going to perform KT, it first selects source tasks for KT
based on a similarity measurement (lines 9 and 10). Then, the
offspring of Tk are produced by a KT method based on the
selected source tasks (line 11). Otherwise, the offspring of Tk

is produced using the evolution operators of the assigned EAτk

(line 13). Afterward, the population for each task undergoes the
fitness evaluation and selection process (lines 15 and 16). The
stopping condition is when the number of fitness evaluations
(NFEs) reaches MAXNFE.

The MP4MaT framework contains two main components
which are the task similarity measurement and the KT method
for transferring knowledge between tasks. The major difference
between different EMTO algorithms in the literature lies in the
design of the task similarity measurement and the KT method.

B. Motivation and Contribution

It should be noted that although the MP4MaT framework
allows multiple populations use different base solvers, most of
the existing works use a unified base solver for all the tasks in
MaTOP. That is, the base solver set A = {EAi}NS

i=1 (NS = 1)
only contains one EA associated with its fixed parameter
settings. However, many studies show that the optimization
performance of EA is highly related to its parameter set-
tings and the suitable parameter setting is highly related to
the problem being solved [41], [42]. Since the problem to
be solved is a black-box optimization problem and there is

7298 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 11, NOVEMBER 2023

Fig. 1. Motivated example for SISM and SEET.

no prior knowledge, finding the suitable parameter setting of
EA for solving the problem may require heavy computational
effort on parameter tuning. Then, it is motivated that when
multiple similar tasks are solved together, the parameter set-
tings of EA that work well on the source tasks can be reused
to improve the search efficiency of the target task.

A motivating example of the proposed methods is shown in
Fig. 1. Suppose that there are two optimization tasks (i.e., T1
and T2) to be solved. Following the procedure of MP4MaT
framework, the search spaces of the two tasks are first mapped
to a unified search space U ⊆ [0, 1]DU where DU = max {D1,
D2} to allow KT. The optimal solutions (i.e., x = 0.3 and
x = 0.7) of the two tasks are far from each other in the uni-
fied search space. It is assumed that the two tasks are shift
invariant. That is, the objective function f1(x) of T1 after lin-
ear transformation, denoted as f1(x–80), is highly similar to
the objective function f2(x) of T2. For a detailed definition of
shift invariance, refer to Section III-A. The base solver EAτ1

for T1 is DE with parameter settings of F = 0.5 and Cr = 0.9
while the base solver EAτ2 for T2 is DE with parameter set-
tings of F = 0.5 and Cr = 0.1. The population distributions of
the two tasks at generation g are also plotted in Fig. 1. It can
be observed that the distance between population 1 and the
optimal solution (x = 0.3) of T1 is smaller than the distance
between population 2 and the optimal solution (x = 0.7) of T2
in the unified search space. Since the two tasks are regarded
to be very similar (i.e., shift invariant), it is rational to think
that population 1 which uses EAτ1 with parameter settings of
F = 0.5 and Cr = 0.9 is more successful and can solve these
two tasks better than that uses EAτ2 with parameter settings of
F = 0.5 and Cr = 0.1. Therefore, in this article, we consider
transferring these successful evolution parameters as the suc-
cessful evolution experience between tasks to facilitate a more
efficient search for MaTOP. To the best of our knowledge, no
research attention has been paid to using different parameter
settings of EA as base solvers in MP4MaT framework and

making use of the shift invariance-based similarity between
tasks by transferring parameter settings among different tasks.

Moreover, we highlight the contribution of our proposed
KT methods by the example in Fig. 1. In the case of Fig. 1,
the existing PDSM considers that the two tasks are dissimilar
since the population distributions of T1 and T2 are differ-
ent. However, these two tasks are actually similar by simple
shift transformation, which can be properly identified by our
proposed SISM method.

C. Differential Evolution

A DE algorithm mainly contains four processes: 1) initial-
ization; 2) mutation; 3) crossover; and 4) selection. In the
initialization process, the dth dimension of the ith individual,
denoted as xi,d, (i = 1, . . . , NP) where NP is the population
size is initialized as

xi,d = LBd + (UBd − LBd) · rand (3)

where rand denotes a randomly sampled number within [0, 1],
and LBd and UBd are the lower bound and upper bound of
the dth dimension. After initialization, the iteration of DE
begins. In a generation, the population first undergoes the
mutation process. In the mutation process, each individual gen-
erates a mutant vector. An advanced mutation operator called
DE/current-to-pbest/1 in [43] is

−→v i = −→x i + F · (−→x pbest − −→x i
) + F · (−→x r1 − x̂r2

)
(4)

where −→x pbest is a randomly selected individual from the top
p% individuals in the population. F is the scaling factor of
the difference vector, r1 is an index randomly selected from
{1, . . . , NP}, and x̂r2 is a randomly selected individual from
the union of the population POP = {−→x 1, . . . ,

−→x NP} and an
archive ARC storing historical solutions until generation g.
The archive ARC is empty in the initialization process of DE.
Without loss of generality, we only consider the optimization
problem with simple box constraints in this article and, there-
fore, the generated vectors are clipped by LBd and UBd to
satisfy the box constraints.

After mutant vectors are generated, the crossover operator
is carried out on each mutant vector to produce a trial vector.
We introduce the binomial crossover here. The dth dimension
of the ith trial vector at generation g, denoted as ui,d, is set as

ui,d =
{

vi,d, if rand < Cr or d == dr

xi,d, otherwise
(5)

where Cr is a crossover parameter for the ith individual and dr

is a randomly selected dimension before the crossover process
on the ith mutant vector.

After trial vectors are generated, the trial vector is evaluated
and undergoes the selection process to update the population
POP and the archive ARC for a minimization problem as

−→x i =
{−→u i, if f

(−→u i
)

< f
(−→x i

)

−→x i, otherwise
(6)

ARC =
{

ARC ∪ {−→x i
}
, if f

(−→u i
)

< f
(−→x i

)

ARC, otherwise.
(7)

If the size of ARC exceeds NP, then (|ARC|–NP) individuals
will be randomly selected and removed from ARC.

WU et al.: TRADE FOR MANY-TASK OPTIMIZATION 7299

Similar to [43], we generate F and Cr for the ith individual
from a Gaussian distribution with parameters mF and mCr as

F = Gaussian(mF, 0.1) (8)

Cr = Gaussian(mCr, 0.1) (9)

In this article, we use different DEs with different settings
of mF and mCr as the base solvers for different tasks. In this
way, we can set mF and mCr with different values to study
their effects for solving different tasks.

III. PROPOSED TRADE ALGORITHM

A. Shift Invariance-Based Similarity Measurement

The concept of shift invariance originates from the pattern
recognition task in the computer vision area [44]. Let an image
with spatial resolution H × W and C channels be represented
by X ∈ R

H×W×C. According to [44], the shift invariance is
represented as

F̃(X) = F̃
(
Shift�h,�w(X)

) ∀(�h,�w) (10)

where F̃(X) is the output function for the input X, �h and
�w are the shift transformation of the pixel in vertical and
horizontal directions in the image, and the shift operation is
defined as

[
Shift�h,�w(X)

]
h,w,c = X(h−�h)%H,(w−�w)%W,c (11)

where % is the modulus operator. This shift transformation
is called circular shift when the pixels after the shift hit the
edge of the image, they are rolled to the other edge. Similarly,
we can define the shift invariance-based similarity between
optimization tasks in MaTOP in the following.

Definition 1: Two optimization tasks (i.e., T1 and T2) with
the same dimensionality D of the search space are said to
be shift invariant if there exists a linear transformation with
parameters �x ∈ R

D and �y ∈ R, a connected region XD ⊆
R

D, and a small positive value ε such that

1

V

∫

x∈XD

∥∥Shift�x,�y(f1(x)) − f2(x)
∥∥dx < ε (12)

where V > 0 is the hypervolume of XD and the shift operation
on a fitness function is defined as

Shift�x,�y(f (x)) = f (x + �x) + �y (13)

where �x is a D-dimensional vector representing the shift in
the search space and �y is a scalar representing the shift in
the objective space. The major difference between SISM and
PDSM is that SISM aims to capture the landscape similarity
between two tasks while PDSM aims to capture the global
optimum similarity. Therefore, the SISM is more general to
identify the similarity of the tasks, as the example illustrated
in Fig. 1.

