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ABSTRACT
Background:  Given its progressive deterioration in the clinical course, noninvasive assessment 
and risk stratification for the severity of renal fibrosis in chronic kidney disease (CKD) are required. 
We aimed to develop and validate an end-to-end multilayer perceptron (MLP) model for assessing 
renal fibrosis in CKD patients based on real-time two-dimensional shear wave elastography 
(2D-SWE) and clinical variables.
Methods:  From April 2019 to December 2021, a total of 162 patients with CKD who underwent 
a kidney biopsy and 2D-SWE examination were included in this single-center, cross-sectional, 
and prospective clinical study. 2D-SWE was performed to measure the right renal cortex stiffness, 
and the corresponding elastic values were recorded. Patients were categorized into two groups 
according to their histopathological results: mild and moderate-severe renal fibrosis. The patients 
were randomly divided into a training cohort (n = 114) or a test cohort (n = 48). The MLP classifier 
using a machine learning algorithm was used to construct a diagnostic model incorporating 
elastic values with clinical features. Discrimination, calibration, and clinical utility were used to 
appraise the performance of the established MLP model in the training and test sets, respectively.
Results:  The developed MLP model demonstrated good calibration and discrimination in both 
the training [area under the receiver operating characteristic curve (AUC) = 0.93; 95% confidence 
interval (CI) = 0.88 to 0.98] and test cohorts [AUC = 0.86; 95% CI = 0.75 to 0.97]. A decision 
curve analysis and a clinical impact curve also showed that the MLP model had a positive clinical 
impact and relatively few negative effects.
Conclusions: The proposed MLP model exhibited the satisfactory performance in identifying the 
individualized risk of moderate-severe renal fibrosis in patients with CKD, which is potentially 
helpful for clinical management and treatment decision-making.

Introduction

Chronic kidney disease (CKD) is one of the leading 
non-communicable diseases worldwide. Globally, 1.2 million 
deaths from CKD were recorded in 2017, with a worldwide 
prevalence of 9.1% (697.5 million cases) [1]. The high mor-
bidity and mortality of CKD pose a serious threat to both 
the physiological and mental health of patients, and impose 
an unprecedented burden on national healthcare systems 

[2,3]. CKD is a progressive form of kidney impairment accom-
panied by structural and functional damage [4]. Irrespective 
of the underlying etiology, renal fibrosis is the prominent 
pathological feature of CKD and the pathway leading to 
end-stage renal disease [5]. Indeed, renal fibrosis has been 
identified as one of the most independent risk factors for 
CKD progression and poor prognosis [6–8]. Therefore, an 
accurate diagnosis of the stages of renal fibrosis is of vital 
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importance with respect to clinical treatment and patient 
prognosis.

Renal biopsy is still the gold standard for detecting and 
staging renal fibrosis [9]. However, it is difficult to perform 
biopsies repeatedly to monitor disease development and 
perform longitudinal follow-up since renal biopsy is an inva-
sive procedure [10, 11]. As a leading-edge modality in the 
field of medical ultrasound (US) imaging, real-time 
two-dimensional shear wave elastography (2D-SWE) is applied 
to detect target tissue elastic value and reflect the mechan-
ical property noninvasively [12]. It has demonstrated good 
promise in judging the condition, determining the treatment 
regimen, and evaluating the therapeutic response [13, 14]. 
Currently, some applications of 2D-SWE in the field of diag-
nosis and staging renal fibrosis in patients with CKD have 
been reported, but the diagnostic accuracy, sensitivity, and 
specificity remain limited [15, 16].

Machine learning, as a state-of-the-art analysis and modeling 
technique, has developed dramatically in recent years and 
emerged as a powerful tool in the medical domain [17]. The 
multilayer perceptron (MLP) classifier, a machine learning 
method based on a feed-forward artificial neural network 
model, is important in nonlinear fitting analysis because it has 
high fault tolerance and self-adaptability [18]. Previous studies 
have applied the MLP approach to prediction model construc-
tion by integrating clinical features with imaging characteristics 
and achieved outstanding results [19–21]. However, to the best 
of our knowledge, no study has yet explored whether incor-
porating 2D-SWE into clinical features by using the MLP 
approach could be used for the assessment of renal fibrosis in 
CKD patients. Therefore, in this study, we aimed to develop a 
diagnostic MLP model based on 2D-SWE and easily accessible 
clinical features to assess renal fibrosis in patients with CKD 
and further validate its practical performance as well as utility.

Patients and methods

This was a single-center, cross-sectional, and prospective clinical 
study. The study protocol was reviewed and approved by our 
institution’s Ethics Committee before the commencement of 
the study. All participants gave their written informed consent.

Study cohort

During the period April 2019 to December 2021, patients 
with CKD who underwent a 2D-SWE examination and a renal 
biopsy at our institution were prospectively and consecutively 
included. The criteria for study enrollment were as follows: 
(1) a diagnosis of CKD was made in accordance with the 
Kidney Disease Improving Global Outcomes (KDIGO) guide-
lines (2012) [22]; (2) a 2D-SWE examination was routinely 
conducted on each participant before renal biopsy; (3) an 
assessment of renal fibrosis by means of a kidney biopsy 
specimen was performed in all cases, and (4) a complete 
medical history and laboratory investigations were obtained 
from all subjects. The exclusion criteria were the following: 

