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Abstract: The proliferation of Industry 4.0 (I4.0) technologies has created a new manufacturing land-
scape for manufacturing, requiring that companies follow I4.0 trends to stay competitive. However, in
this novel digital automated environment, these companies must also ensure that lean manufacturing
principles are upheld. This study proposes a data-driven framework for analysing raw data across
machines in manufacturing systems that can provide a comprehensive understanding of idle time
and facilitate adjustments to reduce defect rates. This framework offers an alternative approach to
improving manufacturing processes that involves utilising the power of I4.0 technologies in conjunc-
tion with lean manufacturing principles. This study’s examination of unprocessed data also provides
guidance on improving legislation. The findings of this study provide direction for future research in
the field of manufacturing and offer useful advice to businesses wishing to integrate I4.0 technologies
into their operations.
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1. Introduction

The fourth industrial revolution, Industry 4.0 (I4.0), is positioned to enhance automa-
tion, productivity, quality, reliability, efficiency and cost-effectiveness in different industrial
sectors, including manufacturing [1]. The development towards I4.0 has significantly
influenced manufacturing industry trends [2]. I4.0 implementations produce materials and
goods using highly automated and mechanised processes performed using a combination
of smart factories, cyber-physical systems (CPSs), self-organisation and novel distribution
and procurement systems to adapt to human needs [3]. One of the central I4.0 concepts,
CPS, is responsible for the ‘3Cs’ of computing, communication and control, which deliver
benefits, including real-time sensing, information feedback and dynamic control [4].

I4.0 also significantly contributes to companies changing their manufacturing practices,
especially the constant need to adapt to customer needs [5]. Machines can be retooled to
make them self-learning and self-aware, improving their overall performance and simplify-
ing their maintenance in line with the context [6]. To closely integrate the Internet of Things
(IoT) business model, research has pursued the ‘future of intelligent manufacturing’ [7]
(p. 308), recognising that the ‘IoT was born to break the darkness constraint and create
information without observation from humans in various situations previously unseen’ [8]
(p. 5). In contrast with traditional data acquisition, which involves gathering information
from a small number of sources in a controlled environment, the IoT data acquisition
entails gathering a large amount of information from numerous sources, frequently, in
real-time, using a network of connected sensors, devices and systems. Some sensors detect
and measure the environment in which they are deployed and translate the processing
input into electrical signals. For example, MEMS sensors, Arduino and Raspberry Pi are
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open-source components used for sensing, processing and controlling data [9]. To manage
the substantial amounts of data produced by these devices, sophisticated technologies
and procedures are needed [10]. To facilitate IoT data acquisition, platforms have been
designed to build and prototype IoT applications, with Intel Edison commonly used to col-
lect, process and transmit data from the environment, which is critical to the data ingestion
process [11].

Building on the advantages of connectivity provided by the IoT, access to reliable
data and the creation of cyber-physical frameworks, I4.0 has recently focused on online
technology at a completely new level. Thus, I4.0 proposes a more comprehensive, integrated
and all-encompassing development paradigm [12]. The automation and data exchange in
manufacturing technologies have merged with the industrial IoT to create manufacturing
systems that are not only interconnected, but also capable of communicating, analysing
and using information to drive further intelligent actions in the physical world. Via the self-
diagnosis of IoT-enabled equipment, abnormal circumstances can be identified. In other
words, potential failures and defects can be anticipated rationally and a set of corresponding
optimisation solutions can be designed proactively [13]. However, the technology level of
many manufacturers remains at the Industry 3.0 level due to their lack of capital, which is
necessary to purchase new machines or systems and obtain the related knowledge.