B. Framework of TRADE

The framework of TRADE for solving MaTOP is plotted
in Fig. 2. The framework contains two evolution stages.

In the first evolution stage, the initialization process is car-
ried out for each task. Specifically, a population of size NP
is created for each task with uniform random sampling in the

Fig. 2. Framework of two-stage TRADE.

original search space according to (3). Moreover, a unified
EA (EAu) associated with its predefined parameter setting is
assigned for all the tasks. After initialization, all the popu-
lations of the tasks are evolved independently by the same
evolution operators of EAu for a small number of generations
(G1) in the first evolution stage. Note that in this stage, the
KT process is not performed. Through the evolution process
in the first evolution stage, the information of the tasks is
collected. After the stopping condition of the evolution pro-
cess of the first evolution stage is satisfied, the TRS is carried
out to represent each task as a vector according to the evolu-
tion information extracted from the search history. Then, the
TGS can divide the tasks into NG groups based on the rep-
resentations extracted by TRS. After TGS, the tasks that are
divided into the same group are considered shift invariant.
The goal of the first evolution stage is to identify and capture
the shift invariance between similar tasks based on SISM for
the MaTOP. The details of the first evolution stage including
TRS and TGS of TRADE will be introduced in Section III-C.

In the second evolution stage, a solver assignment pro-
cess is carried out within each group. Specifically, each task
(i.e., population) is assigned with a base solver associated
with its parameter settings that is randomly selected from the
base solver set A = {EAi}NS

i=1. Then, each population opti-
mizes its corresponding task by using this solver. To perform
SEET, the evolution quality analysis is used to identify the
populations that evolve better due to using suitable parame-
ter settings. These suitable parameter settings are regarded as
knowledge of successful evolution experience. Then, the suc-
cessful parameters settings (i.e., the knowledge) are transferred
from well-evolved populations to poorly evolved populations
to produce promising offspring. With the SEET method, the
populations of the tasks can propagate the suitable parameter
settings of EA for solving similar tasks within a group. Note
that an important reason that the SEET method can work well
is that the tasks within the group are regarded to be similar
after TGS in the first evolution stage. The details of the second
evolution stage including the SEET method are introduced in
Section III-D.

C. First Evolution Stage With TRS and TGS

1) TRS: We propose a simple yet efficient TRS for the
tasks without introducing much computational cost to identify

7300 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 11, NOVEMBER 2023

(a)

(b)

Fig. 3. Examples of TRS. (a) Three tasks are with heterogeneous function
landscapes. (b) Three tasks are with shift-invariant function landscapes.

and capture the shift invariance between the tasks. Suppose
the evolution process for the first evolution stage lasts for
G1 generations. Then, Tk is represented as a G1-dimensional
vector θk ∈ R

G1 . The best-so-far fitness of each task in
every generation is collected as the evolution information. Let
Y∗

k = {y∗
k,1, . . . , y∗

k,G1
} be a set containing the best-so-far fit-

ness in every generation for Tk in the first evolution stage. The
lower bound of Y∗

k is calculated as

LBYk = mean
(
Y∗

k

) − 4 · std
(
Y∗

k

)
(14)

where mean(·) and std(·) denote functions for calculating
mean and standard deviation for a set of scalars, respectively.
Then, the dimension g (g = 1, . . . , G1) of vector θk can be
calculated as

θkg = log
(

max
{(

y∗
k,g − LBYk

)
, η

})
(15)

where log(·) is the logarithm function and η = 1E − 25 is a
small positive value to avoid an invalid logarithmic operation.

To illustrate how the TRS can identify and capture the shift
invariance between tasks in MaTOP, an example is given in
Fig. 3. In Fig. 3(a) and (b), the curves of logarithm of fitness
versus generations on three tasks are plotted on the left side
while the representations of three tasks by TRS are plotted
on the right side. Note that all tasks are evolved by the same
base solver EAu. In Fig. 3(a), since the three tasks are with
heterogeneous functions, task representations after TRS (i.e.,
the curves in the right figure) are rather different. In Fig. 3(b),
the three tasks are shift invariant. That is, there exists a shift
transformation on the search space and the objective space
such that the transformed functions are similar to each other.
Therefore, in this case, the task representations after TRS are
highly similar which are shown in the right of Fig. 3(b). This
experimental example shows that the TRS can well identify
and capture the shift invariance between tasks in MaTOP.

2) TGS: Given the task representation, the TGS is car-
ried out to divide the tasks so that similar tasks belong to
the same group while the dissimilar tasks belong to dif-
ferent groups based on SISM. Herein, we use the simple

Algorithm 2 First Evolution Stage

Input: T = {Tk}NT
k=1 : Task set;

EAu : Unified base solver;
G1 : Maximum evolution generation for stage one;

Output: gID: Group indices of all the tasks;
NFE: Number of fitness evaluations;
g : Current generation after stage one;

1: Begin
2: NFE = 0;
3: For k = 1 to NT Do
4: Evolve the population POPk using EAu for G1 generations, collect

Y∗
k =

{
y∗

k,1, . . . , y∗
k,G1

}
, and update NFE;

5: End For
6: Obtain the task representation {θ1, . . . , θNT } by Eq. (14) and Eq. (15);
7: NG = CRP({θ1, . . . , θNT }, α, ρ);
8: gID = kmeans({θ1, . . . , θNT }, NG);
9: g = G1;

10: End

Euclidean distance between θk of different tasks to measure
the shift invariance-based similarity. In this article, the clas-
sical K-means clustering algorithm [45] is used to group the
tasks after the first evolution stage. Note that the parameter
K representing the number of clusters in K-means algorithm
is a sensitive parameter that affects the quality of the group-
ing process. Specifically, if the number of groups NG (i.e.,
parameter K in K-means algorithm) is not set properly, some
dissimilar tasks may be grouped into the same group, and
transferring knowledge between them may lead to negative
transfer. Therefore, we adopt the Chinese restaurant process
to determine NG automatically [46].

The complete procedure of the first evolution stage in
TRADE is shown in Algorithm 2. The CRP(·) in line 7 is
an implemented function of the Chinese restaurant process
with input parameters α and ρ. The default setting of these
parameters will be introduced in Section IV-A. The kmeans(·)
in line 8 is the K-means clustering algorithm [45]. The output
of the first evolution stage includes the group indices for all
the tasks (gID) and the NFEs. The unified base solver EAu

in this article is the DE algorithm with parameter settings of
mF = 0.5 and mCr = 0.5.

3) Time Complexity Analysis: The computation in the first
evolution stage mainly comes from TRS and TGS. For TRS,
since each representation vector of the task is G1-dimensional
and there are NT tasks, it has a complexity of O(NT× G1).
The time complexity of CRP(·) is O(NT2 × G1) and the time
complexity of kmeans(·) algorithm performed on NT tasks
vectors is O(T × NG × NT × G1) where T denotes the num-
ber of iterations and be considered as a constant. NG is the
returned result of CRP(·) which is normally much smaller
than NT and can be considered a constant. That is, the major
time complexity in the first evolution stage is O(NT2 × G1).

Take a representative PDSM method that uses Kullback–
Leibler divergence as an example [25], the time complexity is
O(MAXGEN× NT2×DU). Note that we have G1 <MAXGEN.
That is, the complexity of TRS and TGS is not dependent on
DU compared to existing PDSM methods that calculate the
similarity between populations of every pair of tasks in every
generation. Moreover, G1 can be specified manually to balance
accuracy and computational cost. The parameter investigation

WU et al.: TRADE FOR MANY-TASK OPTIMIZATION 7301

Algorithm 3 Second Evolution Stage

Input: T = {Tk}NT
k=1: Task set;

A = {EAi}NS
i=1: Base solver set;

{POPk}NT
k=1: Evolved populations after stage one.

{ARCk}NT
k=1: Evolved archives after stage one.