(1) cases had multiple renal cysts, nephrolithiasis, hydrone-
phrosis, or renal masses that could interfere with 2D-SWE 
examination; (2) cases failed to control breathing as directed 
during 2D-SWE procedure; (3) cases could not be appropri-
ately evaluated by 2D-SWE procedure due to technical rea-
sons (e.g., obesity, mental tension); and (4) the quality of 
the renal biopsy tissue was insufficient (less than 10 mm in 
length or fewer than 10 glomeruli). According to eligibility 
criteria, 162 patients were finally included in this study. 
Following this, the entire cohort was randomly split into two 
datasets as per a 7:3 ratio: a training cohort (n = 114) and a 
test cohort (n = 48). The training set was used for model 
construction, while the test set was used for independent 
model evaluation. It is undeniable that large-scale datasets 
facilitate the training and testing of models in the field of 
medical data analysis. However, it is worth noting that the 
availability of large-scale datasets is not a universal phenom-
enon, particularly in the context of some prospective clinical 
studies that require pathological evidence. In such cases 
where data volume is limited, it becomes necessary to strike 
a delicate balance between the sample size necessary for 
modeling and the sample size requisite for confirming the 
model’s capability. The utilization of a test set that constitutes 
a limited proportion of the total data is a commonly accepted 
practice [23]. This approach is motivated by two primary 
considerations. First, it is acknowledged that, although the 
test set may comprise a relatively small fraction of the overall 
data, it is capable of providing sufficient cases to evaluate 
the model’s generalization. Second, if the test set were to 
be of substantial size, it would result in an inefficient utili-
zation of the data. A widely adopted strategy in such sce-
narios involves the application of a 7:3 ratio for these 
purposes [24–26]. It is critical to emphasize that, even when 
dealing with small-scale clinical studies, it is crucial to ensure 
that the data partitioned into the training and test sets is 
representative of the population of interest and derived from 
the same distribution [27]. Additionally, the data must be 
randomly assigned to the training and test sets in order to 
mitigate any potential biases in the evaluation of the model.

Clinical feature

Demographic information (including age, sex, and body mass 
index), liquid biopsy indicators (including blood urea nitrogen, 
serum albumin, serum uric acid, serum creatinine, urinary albu-
min creatinine ratio (UACR), and estimated glomerular filtration 
rate (eGFR)), and comorbidity (e.g., cardiovascular disease, dia-
betes, and hypertension) were obtained from each participant. 
The eGFR was calculated using the CKD epidemiology collab-
oration (CKD-EPI) formula [28]. The CKD-EPI formula is more 
accurate than the Modification of Diet in Renal Disease (MDRD) 
formula for determining eGFR, as recommended by the KDIGO 
guideline (2012), especially for values greater than 60 mL/
min/1.73 m2 [22]. Furthermore, the CKD-EPI equation is pre-
ferred in general practice and public health [29]. As for the 
Cockcroft-Gault equation, it overestimates renal function, and 
the estimation of GFR is less accurate [30]. Liquid biopsy 
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indicators were collected according to laboratory standard oper-
ating procedures within a week prior to the renal biopsy. 
Diabetes and hypertension were identified based on physician 
diagnosis with International Classification of Diseases (ICD) 
codes or documentation of patients taking insulin, oral hypo-
glycemic agents, and anti-hypertensive drugs. Cardiovascular 
disease was defined as the presence of heart failure, coronary 
heart disease, stroke, or peripheral vascular disease.

2D-SWE examination

Within two days prior to the renal biopsy procedure, a 
board-certified radiologist with over three years’ experience in 
abdominal elastography conducted a 2D-SWE examination on 
the patients. The radiologist was blinded to the information 
regarding the clinical and laboratory status of the patient. A 
2D-SWE examination was conducted when patients lay supine 
on an US examination table using an Aixplorer US imaging 
system (Supersonic Imagine, Aixen-Provence, France) equipped 
with a SC6-1 broad band convex array probe (frequency: 
1–6 MHz). In the 2D-SWE examination, participants were required 
to empty their bladders completely before the procedure and 
also hold their breath for a few seconds during the procedure. 
Measurements were performed in the right renal coronal plane, 
with the transducer parallel to the renal-axis view and without 
applying any physical pressure to the patient. In conventional 
US, the renal length (from the upper pole to the lower pole), 
renal parenchymal thickness (from the outer renal margin to 
the outer margin of the renal sinus), and renal inter-lobar artery 
resistive index (RI) were measured. A trapezium-shaped, 
color-coded elasticity image box measuring 4 × 3 cm was placed 
in the mid-region of the kidney. Then a circular region of inter-
est (4 mm in diameter) was positioned inside the image box, 
primarily in the outer renal cortex, to obtain the maximum 
elastic value displayed (Figure 1(A)). In a previous study, the 
maximum elastic value proved to be the best for distinguishing 
the extent of renal fibrosis when compared to other SWE 
parameter values [15]. Throughout the entire process, rigorous 
quality control measures were carried out, whereby measure-
ments were deemed inadequate or failed in the case of weak 
or no signals in the elasticity image box [31]. For each subject, 
five independent and valid elastic values were obtained, and 
the arithmetical mean value was used in the statistical analysis.

Renal biopsy

A US-guided percutaneous renal biopsy was performed in the 
right renal lower pole using an automatic 16- or 18-G needle. 
All specimens were embedded in paraffin and stained with 
hematoxylin-eosin, Masson’s trichrome, periodic acid-Schiff, and 
methenamine silver (Figure 1(B–E)). Then, the renal tissues were 
processed for light microscopy, immunofluorescence, and elec-
tron microscopy. Stained tissue sections were independently 
examined by two professional pathologists with 6–8 years’ 
experience in renal pathological diagnosis, who were blinded 
to clinical information and US features. In cases of disagreement, 

they reached a consensus after negotiation. A semi-quantitative 
system was used to assess the severity of renal fibrosis, as 
described in our previous research (Table 1) [15]. Based on 
pathological scores, patients were divided into three groups: 
mild fibrosis (9 points), moderate fibrosis (10–18 points), and 
severe fibrosis (19 points). Considering the small number of 
severe impairment cases (n = 18), we combined moderate and 
severe impairments as a moderate-severe category for compar-
ison with mild impairment in the following analysis.