Many manufacturers are actively participating in upgrading their factories to ‘smart
factories’ to adhere to the standards expected under the I4.0 paradigm. By internally
sharing real-time information with different departments in factories, various forms of
manufacturing intelligence can be obtained [14]. For example, using digital twins, com-
panies can monitor and visualise manufacturing processes in virtual replicas of actual
systems [14], continuously track the condition and state of different systems and predict
the system’s performance in terms of finding data, allowing for decisions to be determined.
Smart manufacturing tools and a transparent system allow for easy adaptation to sched-
ule changeovers and update plant layouts without large-scale interventions, increasing
flexibility [14]. Meanwhile, cloud-based architectures of smart factories offer numerous
advantages, including flexibility, scalability and cost-efficiency. However, to ensure the suc-
cess of cloud-based solutions, it is critical to resolve security, privacy and latency challenges.
To increase data security and privacy, it is important to use encrypted data, dispersed data
storage and secure communication protocols, with edge computing and fog computing
reducing latency difficulties by processing data closer to the source [15]. Nonetheless,
as mentioned, for many manufacturers (especially those in China), upgrading factories
to I4.0 standards is complicated by the vast amounts of capital required to purchase the
necessary machines and systems. Moreover, expert knowledge is required to perform the
upgrade. It is difficult to facilitate machines sharing data and determining adjustments
without connecting to a CPS, and it is difficult for firms to adjust machines’ data settings
without the support of data analysis. This is important because it represents the most ideal
and cost-effective method of adhering to I4.0 practices: manufacturers collect data and
determine the major parameters that affect the defect rate to determine informed decisions
that allow them to control and reduce these defect rates.

The industrial IoT is critical to the collection of information and the automation of
physical processes, representing the foundation of a fully digitalised facility by combin-
ing the cloud, analytics and artificial intelligence (AI) to create new operational models
based on automation and augmented human activities that rely on predictive analyses for
operations and maintenance, production and inventory monitoring and security improve-
ments. In addition, AI and machine learning algorithms are powerful tools that address
IoT challenges (including high-noise environments, versatile operating conditions and
cross-domain machining) by developing models that can identify and adapt to different
scenarios [16]. However, some of the current failure prevention processes are reactive to
defects/faults, potentially resulting in wasted production and additional effort due to the
need for remanufacturing. Thus, to correspond with the goals of smart manufacturing,
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contemporary research projects seek to modify such processes, such that they become
proactive and autonomous [17].

To understand the information that can be gained from the raw data concerning the
idle time of the manufacturing process of injection moulding, this study aims to achieve
four objectives:

1. To understand and analyse the data on injection moulding levels to track idle time levels;
2. To determine abnormal idle time;
3. To classify the different levels of abnormal idle time of injection moulding machines;
4. To indicate the total idle time achieved.

The rest of this paper is organised as follows: Section 2 presents the data-driven
approach adopted in this study, and Section 3 details the case study of a manufacturing
site. Section 4 discusses the results of that case study, and conclusions and future trends are
articulated in Section 5.

2. A Data-Driven Approach

A data-driven approach involves determining decisions based on the analysis and
interpretation of data [18]. This approach ensures that solutions and plans are supported
by information and entails collecting and analysing data to explore solutions and provide
insights. I4.0 is a data-driven paradigm because it utilises data to create more value. Many
I4.0 technologies relate, in some way, to data [19]. Current advances in data processing al-
gorithms coupled with lower computing costs allow for companies to analyse and improve
their systems using automated means. The primary requirement for using these algorithms
effectively is having access to large quantities of accurate data [14]. Many companies face
the challenge of using existing databases for the optimisation of manufacturing processes.
Previous studies have presented different methodologies for this activity, particularly
focusing on methods of using and extending existing databases.

The most important component of a data-driven approach is data collection. A general
method for collecting data from manufacturing systems is needed. Ideally, this data
collection system should satisfy the following requirements: extendibility, being vendor-
agnostic, nonintrusive, plug-and-play, usability and security. Usability and security are
arguably the most important of these requirements. In terms of usability, the generated
data must be reliable for and suited to the intended purposes, because the type of analysis
changes based on the demands of various stakeholders. Hence, it should be possible,
via additional analyses, to reuse the data collected to meet new demands. In terms of
security, there must be a provision to enforce security in terms of the accessibility, storage
and retrieval of data. This study’s goal is to provide tools that enable the collection and
analysis of data from existing manufacturing stations. These tools could not only help
manufacturers understand and improve existing systems, but also support them through
I4.0 technologies [14].