Y∗
k =

{
y∗

k,1, . . . , y∗
k,G1

}
: The set containing best-so-far fitness at

every generation after stage one.
gID = {gIDk}NT

k=1: Group indices of all the tasks;
NFE: Number of fitness evaluations after stage one;
MAXNFE: Maximum number of fitness evaluations;
g: Current generation after stage one;

Output: X∗ = {
x∗

k

}NT
k=1: The best solutions for each task;

1: Begin
2: Assign each Tk an EAτk along with its mF and mCr that is randomly

selected from A = {EAi}NS
i=1;

3: count = zeros(NT, NS); // counter of the used times of different EA
for each task

4: countSuc = zeros(NT, NS); // counter of the successful times of
different EA for each task

5: While NFE < MAXNFE
6: Perfom EQA and calculate EQk according to Eq. (16);
7: Sort the tasks in each group based on EQk and obtain their rank;
8: Calculate pSEET according to Eq. (17);
9: For k = 1 to NT Do

10: For i = 1 to NP Do
11: If rand1 < pSEET and rand2 > 1/ rank(Tk) and gSize(gIDk) >

1// SEET
12: Randomly select a source task Ts from the tasks whose ranks

are smaller than gSize(gIDk)/NS;
13: Select an EA index τs according to Eq. (18);
14: count(k, τs) = count(k, τs) + 1;
15: Set mF and mCr as the parameters of EAτs ;
16: Sample F and Cr with mF and mCr by Eq. (8) and Eq. (9);
17: Else // Use base solver EAτk
18: Set mF and mCr as the parameters of EAτk ;
19: count(k, τk) = count(k, τk) + 1;
20: Sample F and Cr with mF and mCr by Eq. (8) and Eq. (9);
21: End If
22: Undergo mutation and crossover according to Eq. (4) and Eq. (5)

to obtain an offspring individual;
23: Evaluate individual and update NFE, x∗

k , and y∗
k,g;

24: Update population POPk by selection and archive ARCk accord-
ing to Eq. (6) and Eq. (7);

25: If parent is replaced by offspring produced by EAτs
26: countSuc(k, τs) = countSuc(k, τs) + 1;
27: Else If parent is replaced by offspring produced by EAτk
28: countSuc(k, τk) = countSuc (k, τk) + 1;
29: End If
30: End For
31: Y∗

k = Y∗
k ∪ y∗

k,g;
32: End For
33: g = g + 1;
34: End While
35: End

of G1 is carried out in Section IV-D. Therefore, the proposed
TRS and TGS are more scalable.

D. Second Evolution Stage With SEET

The complete procedure of the second evolution stage in
TRADE is shown in Algorithm 3. The input mainly includes the
evolved populations {POPk}NT

k=1, evolved archives {ARCk}NT
k=1,

the best-so-far fitness of all the tasks, and the group indices
(gID) of all the tasks after the first evolution stage. Note
that all base solvers in the base solver set A = {EAi}NS

i=1 are
implemented as DEs with different parameter settings of mF
and mCr. The main components in the second evolution stage

include solver assignment, the evolution quality analysis, and
the offspring production process.

For the solver assignment process, we simply assign each
task an EA with its mF and mCr that is randomly selected
from the base solver set A = {EAi}NS

i=1 at the beginning of the
second evolution stage (line 2).

For the evolution quality analysis process, we evaluate the
evolution quality of each population at the beginning of a gen-
eration (line 6). The evolution quality reflects how well an EA
with its parameter settings performs on a task. Suppose that
the current generation is g > G1 after the first evolution stage
and let Y∗

k = {y∗
k,1, . . . , y∗

k,G1
, . . . , y∗

k,g} be a set containing the
best-so-far fitness for Tk from generation 1 to g. Then, evolu-
tion quality EQk of Tk in solving a minimization problem is
calculated as

EQk =
(

y∗
k,G1

− y∗
k,g

)
/
(

y∗
k,1 − y∗

k,g + η
)

(16)

where η = 1E − 25 is a very small value to avoid zero. Since
different tasks may use different base solvers in the second
evolution stage (i.e., g > G1), a larger EQk indicates that EAτk

with its successful mF and mCr achieves larger improvement
on the global best fitness of Tk. That is, if EQ1 > EQ2, it is
considered that EAτ1 optimizes its task (i.e., T1) more success-
fully than EAτ2 (i.e., solving T2). After calculating EQk for all
the tasks, we sort the tasks in each group according to their
EQk in descending order (line 7). Then, the rank denoted as
rank(Tk) of each task Tk based on EQk is obtained. A smaller
rank(Tk) indicates Tk is with a larger EQk and EAτk is more
successful.

For the offspring production process, the offspring of a task
can be produced by either the base solver EA or the proposed
SEET method. The occurrence of the SEET process is deter-
mined based on two parameters probabilistically (line 11).
If an offspring individual is determined to be produced by
the base solver EA, it follows the procedure described in
Section II-C (lines 18–20). Otherwise, the offspring individual
is generated by the SEET method (lines 12–16). Specifically,
to decide whether SEET is used to produce an offspring indi-
vidual, two random numbers (i.e., rand1 and rand2) within
[0,1] are independently generated. Then, they are compared
with two parameters: the probability of SEET (pSEET) and
1/rank(Tk), respectively. pSEET that controls the occurrence of
SEET is calculated as (line 8)

pSEET = 0.5 + 0.5 · (g − G1)/(MAXGEN − G1) (17)

where g is the current generation and MAXGEN is the max-
imum number of generations. It can be seen that pSEET
gradually increases to 1 as the evolution proceeds. This is
because we want to keep the evolution process by differ-
ent EAs independently to distinguish the successfully evolved
tasks in the early stage. In the later stage, these successful
parameters are encouraged to transfer to poorly evolved tasks
to improve the search performance. Moreover, the task Tk with
a larger rank(Tk) is considered to be a poorly evolved task
and will have a larger probability to learn from the success-
fully evolved tasks. Note that if the group size of Tk denoted
as gSize(gIDk) is 1, the only task in the group will evolve
independently.

7302 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 11, NOVEMBER 2023

If an offspring individual is determined to be produced by
SEET, a source task denoted as Ts is first selected randomly
based on the evolution quality analysis (line 12). Afterward,
an EA index denoted as τs ∈ {1, . . . , NS} associated with its
parameter setting is selected based on the evolution experience
of the selected source task Ts (line 13). Finally, the offspring
individual is produced by crossover and mutation operators of
the selected EA (denoted as EAτs) (lines 15 and 16). The main
components of SEET are evolution experience representation,
source task selection, and the solver (i.e., EA) selection.

For the evolution experience representation, we define two
variables: count and countSuc, for counting the used times
and successful times of different EA for each task. At the
beginning of the second evolution stage, count and countSuc
are initialized as NT × NS zero-matrix (lines 3 and 4). Every
time a new individual is produced, the element of the task and
the selected EA in count is increased by 1 (lines 14 and 19).
If the produced offspring individual by a selected EA survives
through selection, the corresponding countSuc will be updated
(lines 25–28). In this way, the success rates of different EAs
on a task can be calculated.

For the source task selection, a source task Ts is ran-
domly selected from the tasks whose ranks are smaller than
gSize(gIDk)/NS in the group of Tk (line 12). This is to encour-
age Tk to learn from the successful tasks in the group. Note
that if gSize(gIDk)/NS is smaller than 1, we simply randomly
select a task for Tk from the group to learn.

For the solver selection, a solver index τs is selected based
on the evolution experience of the source task Ts as (line 13)

τs = argmax
i∈{1,...,NS}

{countSuc(s, i)/count(s, i)}. (18)

That is, we select the parameter setting of EA from the evolu-
tion experience of Ts with the highest success rates. Afterward,
F and Cr are generated by (8) and (9) using the parameter set-
tings of mF and mCr of EAτs (lines 15 and 16). The rest of
the offspring producing process is executed in the same way
as (4) and (5).

After the entire offspring population is produced, the evo-
lution processes including fitness evaluation, selection, and
archive update are executed (lines 23 and 24). The entire
process is repeated until the stopping condition (e.g., when
NFE >= MAXNFE) is met.

IV. EXPERIMENTAL STUDIES

A. Experimental Setup

1) Benchmark Problem: In the experiments, we
use two representative MaTOP benchmarks, namely:
1) CEC19MaTOP [47] and 2) GECCO20MaTOP [48]
to test the effectiveness of the proposed algorithm. Both
CEC19MaTOP and GECCO20MaTOP use some basic
functions with rather different global optima to act as
the component tasks. These basic functions are Sphere,
Rosenbrock, Rastrigin, Ackley, Griewank, Weierstrass, and
Schwefel, which have heterogeneous function landscapes.
For example, Sphere function is a smooth and single-modal
function while Rastrigin is a multimodal function that
contains many local optima. The CEC19MaTOP benchmark

contains six 50-task problems and the GECCO20MaTOP
benchmark contains ten 50-task problems. The numbers of
different basic functions used in these benchmarks are listed
in Table S.II in the supplemental material. Specifically, all
the problems in the CEC19MaTOP benchmark only contain
one type of basic function while some problems in the
GECCO20MaTOP benchmark contain different types of basic
functions. The only difference between the tasks that use
the same basic function is that their function landscapes are
shifted by different biases. Hence, the tasks that use the same
basic function can be considered shift invariant according to
Definition 1. Therefore, the problems (i.e., problems 4–10 in
GECCO20MaTOP benchmark) that contain multiple types of
basic functions are considered more difficult and challenging.