Development and validation of the MLP model

The MLP classifier was used to construct the diagnostic model 
by fitting the SWE value, conventional US parameters, and read-
ily accessible clinical features (including the aforementioned 
demographic information, liquid biopsy indicators, and comor-
bidity) in the training cohort. A grid search algorithm was 
employed to tune the hyperparameters of the classifier [32]. 
Due to the small sample size of this study, the entire training 
cohort was treated as a batch. During training, the model was 
optimized using the Vanilla Gradient Descent algorithm. As a 
measure of the discriminatory ability of the MLP model, the 
area under the curve (AUC) was calculated in accordance with 
the receiver operating characteristic (ROC) curve. The optimal 
cutoff point was determined by the Youden index method, and 
the corresponding sensitivity, specificity, and accuracy were 
calculated. The water-fall plot was employed to visualize the 
individual’s accuracy on the task. Using 1000 bootstrap 
re-samplings, a calibration curve was plotted to analyze the 
agreement between the observed and predicted results. 
Generally, the closer the correction line was to the diagonal, 
the better the prediction [33]. The goodness of fit was assessed 
with the Hosmer-Lemeshow test, and a non-significant P value 
(>0.05) indicated the model was well fitted. An evaluation of 
the clinical utility of the MLP model was conducted using deci-
sion curve analysis (DCA) in order to quantify the net benefits 
at different threshold probabilities [34]. Also, a clinical impact 
curve was plotted to determine the ratio of false-positive vs. 
true-positive values at different risk probability levels [35]. 
Discrimination and calibration, as well as clinical utility, were 
first tested in the training cohort and then validated in the test 
cohort. Moreover, we also constructed a logistic regression 
model by combining all the input variables for comparison with 
the MLP model in terms of discrimination capability.

Statistical analysis

Statistical analyses were performed with SPSS 26.0 (IBM Corp. 
Released 2019. IBM SPSS Statistics for Windows, Version 26.0. 
Armonk, NY: IBM Corp) and Software R (version 4.1.2). To 
compare categorical variables presented as frequencies (per-
centages), a Chi-squared or Fisher’s exact test was used, while 
a Student’s t-test or Mann–Whitney U-test was used to com-
pare continuous variables presented as means ± standard 
deviations (SD), or medians (interquartile ranges), as appro-
priate. As an indication of statistical significance, a two-sided 
P value of < 0.05 was considered.
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Results

Characteristics of study cohort

The baseline characteristics of the training and test cohorts 
are presented in Table 2. With the exception of renal paren-
chyma thickness, demographic information, liquid biopsy 

indicators, comorbidities, and US parameters did not differ 
significantly. A total of 64 (56.14%) and 24 (50.00%) cases 
of moderate-severe renal fibrosis were found in the training 
and test cohorts, respectively, and no significant difference 
was observed between them (p = 0.474). The etiology of CKD 
is presented in Table S1.

Figure 1. A  representative example of shear wave elastography imaging (A) and histopathological analysis using various stainings (B-E). (A) A color-coded shear 
wave elastogram and a corresponding conventional ultrasound image of a patient with chronic kidney disease. Images of a 10× objective kidney biopsy stained 
with (B) hematoxylin-eosin stain, (C) Masson’s trichrome stain, (D) periodic acid-Schiff stain, and (E) methenamine silver stain taken from this patient.

https://doi.org/10.1080/0886022X.2023.2202755
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Construction of MLP model

A diagnostic model based on MLP classifier was developed 
by integrating 2D-SWE data with conventional US parameters 
as well as readily available clinical information, including 
demographics and liquid biopsy indicators (Figure 2). The 

architecture of the MLP model consists of an input layer, a 
hidden layer, and an output layer. The number of inputs and 
outputs is twenty and two, respectively, and the hidden layer 
contains four hidden units. Since the input layer does not 
involve calculation, the number of layers in the MLP model 
is two. The hidden layer is between the input layer and the 

Table 1. I ndex of renal fibrosis pathology grade.

Score Glomerular score (3–12 points) Tubulointerstitial score (3–9 points) Vascular score (2–6 points)

Glomerular
hypercellularity

Glomerular
segmental

lesions
Glomerular

sclerosis
Interstitial cell

infiltration
Interstitial

fibrosis
Tubular
atrophy

Vessel wall
thickening

Arterial
hyaline
change

1 <25% <10% <10% <25% <25% <25% <10% <10%
2 ≥25–50% ≥10–25% ≥10–25% ≥25–50% ≥25–50% ≥25–50% ≥10–25% ≥10–25%
3 ≥50–75% ≥25–50% ≥25–50% ≥50% ≥50% ≥50% ≥25% ≥25%
4 ≥75% ≥50% ≥50% NA NA NA NA NA

NA: not applicable.

Table 3.  Diagnostic performance of the MLP model.

Index

Training cohort Test cohort

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

MLP model 0.93 (0.88–0.98) 0.89 
(0.79–0.95)

0.88 
(0.76–0.95)

0.88 
(0.81–0.93)

0.86
(0.75–0.97)

0.79 
(0.58–0.93)

0.83 
(0.63–0.95)

0.81
(0.67–0.91)

MLP: multilayer perceptron; AUC: area under the curve; CI: confidence level.

Table 2.  Demographic and clinical characteristics of patients with CKD in the training and test sets.

