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Abstract: New gravity and precise levelling measurements
have been performed throughout the Hong Kong territories
to modernize a vertical geodetic datum that is currently
realized by heights of levelling benchmarks defined in the
Hong Kong Principal Datum (HKPD). Modernization of the
HKPD involved delivering various products, including new
detailed geoid and quasigeoid models and newly deter-
mined orthometric and normal heights of levelling bench-
marks. In this study, we present the result of gravimetric
quasigeoid modelling. The method used to compute a
detailed gravimetric quasigeoid model is based on the
finite-element method to solve the geodetic boundary-
value problem with oblique derivative boundary conditions
considereddirectly at computational nodes on the discretized
Earth’s topography. The result of a gravimetric quasigeoid

modelling shows a good agreement with a geometric quasi-
geoidmodelat theGlobalNavigationSatelliteSystem (GNSS)-
levelling benchmarks. The standard deviation of differences
between the gravimetric and geometric quasigeoid heights of
±3.3 cm is compatible with the expected accuracy of gravity,
levelling, and GNSS measurements.

Keywords: boundary-value problem, finite-element method,
gravity, heights, levelling, vertical geodetic control, (quasi)
geoid

1 Introduction

In the Hong Kong territories, the geodetic datum currently
used for height control is the Hong Kong Principal Datum
(HKPD). The heights of HKPD levelling benchmarks were
determined by adjusting levelling measurements but without
involving gravity observations along levelling lines. To
eliminate systematic errors due to disregarding the gravity
information, Nsiah Ababio and Tenzer (2022a) used terres-
trial and marine gravity measurements to interpolate gravity
values along levelling lines and then computed the normal
and orthometric corrections to levelled height differences to
determine the normal and orthometric heights of HKPD
levelling benchmarks. The result was presented as the Ver-
tical Control Network 2022 (VCN2022). Since the current
coverage of levelling network throughout the Hong Kong
territories is not suitable for many surveying applications,
Nsiah Ababio and Tenzer (2022b) compiled the detailed
gravimetric geoid model HKGEOID-2022, with the primary
purpose of converting the geodetic (ellipsoidal) heights
measured by the Global Navigation Satellite System (GNSS)
to the orthometric heights defined in the updated HKPD.
Nevertheless, both products (i.e. the VCN2022 and the
HKGEOID-2022) do not meet the requirements for many
proposed or approved engineering projects to be realized
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between Hong Kong and mainland China, because the
normal heights and the quasigeoid model are used for a
practical realization of vertical geodetic control in mainland
China, whereas the orthometric heights and geoid models
are used in Hong Kong. To achieve consistency between
both vertical data, a new detailed quasigeoid model was
prepared, and normal heights of levelling benchmarks
were determined at the Hong Kong territories. As stated
previously, the normal heights of HKPD levelling bench-
markswere already determined byNsiahAbabio and Tenzerr
(2022a). In this study, we present a new detailed quasigeoid
model compiled according to the method developed by Min-
arechová et al. (2021). Their method is based on applying the
finite-element method (FEM) to solve the oblique derivative
boundary condition (BC).

Traditionally, gravity anomalies have been used to
determine geoid/quasigeoid models by means of solving
the geodetic boundary-value problems (BVPs). The gravity
anomaly is defined as the actual gravity (typically mea-
sured on or above the topographic surface) and the normal
gravity computed as a function of the geodetic latitude and
the physical (normal or orthometric) height (above the sea
level). Nowadays, GNSS techniques provide information
about the vertical position of gravity points with respect
to the reference ellipsoid in terms of the geodetic (ellip-
soidal) rather than physical heights. The gravity distur-
bance is then obtained as the difference between the
observed and normal gravity (both referred to the same
point at or above the topographic surface). The availability
of this gravity data resulted in development of various
methods that have been applied to determine geoid/qua-
sigeoid models from gravity disturbances.