2.1. Transformation

Data are the main factor in a data-driven approach. However, because raw data do
not usefully provide intelligence, these data must be ‘transformed’ into something useful,
which is usually achieved in several stages.

2.2. A Data-Driven Framework

This study adopted a two-stage data-driven framework to complete the classifica-
tion [20] (Figure 1). The first stage, the design and training stage, involved cleaning all the
input data using a MySQL query through DataGrip and preprocessing to ensure a better
result, after which the cleaned data were analysed statistically.
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Figure 1. The two-stage data-driven framework.

As an initial attempt, 30 machines were investigated. Two ratios, namely, the efficiency
score and problem ratio, were calculated to determine each machine’s performance effi-
ciency. A machine’s efficiency score e was calculated by dividing the machine running
time R by machine idle time T, as represented by Equation (1). In this analysis, the higher
the efficiency score, the more efficient the machine. The problem ratio p was calculated
as the ratio of the machine adjusting time A to machine pause time P, as represented by
Equation (2).

e = R/T (1)

p = A/P. (2)

Using these efficiency scores and problem ratios, an efficiency and problem ratio matrix
was created to classify all the machines. High-efficiency scores and high problem ratios
resulted in better production performance. Machines with efficiency scores higher than
the average score of all machines were considered to demonstrate high levels of efficiency.
Similarly, machines with higher problem ratios than the average ratios of all machines
were considered to have low potential for problems. The results enabled machine-handling
priority to be determined for better time and resource management.

Once all the data were statistically analysed, a trend analysis was conducted to inves-
tigate the relationship between the machine idle time and time. Each machine’s trend was
classified as upward, downward or almost stationary, classifications that were then used to
prioritise machine handling. Meanwhile, graphs showing the total monthly idle time for the
30 machines combined were generated. Based on the trend analysis result, basic idle time
statistics—including the mean, median, first quartile (Q1) and third quartile (Q3)—were
calculated to determine (1) the indicator of abnormal idle time and (2) the concentration



Machines 2023, 11, 448 5 of 18

of abnormal idle time in a given period. Data points exceeding the indicator of abnormal
idle time (i.e., mean idle time) were considered abnormal idle time. Compared to the
median, Q1 and Q3, the mean was generally the largest. Therefore, the dataset may have
been rightly skewed. Using the mean as the indicator reduced the risk of overestimation.
Concerning the concentration of abnormal idle time in a period, seven different period
lengths were considered: three days, four days, five days, six days, seven days, ten days
and fourteen days. The prediction accuracy of different period lengths was compared,
and the length with the best prediction accuracy (exceeding 90%) was selected as the most
suitable model.

To gain a deeper understanding of abnormal idle time levels, XGBoost, a popular
algorithm for supervised machine learning that uses decision trees and gradient boosting
to improve the predictive accuracy [21], was first applied with default settings for the
classification. X1 to X5 were the model’s input parameters, with X1 referring to the total
number of entries, X2 denoting the running status, X3 the adjusting status, X4 the pausing
status and X5 the offline status. Y referred to the level of abnormal idle time occurrences
(output). Three levels of abnormal idle time occurrences were classified: low (denoted
by 0), medium (denoted by 1) and high (denoted by 2). Eighty percent of the data was
used as the training dataset, and the remaining twenty percent was used as the testing
dataset. In XGBoost, many parameters could be adjusted. However, to produce better
results, only certain selected parameters were fine-tuned in our study: eta (default = 0.3);
gamma (default = 0); max_depth (default = 6); min_child_weight (default = 1); subsample
(default = 1). The parameters were updated during the optimisation process, with the
fine-tuned XGBoost evaluated and tested following a white box approach [22], involving
understanding and interpreting the internal logic of the software to, thus, provide insights
into how it behaves and how it can be improved [23]. After optimising XGBoost, it was
applied for the level classification, the phase in the classification stage (see Figure 1) during
which data were preprocessed and analysed. The aspects with the highest accuracy levels
were selected as the target models due to the speed and accuracy delivered [24]. Then, all
the remaining data were classified using the selected classification model. For the update
policy of the indicator of abnormal idle time, the median absolute deviation (MAD) was
used to determine the moving average in a day. This served as a useful indicator for
observing the abnormal idle time because the MAD represented a measure of the average
distance between each data point and the mean.