Characteristic
Training cohort

(n = 114)
Test cohort

(n = 48) P-value

Demographic information
 A ge (years) 41.05 ± 14.28 38.88 ± 14.26 0.377
Sex 0.990
  Male 64 (56.14) 27 (56.25)
  Female 50 (43.86) 21 (43.75)
  BMI (kg/m2) 24.20 ± 3.60 23.94 ± 3.98 0.689
Liquid biopsy indicator
  eGFR (mL/min/1.73 m2) 81.92 ± 35.98 84.72 ± 35.09 0.650
  Blood urea nitrogen (mmol/L) 5.37 (4.30–7.21) 5.57 (4.44–7.64) 0.408
  Serum creatinine (umol/L) 87.00 (63.50–127.75) 85.00 (63.25–107.50) 0.685
  Serum uric acid (umol/L) 388.54 ± 89.45 404.98 ± 119.41 0.337
  Serum albumin (g/L) 33.60 ± 9.16 31.27 ± 10.05 0.153
 UA CR (g/gCr) 1.08 (0.23-2.37) 1.25 (0.19–3.47) 0.618
Ultrasound parameter
  Renal longitudinal diameter (cm) 10.35 ± 0.89 10.59 ± 0.87 0.121
  Renal parenchyma thickness (cm) 1.57 ± 0.27 1.69 ± 0.29 0.017
  RI 0.64 ± 0.07 0.63 ± 0.06 0.513
  SWE value (kPa) 34.12 ± 10.37 34.99 ± 8.78 0.608
Comorbidity
  Diabetes 0.465
 N o 100 (87.72) 44 (91.67)
  Yes 14 (12.28) 4 (8.33)
Hypertension 0.532
 N o 75 (65.79) 34 (70.83)
  Yes 39 (34.21) 14 (29.17)
Cardiovascular disease 0.928
 N o 104 (91.23) 44 (91.67)
  Yes 10 (8.77) 4 (8.33)
Severity of renal pathology
  Mild 50 (43.86) 24 (50.00) 0.474
  Moderate-severe 64 (56.14) 24 (50.00)

Categorical variables are presented as n (%) and continuous variables as mean ± standard deviation or median (interquartile 
range) as appropriate.

BMI: body mass index; Egfr: estimated glomerular filtration rate; UACR: urine albumin to creatinine ratio; RI: resistance index; 
SWE: shear wave elastography.
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output layer. The neurons in the hidden layer are fully con-

nected to each input in the input layer, and the neurons in 

the output layer are fully connected to each neuron in the 

hidden layer. Thus, both the hidden layer and the output 

layer are fully connected. The activation functions of the 

hidden layer and output layer are hyperbolic tangent and 

softmax, respectively. The detailed network information of 

the MLP model is shown in Table S2. The relative importance 

of each variable in terms of outcome prediction ability is 

depicted in Figure 3, with 2D-SWE ranking as the top con-
tributor, followed by eGFR, age, then UACR, and renal RI.

Performance of MLP model

In the training set, the MLP model achieved satisfactory 
diagnostic performance, with an AUC of 0.93 [95% confidence 
interval (CI) = 0.88 to 0.98], the sensitivity of 0.89 [95% CI 
= 0.79 to 0.95], specificity of 0.88 [95% CI = 0.76 to 0.95], 
and accuracy of 0.88 [95% CI = 0.81 to 0.93] (Figure 4(A), 

Figure 2.  The established multilayer perceptron model consists of an input layer, a hidden layer, and an output layer.

Figure 3.  The relative importance of each predictor variable in the multilayer perceptron model. The longer the bar is represented by the variable, the 
greater the relative contribution of the variable to the model. SWE: shear wave elastography; eGFR: estimated glomerular filtration rate; UACR: urinary 
albumin creatinine ratio; RI: resistive index; BUN: blood urea nitrogen; BMI: body mass index.

https://doi.org/10.1080/0886022X.2023.2202755
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Table 3). Also, the MLP model remained excellent in terms 
of diagnostic ability in the test set, yielding an AUC of 0.86 
[95% CI = 0.75 to 0.97], a sensitivity of 0.79 [95% CI = 0.58 
to 0.93], specificity of 0.83 [95% CI = 0.63 to 0.95], and accu-
racy of 0.81 [95% CI = 0.67 to 0.91] (Figure 4(B), Table 3), 
which was superior to the logistic model [test cohort: AUC 
= 0.79, 95% CI = 0.66 to 0.92; sensitivity = 0.70, 95% CI = 
0.49 to 0.87; specificity = 0.83, 95% CI = 0.63 to 0.95]. To 
get a better understanding of how well the model can tell 
the difference between patients with moderate-severe fibrosis 
and those with mild fibrosis, a water-fall plot was created 
to visualize the diagnosis accuracy (Figure 5). Mild and 
moderate-severe renal fibrosis are depicted by pink and blue 
bars, respectively, while misclassified data is represented by 
blue and pink regions below and above the threshold. As 

shown in the water-fall diagram, the established MLP model 
has a high level of classification accuracy at the patient level.

In the training and test cohorts, the Hosmer-Lemeshow 
test indicated a P value of 0.342 and 0.438, respectively, 
indicating that the model is well fitted. The calibration curves 
revealed good consistency with the real condition of the 
MLP model for the assessment of renal fibrosis in patients 
with CKD in the training and test sets (Figure 6).

Clinical utility of MLP model

Based on the DCA curve, the MLP model outperformed both 
the treat-none and treat-all strategies across a wide range 
of risk threshold probabilities, suggesting that the model 
demonstrates good clinical utility (Figure 7). In addition, the 

Figure 4.  Receiver operating characteristic curves for differentiating moderate-severe renal fibrosis from mild one in the training (A) and test  
cohorts (B).

Figure 5.  Water-fall plots constructed by the multilayer perceptron model in the training (A) and test cohorts (B). The blue area below the threshold 
indicates individuals with moderate-severe impairment who were misclassified as having mild impairment. The pink part above the threshold indicates 
individuals with mild impairment who were misclassified as moderate-severe impairment.
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clinical impact curve was further plotted to intuitively 
appraise the potential clinical impact of using the MLP model 
for the evaluation of renal fibrosis in patients with CKD 
(Figure 8). When the risk threshold was >8% in the training 
cohort or >25% in the test cohort, the ratio of false-positive 
value to true-positive value was lower than 50%. Both the 
DCA curve and clinical impact curve indicate that the MLP 
model confers high practical value with low potential neg-
ative implications.