Gravity disturbances define the oblique derivative
BCs of the fixed gravimetric boundary-value problem
(FGBVP) that represents an exterior oblique derivative
geodetic BVP for the Laplace equation (Koch and Pope 1972,
Bjerhammar and Svensson 1983, Holota 1997). A detailed
overview of various procedures for solving the oblique
derivative BVP can be found, for instance, in Minarechová
et al. (2021). Here, we only mention numerically efficient
approaches, most notably the FEM, the finite-volume
method (FVM), and the boundary element method (BEM).
Principal reasons for using these methods in gravimetric
geoid/quasigeoid modelling, instead of applying classical
procedures based on solving Stokes and Poisson’s integrals,
rely on the possibilities of applying a direct refinement of the
discretization by using a very detailed gravity data grid and
considering a real topographic relief.

Meissl (1981) and Shaofeng and Dingbo (1991) applied
the FEM to solve gravimetric problems. Klees (1995) and
Lehmann and Klees (1999) developed the indirect BEM

approach that was later improved by Klees et al. (2001).
Čunderlík et al. (2008) and Čunderlík and Mikula (2010)
introduced the direct BEM approach. Later, Čunderlík et al.
(2012) discussed the applicability of the BEM to solve the
oblique derivative problem. Fašková et al. (2007, 2010),
Šprlák et al. (2011), and Mráz et al. (2016) applied the
FEM. Nevertheless, the oblique derivative BC was not con-
sidered in these studies. Fašková (2008) applied for the
first time the FVM in gravity field modelling by solving
the geodetic BVP with the Neumann BC. Macák et al.
(2012) applied the FVM to the oblique derivative BVP,
and Macák et al. (2014, 2015) applied it to solve FGBVPs
on uniform grids. Medľa et al. (2018) presented the FVM for
solving the oblique derivative BVP on 3-D unstructured
meshes above the real topography. Droniou et al. (2019)
further improved this method by treating the oblique deri-
vative BC so that its tangential component is considered an
advection along a topographic relief regularized by a care-
fully designed surface diffusion term. Minarechová et al.
(2021) applied the FEM to solve the oblique derivative BC.
In this method, the oblique derivative is incorporated
directly into computational nodes by using two tangential
vectors for each node in order to improve numerical
accuracy.

In this study, we applied the method developed by
Minarechová et al. (2021) to compile a detailed gravi-
metric quasigeoid model in the Hong Kong territories.
Since there are some inconsistencies in definitions and
realizations of vertical and gravimetric data (such as dif-
ferent datum origins and application of different tidal
systems and reference parameters), the gravimetric qua-
sigeoid model is usually (optimally) fitted or combined
with the geometric quasigeoid heights determined at
the GNSS-levelling benchmarks from their geodetic and
normal heights. In the method applied here, this fitting is
implicitly carried out by compiling a quasigeoid model.
The method applied for gravimetric quasigeoid modelling
is briefly reviewed in Section 2. Input data acquisition is
discussed in Section 3. Results are presented and ana-
lysed in Section 4. The study is summarized and con-
cluded in Section 5.

2 Theory

A formulation of the oblique derivative of the BVP is
explained in this section. We then briefly discuss its
solution by means of applying the FEM according to
the numerical procedure developed by Minarechová
et al. (2021).
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2.1 Oblique derivative BVP

In the most generalized form, the FGBVP is formulated as
follows (Koch and Pope 1972, Bjerhammar and Svensson
1983, Holota 1997):

( ) = ∈ −T R Sx xΔ 0 ,3 (1)

( ) ( ) ( )∇ ⋅ = − ∈ ∂T δg Sx s x x x , (2)