After calculating and analysing idle time at the machine level, idle time during in-
house transit processes was analysed, with the in-house track and trace used to collect data
for the subsequent calculation of statistical indexes and ratios for the in-house transits.

Using a workflow resembling the design and training stage—including data cleansing
and preprocessing—enabled a data analysis identifying the overall functioning of the
transportation time of different in-house transit processes. The basic statistical indexes
and ratios, before and after the removal of outliers according to the upper control limit of
each in-house transit type, were calculated to monitor and improve the quality of in-house
transit processes for manufacturers. These statistical indexes were also used to determine
the usual operation time, the upper limits of the transportation time, the lower limits of
the transportation time and the stability. The statistical indexes of each in-house transit,
before and after the removal of outliers, were then compared to highlight the significance
of in-house transit and determine the significant changes across different in-house transit
types and significant months. The first indicator was the mean of the overall data, which
could be used to obtain preliminary observations and compare the general operation of the
four types of in-house transits. The second indicator was the mean of the corresponding
type of in-house transit.

Machines were labelled from five perspectives: average idle time levels (‘avg lv.’), total
number of records (‘record lv.’), concentration of abnormal idle time level (‘den lv.’), ratio of
adjusting (‘adjusting’) and ratio of pause (‘pause’). This labelling was based on Q1 and Q3,
which were used for classification using the XGBoost package in Python through PyCharm
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and to plot the confusion matrix to determine the number of occurrences of abnormal idle
time (i.e., the concentration) and demonstrate the accuracy of the classification. The label
was then visualised using a simple table.

The update policy component used the variance of the moving average to identify the
balance of the workload and sensitivity to suggest how often the indicator of abnormal
idle time should be updated. For the track-and-trace measurement models, the lower and
upper quartiles were calculated to identify the indicator for each type of in-house transit,
with two different indicators employed.

3. Case Study of a Manufacturing Site

L.A. International Holdings (alias, affiliated as L.A.) was established in Hong Kong
in 1980. L.A. is renowned for providing a variety of one-stop services to local and global
communities. Due to global trends centring on implementing I4.0 technologies in factories,
L.A. aimed to establish a smarter and more digital management system, allowing for the
company to determine problems and react immediately in a cost-effective manner. L.A.
achieved the 1i level of I4.0 (enhanced data availability) and was on track to achieve the
2i level (enhanced interpretability). However, the manufacturing site had some problems,
such as the long idle time of the injection moulding machines (due to long waiting times or
long transportation times). L.A. could analyse data to reduce this idle time and reduce the
idle time of in-house transits to ensure higher levels of productivity.

3.1. Injection Moulding Machines
3.1.1. Data Preprocessing

L.A. aimed to reduce the idle time of their injection moulding machines and increase
the visibility and traceability of the cycle times and process parameters. The original
data was tabulated in a table for the injection moulding machines featured six columns:
RecordID, MachineID, ProdID, Parameter, CreationTime and Status. This large table
included all machines numbered 1 to 30, with creation times listed in ascending order. Due
to this study only investigating these 30 machines, MachineIDs outside the 1–30 range were
eliminated from the table. This reduced the original 317,203 records to 314,012 records.
Subsequently, the large table was divided into 30 tables according to the MachineID, with
the time differences for each machine then calculated.