2) Parameter Settings: The parameter settings of TRADE
are listed in Table S.III in the supplemental material. In this
article, we use a DE variant with a current-to-pbest mutation
strategy which has shown good ability in balancing explo-
ration and exploitation. Then, DE with different parameter
settings of mF and mCr in (8) and (9) is used as the base
solvers. Specifically, mF of all the base solvers is fixed as
0.5, and mCr can have three available settings from {0.1,
0.5, 0.9}. Therefore, the base solver set A contains three base
solvers, denoted as DE/0.1, DE/0.5, and DE/0.9, with DE/0.5
as the unified base solver EAu. The population size of each
task (NP) is set as 100. The MAXGEN is set as 1000. Since
there are NT = 50 tasks in each problem, the maximum NFEs
(MAXNFEs) is set as NT × NP × MAXGEN = 50 00 000. The
parameter of maximum generations for the first evolution stage
(G1) is set as 100. The parameters α and ρ of CRP in TSG are
0.05 and 10, respectively. The algorithms are implemented in
MATLAB and the experiments are conducted on a computer
cluster with processors Intel Xeon E5-2699 v3.

3) Compared Algorithms: To test the effectiveness of
the TRADE algorithm, we carry out comparisons between
TRADE, EMTO algorithms, and single-task optimization algo-
rithms. All the compared EMTO algorithms are implemented
based on the MP4MaT framework. To enable a fair compari-
son, they all use the same base solver set (i.e., A = {DE/0.1,
DE/0.5, DE/0.9}) as TRADE and the solver assignment strat-
egy in the compared algorithms is randomly selecting a
base solver from A for a given task at the beginning. The
compared algorithms for solving MaTOP are EBS using
DE as base solver (denoted as EBSDE) [24], MaTDE [25],
MTEA-AD [28] using DE as base solver (denoted as MTDE-
AD), AEMTO [29], and EMaTO [30]. The reasons for choos-
ing these algorithms for comparison are as follows. First, all
the compared EMTO algorithms are flexible in using different
EAs as base solvers. Hence, despite that some EMTO algo-
rithms such as EMaTO use other EAs such as GA as base
solvers in the original paper, the DE can still be seamlessly
used in these EMTO algorithms. Second, most of these algo-
rithms adopt PDSM for measuring the similarity between tasks
while TRADE adopts SISM. Moreover, the compared algo-
rithms perform KT by transferring solutions while TRADE
transfer EA parameters. Hence, the comparison can validate
the effectiveness of the proposed SISM and KT methods.

Different from the EMTO algorithms, the single-task
optimization algorithms solve the tasks independently without

WU et al.: TRADE FOR MANY-TASK OPTIMIZATION 7303

KT. The compared single-task algorithms are STDE/0.1 [42],
STDE/0.5 [42], STDE/0.9 [42], STDE/r, and STcDE [49].
Herein, the ST stands for “single-task” and is added as the
prefix of the algorithm name. Specifically, the STDE/0.1,
STDE/0.5, and STDE/0.9 use the parameter setting of
mCr = 0.1, mCr = 0.5, and mCr = 0.9, respectively. To enable
a fair comparison between TRADE and these STDEs with dif-
ferent parameter settings, these STDEs are implemented in a
two-stage manner as TRADE. That is, in the first evolution
stage, STDE uses the same unified base solver as TRADE
to evolve and in the second evolution stage, STDE uses the
base solver with its predefined parameter settings (i.e., mCr)
to evolve. STDE/r is an STDE variant with “r” meaning “ran-
dom.” Specifically, in the second evolution stage of STDE/r,
an EA associated with its parameter setting of mCr is ran-
domly selected from A to evolve. Through the comparison
between TRADE and the above STDEs, we can show that our
TRADE can gradually adapt to the most suitable parameter
setting for solving a set of similar tasks by SEET. Furthermore,
STcDE is a single-task optimization algorithm using an adap-
tive DE with different parameters. Besides, there are other
works [23] that use adaptive DE with different parameters to
solve multitask optimization problems. The major difference
between TRADE and these adaptive DEs is that TRADE uses
cross-task knowledge to adjust parameters (e.g., mCr) while
these adaptive DEs use intratask knowledge to adjust parame-
ters. Therefore, comparing TRADE with STcDE can show the
effectiveness of SEET in parameter adaptation.

4) Performance Metric: To reduce the statistical error
caused by the randomness of the optimization algorithms, all
the algorithms are run independently 30 times. The obtained
best fitness in each run is collected and used for comparison.
Afterward, we run a Wilcoxon rank sum test at a significance
level of 0.05 between our TRADE algorithm and the com-
pared algorithms on each task of the MaTOP. The symbols
“W/T/L” indicate that our TRADE performs significantly bet-
ter (Win), equal to (Tie), or significantly worse (Lose) than the
compared algorithm on a task, respectively. Then, the num-
ber of tasks that TRADE is significantly better, equal to, or
significantly worse than the compared algorithm is counted.
TRADE is said to be better than the compared algorithm on
a MaTOP if the number of “W” is larger than the number
of “L” and the difference between W and L is at least larger
than 5 (e.g., 10% of the 50 tasks). The comparative result on a
problem will be given in the parenthesis by “+/=/−” meaning
TRADE is better than, equal to, or worse than the compared
algorithm. To further reduce statistical comparison error, we
conduct the Friedman test [50] to compare performance among
the multiple algorithms and report the average ranks, denoted
as AvgRank. The smaller rank indicates better performance and
the best result is marked in boldface. Moreover, the multiple
comparison test [51] is adopted and the calculated p-values
are given for each benchmark.

B. Results and Discussion

1) Comparison Between TRADE and EMTO Algorithms:
The comparative results between TRADE and the EMTO
algorithms are shown in Tables I and II. Moreover, the detailed

TABLE I
COMPARATIVE RESULTS BY WILCOXON RANK SUM TEST BETWEEN

TRADE AND EMTO ALGORITHMS ON CEC19MATOP
AND GECCO20MATOP BENCHMARKS

TABLE II
COMPARATIVE RESULTS BY FRIEDMAN TEST AND MULTIPLE

COMPARISON TEST AMONG TRADE AND EMTO ALGORITHMS ON

CEC19MATOP AND GECCO20MATOP BENCHMARKS

results of the EMTO algorithms on 50 tasks in a representa-
tive MaTOP (i.e., GECCO20MaTOP5) are given in Table S.IV
in the supplemental material. According to the numbers of
+/=/− in Table I and the AvgRank in Table II, we can observe
that our TRADE significantly outperforms AEMTO, EBSDE,
EMaTO, MaTDE, and MTDE-AD on most of the problems
in the CEC19MaTOP benchmark and the GECCO20MaTOP
benchmark. Specifically, in the CEC19MaTOP benchmark that
all the problems contain homogeneous tasks using the same
basic function such that all the tasks can be considered shift
invariant, our proposed TRADE based on SISM is more effec-
tive than the compared algorithms based on PDSM. This is
because when the global optima in different tasks in a problem
differ greatly, the PDSM may become less effective. On the
contrary, the TRADE utilizes a new kind of similarity, namely,
shift invariance, which can still be useful when the global
optima of the tasks differ greatly. Moreover, in the more
complex GECCO20MaTOP benchmark where the MaTOP
(e.g., GECCO20MaTOP5) contains heterogeneous tasks using
different basic functions, our TRADE still outperforms the
compared EMTO algorithms. This indicates that TRADE can
handle more difficult MaTOP with heterogeneous tasks than
the compared EMTO algorithms.