( ) ∣ ∣→ → ∞T x x0 , (3)

where S denotes the Lipschitz domain (in our case the
Earth), T(x) is the disturbing potential (i.e. difference
between values of the actual and normal gravity potential)
at a point x = (x, y, z), δg(x) is the gravity disturbance, and
the vector s(x) = −∇U(x)/|∇U(x)| is the unit vector normal
to the equipotential surface of the normal potential U(x) at
a point x. The expressions in equations (1)–(3) describe the
exterior BVP for the Laplace equation, where the compu-
tation domain is situated outside the Earth and is infinite.
Since the FEM requires a discretization of the whole com-
putation domain by finite elements, the bounded domain
Ω is constructed above the Earth (cf. Fašková et al. 2010)
that is bounded by the lower surface Γ ⊂ ∂Ω representing a
part of the Earth’s surface and an upper surface created at
an appropriate altitude (depending on a vertical gravity
data extension). In the case of local gravity field model-
ling, the domain Ω is also bounded by a geographical
extension of the study area. The Dirichlet-type BC for the
disturbing potential is then defined for the upper and geo-
graphical side boundaries. In the bounded domain Ω, we
consider the following BVP (Minarechová et al. 2021):

( ) = ∈ ⊂T Ω Rx xΔ 0 ,3 (4)

( ) ( ) ( )∇ ⋅ = − ∈ ⊂ ∂T δg Γ Ωx s x x x , (5)

( ) ( )→ ∈ ∂ −T T Ω Γx x x˜ , (6)

where Γ ⊂ ∂Ω represents the part of the Earth’s topography,
and ∂Ω − Γ represents the upper and geographical bound-
aries. As seen in equation (6), instead of ( ) →T x 0 (equation
(3)), the solution is fixed to the potential value ( ) ( )→T Tx x˜
computed (at some elevation) from a global geopotential
model (GGM). In this way, the integration is carried out
only within a certain domain instead of integrating over
the whole globe that is required in Stokes approaches.

2.2 FEM solution to the oblique
derivative BVP

To solve the BVPdefined by equations (4) and (5), we applied
the FEM approach based on the numerical procedure

developed by Minarechová et al. (2021). It involved the
following steps: The bounded 3D computational domain
Ω was discretized by finite elements Ωe using the hexa-
hedral elements with eight nodes (see Brenner and Scott
2002; or Reddy 2006). On an arbitrary element Ωe, a weak
formulation of equation (4) was derived using the funda-
mental principles of FEM (Reddy 2006). To incorporate the
oblique derivative BC in equation (5), for the row of ele-
ments that lie on the bottom boundary (i.e. the discretized
Earth’s surface), the weak formulation was modified by
splitting the oblique vector s into its normal and tangential
components (Minarechová et al. 2021). On each hexahe-
dral element Ωe, the unknown solution T was approxi-
mated by a linear combination of basis functions yielding
an element stiffness matrix. Afterwards, a global stiffness
matrix was assembled from all element matrices by using
two principles: (i) continuity of primary variables at the
inter-element nodes and (ii) “equilibrium” of secondary
variables at the interface between two neighbouring ele-
ments. Finally, the Dirichlet BCs in equation (6) for nodes
that lie on the ∂Ω − Γ were taken into consideration by
establishing a global linear system of equations. For all
details of this FEM approach, we refer readers to the study
by Minarechová et al. (2021).

3 Data acquisition

We used terrestrial and marine gravity data, GGMs, levelling
data, GNSS geodetic heights, and topographic and bathy-
metric models to compile a new gravimetric quasigeoid
model and combine it with GNSS-levelling data. This section
provides a brief summary of datasets and models and their
use for a discretization of the Earth’s surface and a prepara-
tion of input BCs, namely, the Dirichlet BC generated from
GGMs and the gravity disturbances as the oblique derivative
BCs considered on the discretized Earth’s topography.