3.1.2. Data Analysis

The efficiency scores of the machines appear in Figure 2 in descending order. In this
analysis, the higher the efficiency score, the more efficient the machine. For instance, the
machine with MachineID 13 was the most efficient machine, recording an efficiency score
of 2.249, and with MachineID 24 being the least efficient machine, recording an efficiency
score of only 0.697.
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Figure 3 shows the problem ratios of the machines in descending order. Machine with
MachineID 9 recorded the largest problem ratio (0.272), suggesting that a machine error
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might have led to a high adjusting time. Meanwhile, machine with MachineID 21 recorded
the smallest problem ratio (0.074), signalling a high pause time. This indicated the need for
more comprehensive and efficient production planning.
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Outliers that might have affected the accuracy of the results were removed from the
dataset to determine the machines’ actual performances (idle time) and produce useful
information for processing, with 4304 fewer data points obtained after removing outliers
(an average of approximately 2.73% for each machine). Figure 4 shows the efficiency and
problem ratio matrix created for the classification of machines before and after the removal
of outliers. Machines with the same position in the matrix before and after the removal of
outliers were underlined for improved accessibility. Figure 4 reveals that the position of
machines in the efficiency and problem ratio matrix varied significantly before and after
removing the outliers.
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3.1.3. Trend Analysis

Analysing the relationship between the machine idle time and time revealed that
almost all of the idle time of the machines was either almost stationary or increased over
time before removing outliers, while almost all machine idle time increased over time
without any decreasing trends after removing outliers (Figure 5). Figures 6 and 7 show
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the trend analysis of the total idle time of the 30 machines over time before and after the
removal of outliers. The overall trend of all machine idle times slightly increased over time
before the removal of outliers and became strictly increasing after the removal of outliers.
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3.1.4. Model Selection

Due to the significant increasing idle time over time both before and after removing
outlying data points, abnormal idle time needed to be investigated in more depth. The
mean idle time (00:39:53) was selected as an indicator of abnormal idle time. This meant that
idle time was classified as abnormal if it exceeded that indicator. The other basic statistics
for idle time were a median of 00:00:41, a Q1 of 00:00:16 and a Q3 of 00:04:03. The machine
with the highest number of abnormal idle time records was MachineID 3 (758 records),
and the machine with the lowest number of abnormal idle time records was MachineID
23 (365 records). The average number of abnormal idle time records was 578.

Table 1 summarises the basic statistics for the concentration of abnormal idle time (idle
time exceeding the indicator of 00:39:53), calculated for the seven different periods.

Table 1. Basic statistics for the concentration of abnormal idle time for the seven different periods
of interest.

Mean Median Q1 Q3 Maximum Minimum

3 Days 146 140 112 164 469 28

4 Days 193 187 151 218 652 20

5 Days 241 231 186 278 705 54

6 Days 286 284 212 323 845 28

7 Days 330 330 261 374 653 28

10 Days 477 461 383 520 1122 147

14 Days 660 632 511 742 1148 175

The accuracy of the predictions of output Y (i.e., the level of abnormal idle time
occurrence) for different period lengths was compared (Table 2). A period of six days
produced the highest accuracy levels (91.67%), and a period of ten days produced the
lowest accuracy levels (75%). That is, the six-day period better predicted the level of
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abnormal idle time occurrences, leading to its selection as the most suitable model. Thus,
Figure 8 represents the input and output of the XGBoost for a six-day period.

Table 2. Comparison of accuracy levels.