Discussion

A MLP model was developed in the present study based 
on 2D-SWE and easily accessible clinical features for non-
invasive assessment of renal fibrosis in patients with CKD 
and further validated. This established model had favourable 
diagnostic performance, fine calibration, and satisfactory 
clinical value. To the best of our knowledge, this is the first 
study to apply the MLP network classifier integrating 

Figure 6.  Calibration curves of the multilayer perceptron model prediction in the training (A) and test cohorts (B). Calibration curves depict the cali-
bration of the established model in terms of the agreement between the predicted risks of moderate-severe renal pathological impairment and the 
observed outcomes of moderate-severe impairment. The y-axis shows actual moderate-severe impairment diagnoses, and the x-axis indicates the pre-
dicted moderate-severe impairment risk. The diagonal dotted line represents a perfect prediction by an ideal model. The solid line represents the 
performance of the model; a closer fit to the diagonal dotted line represents a more accurate prediction.

Figure 7.  Decision curve analysis curves for the multilayer perceptron model in the training (A) and test cohorts (B). The y-axis shows the net benefit, 
and the x-axis indicates the risk threshold. The red line represents the prediction model. The blue line represents the assumption that all patients have 
moderate-severe renal pathological impairment. The black line depicts the assumption that none of the patients suffer from moderate-severe impairment. 
The net benefit was calculated by subtracting the proportion of false-positive patients from the proportion of true-positive patients, weighted by the 
relative harm of forgoing treatment compared with the negative consequences of unnecessary treatment.
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2D-SWE to CKD patients. The presented MLP models could 
be an adjuvant decision-support system for medical treat-
ment decision-making as well as routine follow-up 
assessment.

As CKD progresses, different interventions for the various 
stages of renal fibrosis should be implemented to prevent 
exacerbation and improve prognosis [36–38]. Timely iden-
tification of individuals with mild renal fibrosis would enable 
them to avoid factors that contribute to or worsen the 
condition. Preventive measures could then be taken, thus 
delaying the progression of the disease. When treating CKD 
patients with moderate-severe renal fibrosis, more radical 
and aggressive treatment regimens are necessary to prevent 
the development and occurrence of complications while 
also delaying the initiation of dialysis therapy, which ulti-
mately enhances survival and quality of life. Also, the sever-
ity of renal fibrosis impairment required constant 
reevaluation during the therapeutic process, which allowed 
clinicians to adjust treatment options accordingly, ultimately 
optimizing clinical decisions so as to achieve the most 
appropriate treatment efficacy for each individual patient. 
Hence, as a non-invasive, reliable diagnostic tool, the MLP 
model developed in this study is of substantial clinical rel-
evance to assist clinicians in the accurate, personalized and 
dynamic assessment of renal fibrosis impairment in CKD 
patients.

With an AUC of 0.93 in the training cohort and 0.86 in 
the test cohort, the constructed MLP model effectively dif-
ferentiated patients with moderate-severe renal fibrosis from 
mild patients. This performance outperformed those obtained 
with the 2D-SWE modality alone [AUC = 0.76; 95% CI = 0.68 
to 0.85] [15] or the logistic model [AUC = 0.79; 95% CI = 
0.66 to 0.92]. Moreover, the DCA curve and clinical impact 
curve demonstrated that the MLP model had favourable 
clinical application along with relatively few negative effects 

across a wide range of threshold probabilities, which resulted 
in advantages in clinical practice and personalized treatment 
options. Using an end-to-end deep learning framework, the 
MLP classifier could automatically derive variable weights 
based on the relevance between the input variables and 
output variables, avoiding the potential for selection bias 
caused by manual screening variables. With one or more 
hidden layers, the classifier was able to produce a higher-level 
and more abstracted feature selection algorithm; through 
the supervised learning modality, the classifier could auto-
matically adjust the iteration process in the optimization 
algorithm, thereby ensuring sufficient generalization ability 
to prevent overfitting [18, 21]. As of today, the MLP classifier 
is widely applied in medical analyses in a wide range of 
fields, such as disease diagnosis, prognosis, therapy devel-
opment, and treatment evaluation. Using a US-based MLP 
model, Liang T et  al. distinguished breast mucinous cancer 
and its subtypes from fibroadenoma with an AUC ranging 
from 0.88 to 0.92 [20]. Yu J et  al. used clinical features to 
develop an MLP model that predicted the severity and pro-
gression of carotid atherosclerosis in asymptomatic patients 
[19]. This model yielded an AUC value of 0.77 [95% CI = 0.75 
to 0.77]. Meng Y et  al. developed an MLP model incorporat-
ing MRI radiomics features for the prediction of fibroblast 
activation protein expression in pancreatic ductal adenocar-
cinomas, and this model also performed well [39]. The results 
of these studies further support the potential of the MLP 
model in clinical settings.