3.1 Terrestrial and shipborne gravity data

From the regional gravity survey conducted by Electronic
and Geophysical Services Ltd in 1991, 640 gravity observa-
tions were done in the Hong Kong territories (Electronic
and Geophysical Services Ltd 1991). These observations
comprise 133 shipborne measurements, and 507 terrestrial
measurements on land spaced at approximately 2 and
2–4 km apart, respectively. Terrestrial sites were accessed
using either vehicles or helicopters, and measurements
were performed by the Lacoste and Romberg “G” relative
gravimeter. The seaborne gravity measurements were
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performed using themarinemodel H/U seabed gravimeter.
The distribution of gravity data is shown in Figure 1. The
gravity database has an accuracy of ±0.03mGal deduced
from its connection to the International Gravity Standardi-
zation Net 1971 (Evans 1990).

3.2 Discretization of the computational
domain

The Hong Kong territories, covering a total area of about
1,100 km², are characterized by large topographic eleva-
tion changes with the maximum height reaching 957 m
(Tai Mo Shan). Our 3D computational domain for the FEM
numerical scheme was considered on such complicated
topography. To get a reliable FEM numerical solution in
this territory, we had to consider an extended area, as
shown in Figure 2. Its size is approximately two times
bigger than the size of the inner-zone area with the input
terrestrial and shipborne gravity data. In this way, we
minimized the impact of the Dirichlet BC prescribed on
the side boundaries of the FEM solution inside the inner
zone, as discussed by Fašková et al. (2010). Finally, the
chosen computation area was bounded by meridians of
113.5°E and 114.8°E longitudes and parallels of 21.8°N and
22.9°N latitudes and discretized with the high-resolution
0.0005 deg × 0.0005 deg topographical grid.

Within the Hong Kong territories, we used the HK_DTM_5m
digital terrain model compiled by the Lands Department (www.

landsd.gov.hk/en/spatial-data/open-data/kf_dtm.html).
We also used the HKGEOID-2022 geoid model Nsiah Ababio
and Tenzer (2022b) to obtain the geodetic (ellipsoidal)
heights of computational nodes. In surrounding areas,
we used the multi-error-removed improved-terrain (MERIT)
digital elevation model (DEM) (Yamazaki et al. 2017) com-
bined with the EGM2008 geoidmodel (Pavlis et al. 2012). The
ellipsoidal heights of computational nodes offshore were
interpolated from the DTU21 mean sea surface (Andersen
et al. 2021). In this way, we constructed the bottom boundary
of the 3D computational domain (Figure 2).

The upper boundary was chosen at the constant alti-
tude of 200 km above the reference ellipsoid and was dis-
cretized with the same horizontal resolution of 0.0005 deg ×
0.0005 deg. In the radial direction, the 3D computational
domain was discretized non-uniformly depending on alti-
tude. The radial size of finite elements on the Earth’s surface
was set to 5m while increasing linearly with altitude and
exceeding 1 km for elements on the upper boundary. The
whole 3D computational domain then consisted of 2,600 ×
2,200 × 800 (longitude × latitude × height) = 4,576,000,000
finite elements (5,720,000 computational nodes on the dis-
cretized Earth’s topography).

3.3 Dirichlet BCs generated from GGMs

The Dirichlet BCs on the upper and side boundaries
were generated from the GRACE/GOCE-based GGMs.

Figure 1: Distribution of the terrestrial and shipborne gravity data.
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In particular, we used the GO_CONS_GCF_2_DIR_R6 satel-
lite-only GGM up to a degree/order of 300 (Bruinsma et al.
2014) to generate the disturbing potential on the upper
boundary at an altitude of 200 km (Figure 3). The FEM
solution was fixed to the gravity field information detected
by the satellite missions CHAMP, GRACE, and GOCE. On
the side boundaries, the disturbing potential was gener-
ated from the combined EIGEN-6C4 model up to a degree/
order of 2160 (Förste et al. 2014).