Period 3 days 4 days 5 days 6 days 7 days 10 days 14 days

Accuracy 87.5% 77.78% 80% 91.67% 81.81% 75% 83.33%
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Many parameters could be adjusted in XGBoost. However, only certain selected
parameters were fine-tuned in this study to provide better results. The selected param-
eters and their default values were eta (default = 0.3), gamma (default = 0), max_depth
(default = 6), min_child_weight (default = 1) and subsample (default = 1). After fine-
tuning, we adjusted the parameters to 0.2 for eta, 4.2 for gamma, 5 for max_depth, 1.0 for
min_child_weight and 0.5 for the subsample to provide more accurate results.

3.1.5. Machine Classification and Labelling

The machines’ average idle time levels, total number of records, concentrations of
abnormal idle time, ratio of adjusting and ratio of pause were determined. Q1 and Q3 were
used to define the three levels for all labels. Table 3 shows the machine labelling results.

The results demonstrated that some of the machines had symmetric relationships.
That is, when their ratio of pause and average idle time level were level 2 or level 0, their
ratio of adjusting and total number of records were level 0 or level 2, respectively. This was
the case for machines with MachineIDs 9, 11, 14, 19, 21, 22, 26, 27, 29 and 30. Machines
with MachineIDs 9, 11, 14 and 22 recorded low average idle time levels, but their total
number of records was high, indicating that these machines always had short idle times.
It was also found that the ratio of adjusting was high and the ratio of pause was low,
potentially indicating that, for these machines, the adjusting status was the most common
status, but lasted for less time, contributing to a lower average idle time. Meanwhile, the
average idle time levels for machines with MachineIDs 19, 21, 26, 27, 29 and 30 were high,
but the total number of records was low, indicating that it happened rarely, but machine
idle times were long when it happened. In addition, if the ratio of adjusting was low, the
ratio of pause was high. This indicated that these machines paused more often and for
longer, but this did not happen often, thereby contributing to higher average idle times.
Furthermore, machines with MachineIDs 1, 2, 15 and 17 had five level one labels, indicating
that these four machines were very average. In addition, in terms of the labels’ average
idle time level, total number of records and concentration of abnormal idle time levels, the
machines with MachineIDs 16 and 18 also received a level one rating, indicating that the
two machines were somewhat average. The machines with MachineIDs 6 and 13 were
classified as level 0 and level 1, indicating that they were the most efficient. The machine
with MachineID 8 documented the worst efficiency, receiving two level two labels and one
level one label.
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Table 3. Machine labelling results.

Machine ID 1 2 3 4 5 6 7 8 9 10

Avg (lv.) 1 1 1 2 1 1 0 1 0 1

Record (lv.) 1 1 1 1 1 0 2 2 2 0

Den (lv.) 1 1 2 1 2 0 1 2 2 2

Adjusting 1 1 1 1 2 2 1 1 2 1

Pause 1 1 1 1 0 0 1 1 0 1

Machine ID 11 12 13 14 15 16 17 18 19 20

Avg (lv.) 0 1 0 0 1 1 1 1 2 1

Record (lv.) 2 1 1 2 1 1 1 1 0 1

Den (lv.) 2 2 0 1 1 1 1 1 1 0

Adjusting 2 1 1 2 1 2 1 2 0 0

Pause 0 1 1 0 1 0 1 0 2 2

Machine ID 21 22 23 24 25 26 27 28 29 30

Avg (lv.) 2 0 0 0 2 2 2 1 2 2

Record (lv.) 0 2 1 2 1 0 0 2 0 0

Den (lv.) 0 0 0 1 2 0 1 0 1 1

Adjusting 0 2 1 1 0 0 0 1 0 0

Pause 2 0 1 1 2 2 2 1 2 2

3.2. In-House Transit

As Figure 9 shows, the in-house transit involved five components: ‘Injection to As-
sembly’, ‘Injection to Warehouse’, ‘Warehouse to Assembly’, ‘Warehouse to Injection’ and
‘Assembly to Warehouse’.