2) Comparison Between TRADE and Single-Task
Algorithms: The summarized comparative results between
TRADE and the single-task optimization algorithms are

7304 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 11, NOVEMBER 2023

TABLE III
SUMMARIZED COMPARATIVE RESULTS BY WILCOXON RANK SUM TEST

BETWEEN TRADE AND THE SINGLE-TASK OPTIMIZATION ALGORITHMS

ON CEC19MATOP AND GECCO20MATOP BENCHMARKS

TABLE IV
COMPARATIVE RESULTS BY FRIEDMAN TEST AND MULTIPLE

COMPARISON TEST AMONG TRADE AND SINGLE-TASK OPTIMIZATION

ALGORITHMS ON CEC19MATOP AND GECCO20MATOP BENCHMARKS

TABLE V
NUMBER OF BEST RESULTS OBTAINED BY DIFFERENT EAS WITH

DIFFERENT PARAMETER SETTINGS ON CEC19MATOP AND

GECCO20MATOP BENCHMARKS

shown in Tables III and IV. The detailed comparative results
are shown in Tables S.V and S.VI in the supplemental
material. Moreover, the number of obtained best results of
different single-task EAs with different parameter settings
(mCr) on the tested benchmark are shown in Table V. From
Tables III–V, we can obtain several important observations
and conclusions.

First, on the CEC19MaTOP benchmark with homogeneous
tasks, the performances of EAs with different parameter set-
tings are rather different on different problems. For example,
Table V shows that STDE/0.9 obtains the best results on 50
tasks in problem 1 that only contains Rosenbrock function
while STDE/0.5 obtains the best results on 50 tasks in problem
2 that only contains Ackley function.

Second, although STDEs with different parameter settings
have their corresponding advantages on different problems,
the proposed TRADE can achieve generally better results than
these STDE variants in terms of average rank. This is because
the proposed TRADE with SEET method can adaptively trans-
fer successful parameters for solving a set of shift invariant
tasks and reduce the effect of harmful parameters in the
search process. STDE/r represents the expected performance
of a DE algorithm without knowing which parameter among
mCr = 0.1, mCr = 0.5, and mCr = 0.9 is best in advance. The
TRADE gives encouraging results that TRADE outperforms
STDE/r on most of the problems in the CEC19MaTOP bench-
mark. This indicates that TRADE is effective in the case that
we have no prior knowledge about which parameter works
better on a black-box problem.

Third, the proposed TRADE generally outperforms
STDE/0.1, STDE/0.5, STDE/0.9, STDE/r on the more com-
plex GECCO20MaTOP benchmark that contains heteroge-
neous tasks. Specifically, TRADE obtains more + than −
and achieves the smallest average rank on two benchmarks.
The results indicate that TRADE is capable of handling more
difficult MaTOP with heterogeneous tasks.

Fourth, the proposed TRADE that adapts parameters by
transferring successful parameters from other tasks outper-
forms STcDE that adapts parameters by the knowledge within
the task on 12 problems in the two benchmarks. STcDE also
uses the same base solver set A as TRADE does and increases
the usage of the successful parameters in the search process. In
summary, TRADE can be regarded as using cross-task knowl-
edge to adapt parameters while STcDE can be regarded as
using intratask knowledge to adapt parameters. These results
indicate the effectiveness of the SEET method that adapts
parameters by KT.

C. Component Analysis

1) Effects of TRS and TSG in the First Evolution Stage:
The first evolution stage in TRADE mainly contains the TRS
and TGS. TRS serves as representing each task to measure
shift invariance-based similarity between tasks while TGS
serves as grouping similar tasks into the same group based
on SISM.

To testify the effectiveness of TRS, we formulate a TRADE
variant called TRADE-PDSM. In TRADE-PDSM, the popu-
lation center after the first evolution stage is used to represent
a task instead of the way TRS does. As can be seen from the
name, TRADE-PDSM is based on PDSM to represent a task
that tries to capture the similarity in the global optima between
tasks. On the contrary, the proposed TRS can be used to cap-
ture the shift invariance between tasks. Ideally, after TRS and
TGS in the first evolution stage, the tasks using the same basic
functions will be grouped into the same group.

The comparative result between TRADE and TRADE-
PDSM is given in Table S.VII in the supplemental material.
TRADE behaves slightly worse than TRADE-PDSM on the
CEC19MaTOP benchmark and outperforms TRADE-PDSM
on the GECCO20MaTOP benchmark. This is because prob-
lems in CEC19MaTOP contain homogeneous tasks using
the same basic functions and the grouping strategy on
these homogeneous tasks does not take effect significantly.
However, on MaTOPs that contain several heterogeneous tasks
with different basic functions such as problems 5-8 in the
GECCO20MaTOP benchmark, TRADE significantly outper-
forms TRADE-PDSM. This indicates that the proposed TRS
based on SISM is more effective in solving more complex
MaTOP compared to TRADE-PDSM based on PDSM.

To testify the effectiveness of TGS, we formulate a TRADE
variant called TRADE-w/o-TGS. In TRADE-w/o-TGS, the
TGS is removed. That is, after the first evolution stage,
all the tasks are grouped into a single group. The com-
parative result between TRADE and TRADE-w/o-TGS is
given in Table S.VII in the supplementary material. The
results in Table S.VII in the supplementary material show

WU et al.: TRADE FOR MANY-TASK OPTIMIZATION 7305

(a) (b) (c)

Fig. 4. Grouping results on the problems in GECCO20MaTOP benchmark based on TRS after the first evolution stage. Ground truth of the groups (left)
and the formulated groups by TGS (right) after performing t-SNE dimensionality reduction method on the representations of tasks obtained by TRS after the
first evolution stage on (a) GECCO20MaTOP1, (b) GECCO20MaTOP4, and (c) GECCO20MaTOP8.

that TRADE achieves similar performance on CEC19MaTOP
benchmark and outperforms TRADE-w/o-TGS on 4 problems
on GECCO20MaTOP benchmark. The advantage of TRADE
is significant on MaTOPs (e.g., problem 5) that contain hetero-
geneous tasks. This indicates that TGS is effective by grouping
similar tasks and transferring knowledge between these tasks
to improve search efficiency.

To directly show the effect of TRS and TGS, we plot the
grouping results after an independent run of TRADE on the
GECCO20MaTOP benchmark in Fig. 4. The data after the first
evolution stage is collected and the TRS is employed to repre-
sent each task. Based on these task representations, we adopt
the t-distributed stochastic neighbor embedding (t-SNE) [52]
to represent these tasks in 2-D space. In Fig. 4, the left figure
in each subfigure is the ground truth for the grouping of the
tasks. For example, problem 4 in GECCO20MaTOP bench-
mark uses three types of basic functions: Sphere, Rosenbrock,
and Ackley. Hence, there are three groups of tasks and the
tasks in the group that use the same basic function are consid-
ered shift invariant based on SISM. However, this information
is not known in advance, and TRS and TGS are proposed with
the aim of capturing the shift invariance. It can be seen that
the right figure of each subfigure in Fig. 4 that TRS can rep-
resent tasks well. Specifically, the distances between similar
tasks (i.e., from the same group) are small and the distances
between dissimilar tasks (i.e., from different groups) are large
after TRS. Then, based on representations obtained by TRS,
the tasks can be grouped into different groups by TGS. For
example, in the right figure of Fig. 4(b), the grouping result
after TGS is very close to the ground truth of the groups. These
results further indicate the effectiveness of the proposed TRS
and TGS to measure shift invariance between tasks.

2) Effects of SEET in the Second Evolution Stage: To tes-
tify the effectiveness of the SEET method, we formulate three
TRADE variants: TRADE/0, TRADE/0.5, and TRADE/1. The
number after “TRADE/” represents the fixed parameter set-
ting of pSEET. For example, in the second evolution stage
of TRADE/0, pSEET is fixed to 0. Hence TRADE/0 repre-
sents the variants in that no KT method takes effect and each
task evolves independently in the second evolution stage. The
comparative results of TRADE and the compared variants are
shown in Table S.VII in the supplementary material. TRADE
significantly outperforms TRADE/0 on both two benchmarks.
This indicates that the proposed SEET method is effec-
tive. Moreover, TRADE generally outperforms TRADE/0.5
and TRADE/1 on the GECCO20MaTOP benchmark. Since
TRADE/0.5 and TRADE/1 use the fixed parameter settings of
pSEET, the results indicate the effectiveness of the design of
adapting pSEET when solving complex MaTOPs.