3.4 Gravity disturbances on the discretized
Earth’s surface

On the bottom boundary, the input gravity disturbances
were generated directly at computational nodes that dis-
cretize the Earth’s surface. Due to different sources of
gravity data, we divided the bottom boundary into three

zones, as shown in Figure 4. The Hong Kong territories
covered by available terrestrial and shipborne gravity
measurements represent the inner zone (“Zone_IN”). Here,
we used themethod of a reverse reconstruction of the gravity
acceleration from the complete Bouguer anomaly (CBA)
map. Outside this area, we generated input data from a
combined GGM refined by the residual terrain model
(RTM) methodology (“Zone_OUT_lands”). Over open sea
(“Zone_OUT_sea”), we interpolated gravity disturbances
from the DTU21_GRAV dataset, providing the altimetry-
derived gravity data.

3.4.1 Reconstruction of gravity from the CBA map

In the inner zone “Zone_IN” (Figure 4), we used the
method of a reverse reconstruction of the gravity from
the CBA map. The computation of the gravity value at

Figure 2: The discretized Earth’s topography in the Hong Kong territories and surrounding areas as the bottom boundary of the compu-
tational domain (the resolution 0.0005 deg × 0.0005 deg).
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an arbitrary point through a reverse reconstruction from
the CBA map is considered to be the most accurate method
(cf. Majkráková et al. 2016, or Zahorec et al. 2021). The reason
is simple, an interpolation from the CBAmap is more appro-
priate than, for example, from the free-air anomalymap. The
first numerical step involved the computation of the CBA
from the gravity measurements described in Section 3.1.
We used a standard approach based on precise evaluation
of the terrain/bathymetric corrections to a spherical distance
of 166.7 km. For this purpose, we used TopoSK software
(Zahorec et al. 2017) and the following DEMs: For the inner
most zone (up to 250m), we used HK_DTM_5m as the most
detailed and available DEM of the Hong Kong territories. For
themiddle zone (250–5.2 km), we usedHK_DTM_5madded by
the Advanced Land Observing Satellite World 3D model ver-
sion 2.1 (AW3D30) (Tadono et al. 2014; Takaku et al. 2018) and
resampled to a resolution of 25m. For the closer outer zone
(5.2–28.8 km) andmore distant outer zone (28.8–166.7 km), we

used the MERIT DEM with resolutions of 3 and 30arcsec,
respectively. Bathymetric corrections were calculated using
the SRTM15plus v.2.3 model (Tozer et al. 2019).

We used the CBA map for a correction density of
2,670 kg/m3 (Figure 5) to interpolate the CBA values on
a regular grid of 50 m × 50m. By the identical reverse
calculation, including the evaluation of terrain/bathy-
metric corrections, we obtained values of the recon-
structed gravity values at the FEM computational grid.
From these values, we generated gravity disturbances
at all grid points of the “Zone_IN” whose ellipsoidal
heights had been reconstructed before (Section 3.2).

3.4.2 GGM + RTM method

The input gravity disturbances at grid points of “Zone +
OUT + lands” (Figure 4) were generated using the GGM +

Figure 3: Disturbing potential at an altitude of 200 km above the reference ellipsoid as the Dirichlet BC on the upper boundary generated
from the GO_CONS_GCF_2_DIR_R6 model up to a degree/order of 300.
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RTM methodology. We used the combined EIGEN-6C4
model up to a degree/order of 2,160. The RTM technique
accounts for differences between the gravitational effect
of the real terrain masses represented by high-resolution
DEMs (the same used for CBA in Section 3.4.1) and smoothed
mean elevation surface represented, for instance, by the
DTM2006 model (Pavlis et al. 2007). The impact of RTM on
the gravity generated fromGGM is significant, as can be seen
from the comparison with the gravity observed from terres-
trial measurements in Figure 6.

3.4.3 Altimetry-derived gravity data

At grid points over the open sea in “Zone_OUT_sea”
(Figure 4), the gravity disturbances were transformed
from the altimetry-derived gravity anomalies interpo-
lated from the DTU21_GRAV data set. For this transforma-
tion, we used the EGM2008 model (Pavlis et al. 2012). Due
to the worse accuracy of the altimetry-derived gravity
data in shallow waters and coastal areas, we did not
use them in Lingding Bay (the Pearl River estuary in
the northwest of Hong Kong) and Mirs Bay (in the north-
east of Hong Kong).