Machines 2023, 11, x FOR PEER REVIEW 11 of 18 
 

 

The idle time during the in-house transit processes was analysed using the average 
(average operation time, denoted by ‘AVG’), the maximum (the worst case during transit, 
denoted by ‘MAX’), the minimum (the best case during transit, denoted by ‘MIN’), the 
standard deviation (denoted by ‘SD’) and the above-average percentage (the ratio of data 
transition time exceeding the average, denoted by ‘>AVG%’). 

 
Figure 9. Illustration of in-house transit processes. 

3.2.1. From the Injection Moulding Workshop to the Assembly Workshop 
During the ‘Injection to Assembly’ process, the total number of records was 30,447, 

the average transportation time was 02:54:49, the maximum transportation time was 
121:57:20, the minimum transportation time was 00:00:23, the standard deviation was 
08:35:31 and the ratio of data exceeding the average time was 18.55%. For observations of 
two or more consecutive months, some monthly values were continuously larger or 
smaller than the whole-year values. From April 2021 to May 2021, the monthly average 
was continuously larger than the whole-year average. From December 2020 to January 
2021 and from August 2021 to September 2021, the monthly average was continuously 
smaller than the whole-year average. There were no two or more consecutive months that 
recorded standard deviations continuously larger than the whole-year standard 
deviation. However, from December 2020 to March 2021, from May 2021 to June 2021 and 
from August 2021 to November 2021, the monthly standard deviation was continuously 
smaller than the whole-year standard deviation. 

To further improve the accuracy of the analysis, outliers—that is, all data points 
larger than the upper control limit—were removed from the original data for further 
processing. After outliers representing an average of approximately 16.03% of the data 
were removed from each monthly record, the total number of records retained was 25,635; 
the average transportation time was 00:38:30; the maximum transportation time was 
03:33:08; the minimum transportation time was 00:00:23; the standard deviation was 
00:46:26; the ratio of data exceeding the average time was 31.15%. For observations of two 
or more consecutive months, some monthly values were continuously larger or smaller 
than the whole-year values. From May 2021 to July 2021 and from October 2021 to 
November 2021, the monthly average was continuously larger than the whole-year 
average. From February 2021 to April 2021 and from August 2021 to September 2021, the 
monthly average was continuously smaller than the whole-year average. Regarding the 
standard deviation, from September 2021 to November 2021, the monthly standard 
deviation was continuously larger than the whole-year standard deviation. Meanwhile, 
from February 2021 to March 2021 and from May 2021 to June 2021, the monthly standard 
deviation was continuously smaller than the whole-year standard deviation. 

Figure 9. Illustration of in-house transit processes.

The idle time during the in-house transit processes was analysed using the average
(average operation time, denoted by ‘AVG’), the maximum (the worst case during transit,
denoted by ‘MAX’), the minimum (the best case during transit, denoted by ‘MIN’), the
standard deviation (denoted by ‘SD’) and the above-average percentage (the ratio of data
transition time exceeding the average, denoted by ‘>AVG%’).
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3.2.1. From the Injection Moulding Workshop to the Assembly Workshop

During the ‘Injection to Assembly’ process, the total number of records was 30,447, the
average transportation time was 02:54:49, the maximum transportation time was 121:57:20,
the minimum transportation time was 00:00:23, the standard deviation was 08:35:31 and
the ratio of data exceeding the average time was 18.55%. For observations of two or more
consecutive months, some monthly values were continuously larger or smaller than the
whole-year values. From April 2021 to May 2021, the monthly average was continuously
larger than the whole-year average. From December 2020 to January 2021 and from August
2021 to September 2021, the monthly average was continuously smaller than the whole-
year average. There were no two or more consecutive months that recorded standard
deviations continuously larger than the whole-year standard deviation. However, from
December 2020 to March 2021, from May 2021 to June 2021 and from August 2021 to
November 2021, the monthly standard deviation was continuously smaller than the whole-
year standard deviation.