Several classical ensemble machine learning models 
(such as eXtreme Gradient Boosting and random forest) 
were also applied to address relevant clinical issues [40]. 
In terms of this research topic, ensemble models were able 
to provide fine diagnostic performance in the training 
cohort, with AUC values ranging from 0.97 to 1.00 (Table 
S3, Figure S1). However, in the test cohort, they were less 

Figure 8.  Clinical impact curves of the multilayer perceptron model in the training (A) and test cohorts (B). The y-axis measures the number of indi-
viduals at high risk, and the x-axis measures the risk threshold. The red curve shows how many out of 1000 patients the prediction model classifies as 
positive (high-risk) at each probability threshold. In contrast, the blue curve shows the number of true positives at each probability threshold.

https://doi.org/10.1080/0886022X.2023.2202755
https://doi.org/10.1080/0886022X.2023.2202755
https://doi.org/10.1080/0886022X.2023.2202755
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effective, yielding an AUC of 0.77 to 0.78. It is likely that 
this result is due to overfitting. While ensemble models 
have been extensively employed in clinical research, many 
studies still require feature filtering (i.e., feature reduction 
and selection) prior to modelling to avoid dimensional 
disasters, which result in the loss of pertinent information 
[41, 42]. Once a large number of feature inputs are involved, 
it is easy for a model to fall victim to the "curse of dimen-
sions" and the overfitting phenomenon [43]. Compared to 
tree models, the MLP model exhibits superior nonlinearity 
capabilities [44]. By mapping features to a higher-dimensional 
feature space, the MLP has the capability of selecting fea-
tures automatically rather than through manual screening, 
therefore possessing the competitive advantages of high 
model efficiency, being less laborious, and so forth. As 
mentioned above, the MLP model can assign the weights 
of features on its own to complete the whole training pro-
cess, known as an "end-to-end" training procedure. End-to-
end training on raw data without feature engineering may 
be more beneficial for this medical problem than ensem-
ble models.

The diagnostic performance of the MLP model depends to 
the greatest extent upon the following features: first, the SWE 
value, followed by eGFR and age, then UACR, and finally renal 
RI. In SWE, tissue stiffness can be evaluated by examining the 
speed of propagation of shear waves generated as a result of 
deformation caused by acoustic radiation force impulses being 
applied to target tissue [45]. Previous studies had demon-
strated the clinical application of SWE in the evaluation of 
renal fibrosis [15, 16, 46]. Interstitial fibrosis and glomerulo-
sclerosis have a trend of increasing in the aging kidney, 
whereas eGFR decreases with advanced age [47]. Furthermore, 
eGFR is widely accepted and has been used in routine clinical 
practice to assess CKD progression [22]. Proteinuria may be 
caused by inflammatory cells infiltrating the renal interstitium 
and the tubule-interstitium being replaced by a fibrotic scar 
[48]. Finally, renal RI was characterized as an influential pre-
dictor regarding the progress and prognosis of CKD patients, 
regardless of urine protein and eGFR levels [49, 50].

The application of SWE for the evaluation of renal fibrosis 
has been the subject of previous investigations [51–54]. It should 
be noted, however, that the present study presents some nov-
elties in comparison with earlier studies. The implementation of 
SWE in this study is based on real-time imaging of the Mach 
cone principle with increased precision in measurements [55]. 
In contrast to prior studies that frequently necessitated manual 
feature screening through feature engineering, the current study 
adopts an end-to-end approach, thus obviating the need for 
time-consuming feature screening while concurrently achieving 
remarkable diagnostic outcomes. Additionally, this study extends 
beyond a simple evaluation of diagnostic performance by also 
examining the model’s calibration and clinical utility. To provide 
a more comprehensive evaluation of the model, additional mod-
els were constructed and compared with the one developed in 
this study. This serves to provide a more robust assessment of 
the model’s strengths and limitations.

There are still some limitations associated with this study. 
First, the sample size of this study was relatively small, espe-
cially in severe cases of renal fibrosis, and a larger population 
should be included for analysis in the future. Second, this was 
a single-center study, which could be further validated via 
external datasets or multi-center settings for generalization. 
Third, radiomics is an emerging approach to medical imaging 
analysis that can provide additional clinically useful informa-
tion. We will consider investigating this promising technique 
to solve the relevant medical issue in future studies.

Conclusion

In our study, an MLP model based on 2D-SWE and clinical 
features was developed which had an excellent diagnostic 
performance as well as clinical utility for the noninvasive 
assessment of renal fibrosis in patients with CKD. This novel 
technique helps refine clinical decision-making and provides 
information about the disease’s risk. Despite some progress 
being made on the MLP model developed in the present 
study, the research results were derived from a single-center 
cohort with a small sample size, and future studies are there-
fore needed to validate these findings in a multi-center, large 
population-based cohort setting.

Acknowledgement

We are grateful to Dr. Zhijuan Li for her valuable advice and 
professional guidance regarding the pathological analysis 
during the revision process. Additionally, we are grateful to 
Dr. Fukuan Shi for his professional advice regarding the col-
lection of clinical indicators.

Ethical statement

This study protocol was approved by the Ethics Committee 
of the Fifth Affiliated Hospital of Sun Yat-Sen University (pro-
tocol code K09-1; approval date: May 2019) and complied 
with the tenets of the Helsinki Declaration. Written informed 
consent to participate was obtained from all subjects.

Disclosure statement

All authors declare no conflict of interest.

Data availability statement

The data presented in this study are available from the cor-
responding author upon reasonable request. Data are not 
publicly available due to privacy or ethical concerns.

Funding

The work was supported by the Natural Science Foundation 
of Guangdong Province [2018A0303130070]; National Natural 
Science Foundation of China [82072038]. 



Renal Failure 11

References

	 [1]	 Bikbov B, Purcell CA, Levey AS, et  al. Global, regional, 
and national burden of chronic kidney disease, 1990–
2017: a systematic analysis for the global burden of 
disease study 2017. Lancet. 2020;395(10225):1–13.

	 [2]	 Legrand K, Speyer E, Stengel B, et  al. Perceived health 
and quality of life in patients with CKD, including those 
with kidney failure: findings from national surveys in 
France. Am J Kidney Dis. 2020;75(6):868–878.

	 [3]	 Zhang L, Zhao MH, Zuo L, et  al. China kidney disease 
network (CK-NET) 2016 annual data report. Kidney Int 
Suppl. 2020;10(2):e97–e185.

	 [4]	 Romagnani P, Remuzzi G, Glassock R, et  al. Chronic 
kidney disease. Nat Rev Dis Primers. 2017;3:17088.