Combining the gravity disturbances generated in all
three zones, we finally obtained the input dataset on the
bottom boundary as the oblique derivative BC for our
FEM numerical solution of FGBVP. The spatial pattern
of the gravity disturbances is depicted in Figure 7. We
could recognize some minor discontinuities in data along
borders between the selected three zones. Nevertheless,
the magnitudes of these discontinuities are not that sig-
nificant because we do not have at disposal any original
gravimetric measurements outside the Hong Kong terri-
tories. Note that gravity data over mainland China are not
publicly available.

3.5 GNSS-levelling data

From the current vertical control network database in Hong
Kong, there are only 16 benchmarks with high-quality GNSS
measurements of geodetic (ellipsoidal) heights referred to
the WGS84 reference ellipsoid at the ITRF96 epoch. From
these 16 points, there are 10 first-order bedrock benchmarks
and 6 second-order benchmarks. The normal heights of
these benchmarks were obtained after applying the normal
correction to levelled height differences and a subsequent

Figure 4: The bottom boundary divided into three zones with respect to gravity data sources.
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readjustment of the whole levelling network that provided
the VCN2022 solution. The new network adjustment and
analysis revealed that the accuracy of VCN2022 normal
heights is about ±1–2 cm, and a similar accuracy charac-
terizes the GNSS vertical measurements Nsiah Ababio and
Tenzer (2022b). The distribution of the GNSS-levelling bench-
marks and their respective quasigeoidal heights are shown in
Figure 8.

4 Results

A numerical solution of FGBVP based on using the FEM
approach on a large 3D unstructuredmeshwith 4,576,000,000
finite elements (Section 3.2) required about 1.3 TB of internal
memory. The large-scale parallel computationswere performed
on 176 cores of the cluster with the distributedmemory and the
NUMA (Non-Uniform Memory Access) architecture by using a
hybrid parallelization (44MPI processes, each with 4 OpenMP
threads). The BiCGSTAB linear solver converged after 5,970
iterations for a tolerance of 10−5. Hence, the parallel computa-
tions took about 35h of CPU time.

Figure 5: CBA map constructed from available gravity measurements (black dots).

Figure 6: Differences of the gravity from terrestrial/shipborne
measurements and the gravity generated from GGM without RTM
(black) and with RTM (red). Gravity differences are shown as a
function of height differences between the detailed DEM and
DTM2006.
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A benefit of such large-scale computations is that
they resulted in the disturbing potential obtained at every
point of the entire 3D computational mesh, i.e. at all
4,576,000,000 finite elements. Hence, it is possible to
derive different quantities of the local gravity field (e.g.
the first, second, and higher derivatives in different direc-
tions) at every point. To get a local quasigeoid model,

values of the disturbing potential T obtained on the
bottom boundary (i.e. at the Earth’s surface; Figure 2)
were converted to the quasigeoidal heights ξ by using
the following formula:

( )
= − = −

− + −ξ h H h T U W
γ

,i i i
N

i
i i

i

0 (7)

Figure 7: Gravity disturbances at the Earth’s surface as the oblique derivative BC on the bottom boundary.

Figure 8: Distribution of GNSS-levelling benchmarks in the Hong Kong territories.
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where h is the geodetic (ellipsoidal) height, HN denotes
the normal height, U is the normal gravity potential eval-
uated at the ith grid point at the Earth’s surface, γ is the
mean normal gravity between the reference ellipsoid and
the telluroid, and W0 is the global geopotential value
adopted for a realization of the International Height
Reference System (IHRS) (Sánchez et al. 2016). Para-
meters of the normal gravity filed were computed from
the WGS-84 reference ellipsoid. In this way, the quasi-
geoidal heights have been expressed with respect to the
WGS-84 reference ellipsoid and to the W0 value adopted
for IHRS.