Fig. 5. Usage frequency of different EA parameters during the evolutionary
process with different initially assigned EA of mCr = 0.1, mCr = 0.5, and
mCr = 0.9, respectively, at the beginning of the second evolution stage in
TRADE for solving CEC19MaTOP1.

Moreover, we formulate a TRADE variant called TRADE-
self to testify the effectiveness of the parameter adaptation by
SEET. TRADE-self is formulated based on the self-adaptive
DE in [49] and only uses intratask information to select EA
associated with its parameter settings adaptively to produce
offspring. It should be noted that the major difference between
TRADE and TRADE-self is that TRADE uses knowledge
from other tasks to adapt parameters while TRADE-self uses
knowledge from its task to adapt parameters independently. The
comparative result between TRADE and TRADE-self is given
in Table S.VII in the supplementary material. TRADE gener-
ally outperforms TRADE-self which further indicates that the
parameter adaptation brought by the SEET method is effective.

To directly show the parameter adaptation behavior of
TRADE, the usage frequency of different EA parameters with
different initially assigned EA at the beginning of the second
evolution stage in TRADE on CEC19MaTOP1 is plotted in
Fig. 5. Note that all tasks in the problems of the CEC19MaTOP
benchmark use the same basic function. Combining with
Table V, we observe that in the left figure of Fig. 5, the ini-
tially assigned EA on a task of problem 1 in CEC19MaTOP is
with a parameter setting of mCr = 0.1, which is not an ideal
parameter for solving the task. However, by the SEET method,
the successful parameter mCr = 0.9 which is a good parameter
according to Table V is transferred to this task to help improve
search efficiency. As a result, the usage of mCr = 0.9 gradually
increases while the usage of mCr = 0.1 gradually decreases at
a generation as the search process proceeds. In the right figure
of Fig. 5, we observe that in the case that the initially assigned
EA on a task is the most suitable parameter (mCr = 0.9),
the usage of this parameter increases throughout the search
process. This observation further indicates the effectiveness of
the proposed SEET method.

D. Parameter Sensitivity Analysis

In this section, we investigate the parameter sensitivity
of G1 which controls the maximum generations used in the
first evolution stage in TRADE. We run experiments on two
benchmarks with different settings of G1 ∈{20, 40, 60, 80,

7306 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 11, NOVEMBER 2023

Fig. 6. (a) Example of robotic arm with three equal links. (b) Illustration of
shift invariance in two robotic arm control tasks.

120, 140, 160, 180} in TRADE. Note that the default setting
of TRADE is G1 = 100. The TRADE variants are TRADE-20,
TRADE-40, . . . , TRADE-180, respectively. The comparative
results between TRADE and the compared variants are shown
in Table S.VIII in the supplemental material. The results indi-
cate that a larger G1 can lead to better search performance.
This is because when G1 is set to be a larger value, more
evolution information is collected and used to represent the
tasks by TRS. Then, TGS can group the tasks more accurately
such that similar (i.e., shift invariant) tasks belong to the same
group while dissimilar tasks belong to different groups. As
a result, TRADE can improve search performance by sharing
successful parameters among shift invariant tasks by the SEET
method. However, setting a larger G1 can lead to a higher
computational cost since the computational time complexity
of TGS is related to the dimensionality of the task representa-
tion. To strike a balance between accuracy and computational
cost, we choose to set G1 to a moderate value of 100.

E. Real-World Application Study

To study the effectiveness of the TRADE algorithm on
real-world applications, we consider the robotic arm control
problem [29]. In a robotic arm control task, the goal is to find
the angle of each joint in the robotic arm such that the distance
between the end position of the arm and the target position
is minimized. A candidate solution to the task is represented
as a D-dimensional vector −→α = {α1, . . . , αD} containing the
angle of each joint. The end position of a solution is denoted
as P−→α and the target position is denoted as Ptar. Hence, the
objective is formulated as

f
(−→α , Ptar

) = ∥∥P−→α − Ptar
∥∥. (19)

Fig. 6(a) gives an example of a robotic arm control task with
three joints. In our setting, the beginning position denoted as
P0 and the length of each joint of the robotic arm are fixed.
Hence, we can generate different robotic arm control tasks
by setting different target positions to construct a robotic arm
control MaTOP.

An important property of this problem is that there exists
shift invariance between tasks. Specifically, when the distances
from two target positions of the two tasks to the beginning
position P0 is the same, the two tasks are shift invariance. We
give simple proof here. Suppose there are two tasks T1 and T2
with target positions Ptar,1 and Ptar,2, respectively, such that∥∥P0 − Ptar,1

∥∥ = ∥∥P0 − Ptar,2
∥∥. This means that Ptar,2 can be

obtained by rotating the Ptar,1 around the center P0 with a
certain angle denoted as �α. Then, for each solution denoted
as −→α1 = {α1,1, α1,2, . . . , α1,D} of T1, there exists a shift
transformation with vector �−→α = {�α, 0, . . . , 0} such that

TABLE VI
COMPARATIVE RESULTS BETWEEN TRADE AND OTHER EMTO

ALGORITHMS ON ROBOTIC ARM CONTROL MATOP

f (−→α1 , Ptar,1) = f (−→α1 +�−→α , Ptar,2). According to Definition 1,
the two tasks are shift invariant. An illustrating example of
the shift invariance is given in Fig. 6(b) with two robotic
arms with two joints. The two end positions of the two arms
have the same distances to their corresponding target positions.
Moreover, the solution of one arm only needs to change the
first dimension α1 with the angle �α to obtain the solution of
the other arm.

Based on the above discussions, we formulate five robotic
arm control MaTOPs whose target positions of the tasks are
shown in Fig. 7(a)–(e). The beginning position P0 (red cir-
cle) of the arm is fixed at (0, 0). The target positions are
distributed on the circle with same/different radii. We study
these MaTOPs to investigate two important questions: Q1)
can the proposed TRADE algorithm distinguish which tasks
are similar (i.e., shift invariant) in these real-world MaTOPs?
and Q2) can the proposed TRADE algorithm make use of the
shift invariance between tasks to improve the overall search
performance to efficiently solve these real-world MaTOPs?

In our experimental setting, each MaTOP contains 50 tasks
with D = 10. We compare the TRADE algorithm with
AEMTO, EBSDE, EMaTO, MaTDE, and MTDE-AD. They
all adopt the population size of 50 for each task. We set
MAXGEN = 200. G1 is set as 20 for the TRADE algo-
rithm. The grouped results of the tasks after the first evolution
stage of the TRADE is plotted in Fig. 7(f)–(j) on MaTOP1–
MaTOP5, respectively. The TRADE can approximately group
similar tasks whose target positions having the same [i.e.,
Fig. 7(f)–(g)] or similar distance [i.e., Fig. 7(h)–(j)] to the
beginning position into the same group. These results indi-
cate that the proposed algorithm can distinguish which tasks
are similar as an answer to Q1. The comparative results after
20 independent runs are shown in Table VI. The TRADE algo-
rithm generally outperforms the compared algorithms in terms
of the final average fitness. These results indicate that the
proposed algorithm can make use of the shift invariance to
achieve better search performance as an answer to Q2.

V. CONCLUSION

In this article, we considered a new kind of task similarity (i.e.,
shift invariance) and proposed a two-stage TRADE algorithm
that can solve MaTOP efficiently. The TRS and TGS in the
first evolution stage were efficient to identify shift invariance
between tasks and to group up similar tasks. The SEET method
in the second evolution stage was efficient in transferring
successful parameters among the tasks within the same groups.
In this way, the similarity between the tasks within the same
group was made best use of to improve the search efficiency.

WU et al.: TRADE FOR MANY-TASK OPTIMIZATION 7307

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. (a)–(e) Target positions of multiple tasks in the robotic arm control MaTOP1–MaTOP5. (f)–(j) Corresponding grouped results on the tasks of the
robotic arm control MaTOP1–MaTOP5 by TRADE.

The proposed TRADE algorithm has shown promising
performance in solving MaTOP. However, there are still some
issues that can be further studied in the future. For exam-
ple, the TRADE algorithm consumes a certain amount of
extra fitness evaluations to identify similar tasks and the
TRS may not be accurate enough to distinguish similar tasks
when a MaTOP contains many types of heterogeneous tasks.
Therefore, for future work, researchers can consider the fol-
lowing two aspects: 1) discovering a more efficient and
accurate TRS for identifying and capturing shift invariance
between tasks and 2) extending the scope of similarity between
tasks such as rotated invariance between function landscapes
of the tasks and biobjective similarity (i.e., shape and domain)
of the tasks [53].