	 [5]	 Panizo S, Martinez-Arias L, Alonso-Montes C, et  al. 
Fibrosis in chronic kidney disease: pathogenesis and 
consequences. Int J Mol Sci. 2021;22(1):408.

	 [6]	 Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et  al. 
Targeting the progression of chronic kidney disease. 
Nat Rev Nephrol. 2020;16(5):269–288.

	 [7]	 Morphology and evaluation of renal fibrosis. 2019.
	 [8]	 Humphreys BD. Mechanisms of renal fibrosis. Annu Rev 

Physiol. 2018;80:309–326.
	 [9]	 Hogan JJ, Mocanu M, Berns JS. The native kidney bi-

opsy: update and evidence for best practice. Clin J Am 
Soc Nephrol. 2016;11(2):354–362.

	[10]	 Halimi JM, Gatault P, Longuet H, et  al. Major bleeding 
and risk of death after percutaneous native kidney bi-
opsies: a French nationwide cohort study. Clin J Am 
Soc Nephrol. 2020;15(11):1587–1594.

	[11]	 Whittier WL, Korbet SM. Timing of complications in 
percutaneous renal biopsy. J Am Soc Nephrol. 
2004;15(1):142–147.

	[12]	 Shiina T, Nightingale KR, Palmeri ML, et  al. WFUMB 
guidelines and recommendations for clinical use of ul-
trasound elastography: part 1: basic principles and ter-
minology. Ultrasound Med Biol. 2015;41(5):1126–1147.

	[13]	 Dietrich CF, Bamber J, Berzigotti A, et  al. EFSUMB guide-
lines and recommendations on the clinical use of liver 
ultrasound elastography, update 2017 (long version). 
Ultraschall Med. 2017;38(4):e16–e47.

	[14]	 Săftoiu A, Gilja OH, Sidhu PS, et  al. The EFSUMB guide-
lines and recommendations for the clinical practice of 
elastography in non-hepatic applications: update 2018. 
Ultraschall Med. 2019;40(4):425–453.

	[15]	 Chen Z, Chen J, Chen H, et  al. Evaluation of renal fi-
brosis in patients with chronic kidney disease by shear 
wave elastography: a comparative analysis with patho-
logical findings. Abdom Radiol (NY). 2022;47(2):738–745.

	[16]	 Grosu I, Bob F, Sporea I, et  al. Two-dimensional 
shear-wave elastography for kidney stiffness assessment. 
Ultrasound Q. 2019;37(2):144–148.

	[17]	 Rajkomar A, Dean J, Kohane I. Machine learning in med-
icine. N Engl J Med. 2019;380(14):1347–1358.

	[18]	 Ligeza A. Artificial intelligence: a modern approach. App 
Mech Mat. 2009;263(2):2829–2833.

	[19]	 Yu J, Zhou Y, Yang Q, et  al. Machine learning models 
for screening carotid atherosclerosis in asymptomatic 
adults. Sci Rep. 2021;11(1):22236.

	[20]	 Liang T, Shen J, Zhang S, et  al. Using ultrasound-based 
multilayer perceptron to differentiate early breast mu-

cinous cancer and its subtypes from fibroadenoma. 
Front Oncol. 2021;11:724656.

	[21]	 Yun J, Park JE, Lee H, et  al. Radiomic features and mul-
tilayer perceptron network classifier: a robust MRI clas-
sification strategy for distinguishing glioblastoma from 
primary Central nervous system lymphoma. Sci Rep. 
2019;9(1):5746.

	[22]	 Stevens PE, Levin A. Evaluation and management of 
chronic kidney disease: synopsis of the kidney disease: 
improving global outcomes 2012 clinical practice guide-
line. Ann Intern Med. 2013;158(11):825–830.

	[23]	 Goodfellow I, Bengio Y, Courville A. Deep learning[M]. 
MIT press; 2016. p. 98–164.

	[24]	 Zha H-L, Zong M, Liu X-P, et  al. Preoperative 
ultrasound-based radiomics score can improve the ac-
curacy of the memorial sloan kettering cancer center 
nomogram for predicting sentinel lymph node metas-
tasis in breast cancer. Eur J Radiol. 2021;135:109512.

	[25]	 Zheng Y, Liu X, Zhong Y, et  al. A preliminary study for 
distinguish hormone-secreting functional adrenocortical 
adenoma subtypes using multiparametric CT 
radiomics-based machine learning model and nomo-
gram. Front Oncol. 2020;10:570502.

	[26]	 Liu H, Jiang H, Wang X, et  al. Treatment response pre-
diction of rehabilitation program in children with cere-
bral palsy using radiomics strategy: protocol for a mul-
ticenter prospective cohort study in west China. Quant 
Imaging Med Surg. 2019;9(8):1402–1412.

	[27]	 Zhou ZH, Liu S. Machine learning[M]. Springer Nature; 
2021. p. 25–56.

	[28]	 Inker LA, Schmid CH, Tighiouart H, et  al. Estimating 
glomerular filtration rate from serum creatinine and 
cystatin C. N Engl J Med. 2012;367(1):20–29.

	[29]	 Earley A, Miskulin D, Lamb EJ, et  al. Estimating equa-
tions for glomerular filtration rate in the era of creati-
nine standardization: a systematic review. Ann Intern 
Med. 2012;156(11):785–795.

	[30]	 Schwandt A, Denkinger M, Fasching P, et al. Comparison 
of MDRD, CKD-EPI, and cockcroft-Gault equation in re-
lation to measured glomerular filtration rate among a 
large cohort with diabetes. J Diabetes Complications. 
2017;31(9):1376–1383.

	[31]	 Wang K, Lu X, Zhou H, et  al. Deep learning radiomics 
of shear wave elastography significantly improved di-
agnostic performance for assessing liver fibrosis in 
chronic hepatitis B: a prospective multicentre study. 
GUT. 2019;68(4):729–741.