The local quasigeoid model over the Hong Kong terri-
tories (and surrounding areas) computed on a 0.0005 deg ×
0.0005 deg grid is shown in Figure 9. To validate its preci-
sion, we compared the gravimetric quasigeoid heights with
the corresponding geometric quasigeoid heights at GNSS-
levelling benchmarks (Section 3.5). It is worth noting that
the geometric quasigeoid heights were obtained from differ-
ences between the geodetic (ellipsoidal) heights (measured

by the GNSS techniques) and the VCN2022 normal heights.
In addition, we used 507 input terrestrial gravimetric
measurements (Section 3.1) to validate the result of a
gravimetric modelling. For this purpose, we converted
the measured gravity anomaly data into the corresponding
quasigeoid heights. The comparison of results is shown in
Figure 10, with the statistics of differences summarized in
Table 1.

As seen from the comparison, there is a reasonable
agreement between the quasigeoid models with both the
geometric quasigeoid heights at GNSS-levelling points and
with the quasigeoid heights computed from measured
gravity data. The mean values of both differences (63.2
and 61.3 cm; Table 1) differ by less than 2 cm. This finding
indicates good consistency between gravity, GNSS, and
levelling data in Hong Kong. Moreover, this finding also
assures that despite high-quality GNSS-levelling measure-
ments are only at 16 benchmarks that are very irregularly
distributed and clustered only at some locations, the vali-
dation of results should be quite realistic.

Figure 9: Local quasigeoid model in the Hong Kong territories presented as the FEM numerical solution of FGBVP (with a resolution of
0.0005 deg × 0.0005 deg).
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Figure 10: Validation of results: (a) Differences between the gravimetric and geometric quasigeoid heights at 16 GNSS-levelling bench-
marks. (b) Differences between the quasigeoid heights obtained by solving FGBVP and computed from the measured gravity anomaly data
at 507 gravity sites.
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5 Summary and concluding
remarks

We have compiled the first detailed quasigeoid model in
the Hong Kong territories by applying the FEM to solve
the geodetic BVP with oblique derivative BCs considered
directly at computational nodes on the discretized Earth’s
topography. Since the problem is defined for the oblique
derivative BCs, we first converted the terrestrial and sea-
borne gravity measurements into the gravity disturbances
at the Earth’s surface by utilizing information about the
geodetic heights obtained from the digital elevation and
geoid models (inland) and the mean sea surface topo-
graphy (offshore). The absence of gravity data in mainland
China was resolved by using the gravity information from
a high-resolution GGM.

The result of gravimetric modelling revealed that the
quasigeoid surface within the Hong Kong territories is
mostly below the WGS84 reference ellipsoid, with a pre-
vailing smooth pattern of decreasing quasigeoid heights
in the northwest direction. Small irregularities in this
prevailing pattern, mostly only a few millimeters, are
mainly attributed to a rough topography in Hong Kong.

The validation of the gravimetric quasigeoid model
revealed a relatively good agreement with the geometric
quasigeoid heights at GNSS-levelling benchmarks, with
the standard deviation of differences between the gravimetric
and geometric quasigeoid heights of ±3.3 cm. Obviously, this
accuracy specification was obtained from a minimal number
of GNSS-levelling benchmarks distributed very irregularly
over the territories, with most of them scattered only at a
few locations. Moreover, these benchmarks are located at
low elevations. Nevertheless, this value quite closely reflects
the accuracy estimates of the geometric quasigeoid heights at

GNSS-levelling benchmarks of about ±1–2 cm as well as
expected uncertainties at the level of about ±2–3 cm that
are attributed to the accuracy of gravity measurements
(and a lack of gravity data in mainland China). This argu-
ment is supported by the fact that the standard deviation
of differences between the quasigeoid heights obtained
from gravimetric modelling and computed from the mea-
sured gravity data was found to be ±2.2 cm. In addition to
these findings, a relatively good consistency was con-
firmed between the reference systems defining gravity
and GNSS-levelling measurements.
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