REFERENCES

[1] K. C. Tan, L. Feng, and M. Jiang, “Evolutionary transfer optimization—
A new frontier in evolutionary computation research,” IEEE Comput.
Intell. Mag., vol. 16, no. 1, pp. 22–33, Feb. 2021.

[2] A. Gupta, Y. Ong, and L. Feng, “Insights on transfer optimization:
Because experience is the best teacher,” IEEE Trans. Emerg. Topics
Comput. Intell., vol. 2, no. 1, pp. 51–64, Feb. 2018.

[3] X.-F. Liu et al., “Neural network-based information transfer for dynamic
optimization,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 5,
pp. 1557–1570, May 2020.

[4] Q. Song, Y.-J. Zheng, J. Yang, Y.-J. Huang, W.-G. Sheng, and
S.-Y. Chen, “Predicting demands of COVID-19 prevention and control
materials via co-evolutionary transfer learning,” IEEE Trans. Cybern.,
early access, Apr. 21, 2022, doi: 10.1109/TCYB.2022.3164412.

[5] S. Yao, Q. Kang, M. Zhou, M. J. Rawa, and A. Abusorrah, “A survey
of transfer learning for machinery diagnostics and prognostics,” Artif.
Intell. Rev., to be published, doi: 10.1007/s10462-022-10230-4.

[6] Z.-H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evolutionary
computation for complex continuous optimization,” Artif. Intell. Rev.,
vol. 55, no. 1, pp. 59–110, 2022.

[7] Z.-H. Zhan et al., “Matrix-based evolutionary computation,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 6, no. 2, pp. 315–328, Apr. 2022.

[8] Q. Deng, Q. Kang, L. Zhang, M. C. Zhou, and J. An, “Objective space-
based population generation to accelerate evolutionary algorithms for
large-scale many-objective optimization,” IEEE Trans. Evol. Comput.,
early access, Apr. 22, 2022, doi: 10.1109/TEVC.2022.3166815.

[9] Y. Liu, D. Gong, J. Sun, and Y. Jin, “A many-objective evolutionary
algorithm using a one-by-one selection strategy,” IEEE Trans. Cybern.,
vol. 47, no. 9, pp. 2689–2702, Sep. 2017.

[10] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, and Y. Xia, “Solving
constrained trajectory planning problems using biased particle swarm
optimization,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 3,
pp. 1685–1701, Jun. 2021.

[11] X. F. Liu, Z.-H. Zhan, Y. Gao, J. Zhang, S. Kwong, and J. Zhang,
“Coevolutionary particle swarm optimization with bottleneck objective
learning strategy for many-objective optimization,” IEEE Trans. Evol.
Comput., vol. 23, no. 4, pp. 587–602, Aug. 2019.

[12] J. Tang, G. Liu, and Q. Pan, “A review on representative swarm intel-
ligence algorithms for solving optimization problems: Applications and
trends,” IEEE/CAA J. Automatica Sinica, vol. 8, no. 10, pp. 1627–1643,
Oct. 2021.

[13] S.-H. Wu, Z.-H. Zhan, and J. Zhang, “SAFE: Scale-adaptive fitness eval-
uation method for expensive optimization problems,” IEEE Trans. Evol.
Comput., vol. 25, no. 3, pp. 478–491, Jun. 2021.

[14] Y. Wang, S. Gao, M. Zhou, and Y. Yu, “A multi-layered gravitational
search algorithm for function optimization and real-world problems,”
IEEE/CAA J. Automatica Sinica, vol. 8, no. 1, pp. 94–109, Jan. 2021.

[15] L. Zhou et al., “Toward adaptive knowledge transfer in multifacto-
rial evolutionary computation,” IEEE Trans. Cybern., vol. 51, no. 5,
pp. 2563–2576, May 2021.

[16] S.-H. Wu, Z.-H. Zhan, K. C. Tan, and J. Zhang, “Orthogonal transfer
for multitask optimization,” IEEE Trans. Evol. Comput., early access,
Mar. 17, 2022, doi: 10.1109/TEVC.2022.3160196.

[17] A. Gupta, Y. Ong, and L. Feng, “Multifactorial evolution: Toward
evolutionary multitasking,” IEEE Trans. Evol. Comput., vol. 20, no. 3,
pp. 343–357, Jun. 2016.

[18] J.-Y. Li, Z.-H. Zhan, K. C. Tan, and J. Zhang, “A meta-knowledge
transfer-based differential evolution for multitask optimization,” IEEE
Trans. Evol. Comput., vol. 26, no. 4, pp. 719–734, Aug. 2022.

[19] K. K. Bali, Y. S. Ong, A. Gupta, and P. S. Tan, “Multifactorial evolu-
tionary algorithm with online transfer parameter estimation: MFEA-II,”
IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 69–83, Feb. 2020.

[20] L. Feng et al., “Solving generalized vehicle routing problem with occa-
sional drivers via evolutionary multitasking,” IEEE Trans. Cybern.,
vol. 51, no. 6, pp. 3171–3184, Jun. 2021.

[21] A. D. Martinez, J. Del Ser, E. Osaba, and F. Herrera, “Adaptive
multi-factorial evolutionary optimization for multi-task reinforcement
learning,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 233–247,
Apr. 2022, doi: 10.1109/TEVC.2021.3083362.

[22] L. Zhou et al., “Towards effective mutation for knowledge transfer
in multifactorial differential evolution,” in Proc. IEEE Congr. Evol.
Comput., 2019, pp. 1541–1547.

[23] Z. Liang, H. Dong, C. Liu, W. Liang, and Z. Zhu, “Evolutionary mul-
titasking for multiobjective optimization with subspace alignment and
adaptive differential evolution,” IEEE Trans. Cybern., vol. 52, no. 4,
pp. 2096–2109, Apr. 2022.

[24] R. Liaw and C. Ting, “Evolutionary many-tasking based on biocoenosis
through symbiosis: A framework and benchmark problems,” in Proc.
IEEE Congr. Evol. Comput., 2017, pp. 2266–2273.

[25] Y. Chen, J. Zhong, L. Feng, and J. Zhang, “An adaptive archive-
based evolutionary framework for many-task optimization,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 4, no. 3, pp. 369–384, Jun. 2020.

[26] J.-B. Mouret and G. Maguire, “Quality diversity for multi-task
optimization,” in Proc. Genet. Evol. Comput. Conf., 2020, pp. 121–129.

[27] C. Wang, J. Liu, K. Wu, and C. Ying, “Learning large-scale fuzzy
cognitive maps using an evolutionary many-task algorithm,” Appl. Soft.
Comput., vol. 108, Sep. 2021, At. no. 107441.

http://dx.doi.org/10.1109/TCYB.2022.3164412
http://dx.doi.org/10.1007/s10462-022-10230-4
http://dx.doi.org/10.1109/TEVC.2022.3166815
http://dx.doi.org/10.1109/TEVC.2022.3160196
http://dx.doi.org/10.1109/TEVC.2021.3083362

7308 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 11, NOVEMBER 2023

[28] C. Wang, J. Liu, K. Wu, and Z. Wu, “Solving multi-task optimization
problems with adaptive knowledge transfer via anomaly detection,”
IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 304–318, Apr. 2022,
doi: 10.1109/TEVC.2021.3068157.

[29] H. Xu, A. K. Qin, and S. Xia, “Evolutionary multi-task optimization
with adaptive knowledge transfer,” IEEE Trans. Evol. Comput., vol. 26,
no. 2, pp. 290–303, Apr. 2022, doi: 10.1109/TEVC.2021.3107435.

[30] Z. Liang, X. Xu, L. Liu, Y. Tu, and Z. Zhu, “Evolutionary many-
task optimization based on multisource knowledge transfer,” IEEE
Trans. Evol. Comput., vol. 26, no. 2, pp. 319–333, Apr. 2022,
doi: 10.1109/TEVC.2021.3101697.

[31] S. Huang, J. Zhong, and W.-J. Yu, “Surrogate-assisted evolution-
ary framework with adaptive knowledge transfer for multi-task
optimization,” IEEE Trans. Emerg. Topics Comput., vol. 9, no. 4,
pp. 1930–1944, Oct.–Dec. 2021, doi: 10.1109/TETC.2019.2945775.