	[32]	 Powell MJ. Direct search algorithms for optimization 
calculations. Acta Numer. 1998;7:287–336.

	[33]	 Kramer AA, Zimmerman JE. Assessing the calibration of 
mor tality benchmarks in crit ical  care:  the 
Hosmer-Lemeshow test revisited. Crit Care Med. 
2007;35(9):2052–2056.

	[34]	 Fitzgerald M, Saville BR, Lewis RJ. Decision curve anal-
ysis. Jama. 2015;313(4):409–410.

	[35]	 Kerr KF, Brown MD, Zhu K, et  al. Assessing the clinical 
impact of risk prediction models with decision curves: 
guidance for correct interpretation and appropriate use. 
J Clin Oncol. 2016;34(21):2534–2540.

	[36]	 Kalantar-Zadeh K, Li PK. Strategies to prevent kidney 
disease and its progression. Nat Rev Nephrol. 
2020;16(3):129–130.



12 Z. CHEN ET AL.

	[37]	 Kistler BM, Moore LW, Benner D, et  al. The internation-
al society of renal nutrition and metabolism commen-
tary on the national kidney foundation and academy 
of nutrition and dietetics KDOQI clinical practice guide-
line for nutrition in chronic kidney disease. J Ren Nutr. 
2021;31(2):116–120 e111.

	[38]	 Li PK, Garcia-Garcia G, Lui SF, et  al. Kidney health for 
everyone everywhere-from prevention to detection and 
equitable access to care. J Ren Care. 2020;46(1):4–12.

	[39]	 Meng Y, Zhang H, Li Q, et  al. Noncontrast magnetic 
resonance radiomics and multilayer perceptron network 
classifier: an approach for predicting fibroblast activa-
tion protein expression in patients with pancreatic duc-
tal adenocarcinoma. J Magn Reson Imaging. 
2021;54(5):1432–1443.

	[40]	 Zhang Z, Chen L, Xu P, et  al. Predictive analytics with 
ensemble modeling in laparoscopic surgery: a technical 
note. Laparosc Endosc Robotic Surg. 2022;5(1):25–34.

	[41]	 Davagdorj K, Pham VH, Theera-Umpon N, et  al. XG 
boost-based framework for smoking-induced noncom-
municable disease prediction. Int J Environ Res Public 
Health. 2020;17(18):6513.

	[42]	 Song W, Zhou X, Duan Q, et  al. Using random forest 
algorithm for glomerular and tubular injury diagnosis. 
Front Med. 2022;9:911737.

	[43]	 Prieto A, Cabestany J, Sandoval F. Computational intel-
ligence and bioinspired systems. Neurocomputing. 
2007;70(16-18):2701–2703.

	[44]	 Kim Y. Comparison of the decision tree, artificial neural 
network, and linear regression methods based on the 
number and types of independent variables and sam-
ple size. Expert Syst Appl. 2008;34(2):1227–1234.

	[45]	 Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a 
new technique for soft tissue elasticity mapping. IEEE Trans 
Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.

	[46]	 Hu Q, Wang XY, He HG, et  al. Acoustic radiation force 
impulse imaging for non-invasive assessment of renal 
histopathology in chronic kidney disease. PLoS One. 
2014;9(12):e115051.

	[47]	 Yang HC, Fogo AB. Fibrosis and renal aging. Kidney Int 
Suppl. 2014;4(1):75–78.

	[48]	 Brunskill NJ. Rapamycin: a new string to the antipro-
teinuric bow? J Am Soc Nephrol. 2005;16(7):1878–
1879.

	[49]	 Sugiura T, Wada A. Resistive index predicts renal prog-
nosis in chronic kidney disease. Nephrol Dial Transplant. 
2009;24(9):2780–2785.

	[50]	 Bigé N, Lévy PP, Callard P, et  al. Renal arterial resistive 
index is associated with severe histological changes and 
poor renal outcome during chronic kidney disease. BMC 
Nephrol. 2012;13:139.

	[51]	 Makita A, Nagao T, Miyoshi KI, et  al. The association 
between renal elasticity evaluated by real-time tissue 
elastography and renal fibrosis. Clin Exp Nephrol. 
2021;25(9):981–987.

	[52]	 Chen Z, Chen J, Chen H, et  al. A nomogram based on 
shear wave elastography for assessment of renal fibro-
sis in patients with chronic kidney disease. J Nephrol. 
2022;36(3):719–729.

	[53]	 Zhu M, Ma L, Yang W, et  al. Elastography ultrasound 
with machine learning improves the diagnostic perfor-
mance of traditional ultrasound in predicting kidney 
fibrosis. J Formos Med Assoc. 2022;121(6):1062–1072.

	[54]	 Leong SS, Wong JHD, Md Shah MN, et  al. Shear wave 
elastography accurately detects chronic changes in re-
nal histopathology. Nephrology. 2021;26(1):38–45.

	[55]	 Bamber J, Cosgrove D, Dietrich CF, et  al. EFSUMB guide-
lines and recommendations on the clinical use of ul-
trasound elastography. Part 1: basic principles and 
technology. Ultraschall Med. 2013;34(2):169–184.


	Using elastography-based multilayer perceptron model to evaluate renal fibrosis in chronic kidney disease
	ABSTRACT
	Introduction
	Patients and methods
	Study cohort
	Clinical feature
	2D-SWE examination
	Renal biopsy
	Development and validation of the MLP model
	Statistical analysis

	Results
	Characteristics of study cohort
	Construction of MLP model
	Performance of MLP model
	Clinical utility of MLP model

	Discussion
	Conclusion
	Acknowledgement
	Ethical statement
	Disclosure statement
	Data availability statement
	Funding
	References