[32] Z.-H. Zhan, Z.-J. Wang, H. Jin, and J. Zhang, “Adaptive dis-
tributed differential evolution,” IEEE Trans. Cybern., vol. 50, no. 11,
pp. 4633–4647, Nov. 2020.

[33] X. Qiu, K. C. Tan, and J.-X. Xu, “Multiple exponential recombina-
tion for differential evolution,” IEEE Trans. Cybern., vol. 47, no. 4,
pp. 995–1006, Apr. 2017.

[34] J.-Y. Li, Z.-H. Zhan, K. C. Tan, and J. Zhang, “Dual differen-
tial grouping: A more general decomposition method for large-scale
optimization,” IEEE Trans. Cybern., early access, Mar. 25, 2022,
doi: 10.1109/TCYB.2022.3158391.

[35] Z.-J. Wang, J.-R. Jian, Z.-H. Zhan, Y. Li, S. Kwong, and J. Zhang, “Gene
targeting differential evolution: A simple and efficient method for large
scale optimization,” IEEE Trans. Evol. Comput., early access, Jun. 23,
2022, doi: 10.1109/TEVC.2022.3185665.

[36] Z.-G. Chen, Z.-H. Zhan, H. Wang, and J. Zhang, “Distributed individu-
als for multiple peaks: A novel differential evolution for multimodal
optimization problems,” IEEE Trans. Evol. Comput., vol. 24, no. 4,
pp. 708–719, Aug. 2020.

[37] Z.-J. Wang et al., “Dual-strategy differential evolution with affinity prop-
agation clustering for multimodal optimization problems,” IEEE Trans.
Evol. Comput., vol. 22, no. 6, pp. 894–908, Dec. 2018.

[38] S.-C. Liu, Z.-H. Zhan, K. C. Tan, and J. Zhang, “A multiobjective frame-
work for many-objective optimization,” IEEE Trans. Cybern., vol. 52,
no. 12, pp. 13654–13668, Dec. 2022.

[39] Y. Yu, Z. Lei, Y. Wang, T. Zhang, C. Peng, and S. Gao, “Improving den-
dritic neuron model with dynamic scale-free network-based differential
evolution,” IEEE/CAA J. Automatica Sinica, vol. 9, no. 1, pp. 99–110,
Jan. 2022.

[40] Z. G. Chen, Z.-H. Zhan, S. Kwong, and J. Zhang, “Evolutionary
computation for intelligent transportation in smart cities: A survey
[review article],” IEEE Comput. Intell. Mag., vol. 17, no. 2, pp. 83–102,
May 2022.

[41] G. Karafotias, M. Hoogendoorn, and A. E. Eiben, “Parameter control
in evolutionary algorithms: Trends and challenges,” IEEE Trans. Evol.
Comput., vol. 19, no. 2, pp. 167–187, Apr. 2015.

[42] Z.-H. Zhan et al., “Cloudde: A heterogeneous differential evolution algo-
rithm and its distributed cloud version,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 3, pp. 704–716, Mar. 2017.

[43] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

[44] R. Zhang, “Making convolutional networks shift-invariant again,” in
Proc. Int. Conf. Mach. Learn., 2019, pp. 7324–7334.

[45] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 881–892, Jul. 2002.

[46] D. M. Blei and P. I. Frazier, “Distance dependent Chinese restaurant
processes,” J. Mach. Learn. Res., vol. 12, no. 74, pp. 2461–2488, 2011.

[47] L. Feng, K. Qin, A. Gupta, Y. Yuan, Y.-S. Ong, and X. Chi.
“IEEE CEC 2019 competition on evolutionary multi-task
optimization.” 2019. [Online]. Available: http://www.bdsc.site/websites/
MTO_competiton_2019/MTO_Competition_CEC_2019.html

[48] L. Feng et al. “GECCO2020 competition on evolutionary multi-task
optimization,” 2020. [Online]. Available: http://www.bdsc.site/websites/
MTO_competition_2020/MTO_Competition_GECCO_2020.html

[49] J. Tvrdík and R. Poláková, “Competitive differential evolution applied
to CEC 2013 problems,” in Proc. IEEE Congr. Evol. Comput., 2013,
pp. 1651–1657.

[50] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3–18, Mar. 2011.

[51] O. J. Dunn, “Multiple comparisons among means,” J. Amer. Stat. Assoc.,
vol. 56, no. 293, pp. 52–64, Apr. 2012.

[52] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J.
Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, Nov. 2008.

[53] Y. Jiang, Z.-H. Zhan, K. C. Tan, and J. Zhang, “A bi-
objective knowledge transfer framework for evolutionary many-task
optimization,” IEEE Trans. Evol. Comput., early access, Sep. 29, 2022,
doi: 10.1109/TEVC.2022.3210783.

Sheng-Hao Wu (Student Member, IEEE) received
the B.S. degree in computer science and technol-
ogy from the South China University of Technology,
Guangzhou, China, in 2019, where he is currently
pursuing the Ph.D. degree in computer science and
technology with the School of Computer Science
and Engineering.

His research interests mainly include compu-
tational intelligence, machine learning, and their
applications in real-world problems.

Zhi-Hui Zhan (Senior Member, IEEE) received the
bachelor’s degree and the Ph.D. degree in computer
science from Sun Yat-Sen University, Guangzhou
China, in 2007 and 2013, respectively.

He is currently the Changjiang Scholar Young
Professor with the School of Computer Science
and Engineering, South China University of
Technology, Guangzhou. His current research
interests include evolutionary computation, swarm
intelligence, and their applications in real-world
problems.

Dr. Zhan was a recipient of the IEEE Computational Intelligence Society
(CIS) Outstanding Early Career Award in 2021. He is one of the World’s
Top 2% Scientists for both Career-Long Impact and Year Impact in Artificial
Intelligence and one of the Highly Cited Chinese Researchers in Computer
Science. He is currently the Chair of Membership Development Committee
in IEEE Guangzhou Section and the Vice-Chair of the IEEE CIS Guangzhou
Chapter. He is currently an Associate Editor of the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION, the Neurocomputing, the Memetic
Computing, and the Machine Intelligence Research.

Kay Chen Tan (Fellow, IEEE) received the B.Eng.
(First Class Hons.) and Ph.D. degrees from the
University of Glasgow, Glasgow, U.K., in 1994 and
1997, respectively.

He is currently a Chair Professor of
Computational Intelligence with the Department
of Computing, Hong Kong Polytechnic University,
Hong Kong SAR. He has published over 300
refereed articles and seven books.

Prof. Tan is currently the Vice-President
(Publications) of IEEE Computational Intelligence

Society, USA. He served as the Editor-in-Chief for the IEEE Computational
Intelligence Magazine from 2010 to 2013 and for the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION from 2015 to 2020. He currently serves
as the Chief Co-Editor for Springer Book Series on Machine Learning:
Foundations, Methodologies, and Applications, and as an Editorial Board
Member for more than ten journals.

Jun Zhang (Fellow, IEEE) received the Ph.D.
degree from the City University of Hong Kong,
Hong Kong, SAR, in 2002.

He is currently a Korea Brain Pool Fellow
Professor with Hanyang University, Seoul,
South Korea. His current research interests include
computational intelligence, cloud computing,
operations research, and power electronic circuits.
He has published over more than 150 IEEE
TRANSACTIONS papers in his research areas.

Dr. Zhang was a recipient of the Changjiang
Chair Professor from the Ministry of Education, China, in 2013, the National
Science Fund for Distinguished Young Scholars of China in 2011, and
the First-Grade Award in Natural Science Research from the Ministry of
Education, China, in 2009. He is currently an Associate Editor of the
IEEE TRANSACTIONS ON CYBERNETICS and IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION.

http://dx.doi.org/10.1109/TEVC.2021.3068157
http://dx.doi.org/10.1109/TEVC.2021.3107435
http://dx.doi.org/10.1109/TEVC.2021.3101697
http://dx.doi.org/10.1109/TETC.2019.2945775
http://dx.doi.org/10.1109/TCYB.2022.3158391
http://dx.doi.org/10.1109/TEVC.2022.3185665
http://dx.doi.org/10.1109/TEVC.2022.3210783

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