To further improve the accuracy of the analysis, outliers—that is, all data points larger
than the upper control limit—were removed from the original data for further processing.
After outliers representing an average of approximately 16.03% of the data were removed
from each monthly record, the total number of records retained was 25,635; the average
transportation time was 00:38:30; the maximum transportation time was 03:33:08; the
minimum transportation time was 00:00:23; the standard deviation was 00:46:26; the ratio
of data exceeding the average time was 31.15%. For observations of two or more consecutive
months, some monthly values were continuously larger or smaller than the whole-year
values. From May 2021 to July 2021 and from October 2021 to November 2021, the monthly
average was continuously larger than the whole-year average. From February 2021 to April
2021 and from August 2021 to September 2021, the monthly average was continuously
smaller than the whole-year average. Regarding the standard deviation, from September
2021 to November 2021, the monthly standard deviation was continuously larger than the
whole-year standard deviation. Meanwhile, from February 2021 to March 2021 and from
May 2021 to June 2021, the monthly standard deviation was continuously smaller than the
whole-year standard deviation.

3.2.2. From the Injection Moulding Workshop to the Warehouse

During the ‘Injection to Warehouse’ process, the total number of records was 357,391,
the average transportation time was 02:09:29, the maximum transportation time was
112:24:11, the minimum transportation time was 00:00:20, the standard deviation was
03:05:14 and the ratio of data exceeding the average time was 27.35%. For observations
of two or more consecutive months, some monthly values were continuously larger or
smaller than the whole-year values. From February 2021 to April 2021 and from June
2021 to August 2021, the monthly average was continuously larger than the whole-year
average. From September 2021 to November 2021, the monthly average was continuously
smaller than the whole-year average. Regarding the standard deviation, from June 2021 to
July 2021, the monthly standard deviation was continuously larger than the whole-year
standard deviation. Meanwhile, from December 2020 to January 2021 and from August
2021 to November 2021, the monthly standard deviation was continuously smaller than
the whole-year standard deviation.

After outliers representing an average of approximately 23.70% of the data were
removed from each monthly record, the total number of records retained was 26,6796; the
average transportation time was 00:52:08; the maximum transportation time was 02:23:55;
the minimum transportation time was 00:00:20; the standard deviation was 00:34:22; the
ratio of data exceeding the average time was 41.78%. For observations of two or more
consecutive months, some monthly values were continuously larger or smaller than the
whole-year values. From July 2021 to August 2021, the monthly average was continuously
larger than the whole-year average. From January 2021 to March 2021, from May 2021 to
June 2021 and from September 2021 to October 2021, the monthly average was continuously
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smaller than the whole-year average. Regarding the standard deviation, from October 2021
to November 2021, the monthly standard deviation was continuously larger than the whole-
year standard deviation. Meanwhile, from December 2020 to March 2021, the monthly
standard deviation was continuously smaller than the whole-year standard deviation.

3.2.3. From the Warehouse to the Assembly Workshop

During the ‘Warehouse to Assembly’ process, the total number of records was 295,929,
the average transportation time was 01:41:24, the maximum transportation time was
95:45:36, the minimum transportation time was 00:00:25, the standard deviation was
07:47:28 and the ratio of data exceeding the average time was 10.27%. For observations
of two or more consecutive months, some monthly values were continuously smaller
than the whole-year values, but there were no two or more consecutive months that the
monthly average was continuously larger than the whole-year average. Nonetheless, from
December 2020 to March 2021 and from July 2021 to October 2021, the monthly average
was continuously smaller than the whole-year average. There were no two or more consec-
utive months that recorded standard deviations continuously larger than the whole-year
standard deviation. However, from December 2020 to March 2021 and from July 2021
to November 2021, the monthly standard deviation was continuously smaller than the
whole-year standard deviation.

After outliers representing an average of approximately 9.66% of the data were re-
moved from each monthly record, the total number of records retained was 26,5748; the
average transportation time was 00:08:15; the maximum transportation time was 01:43:14;
the minimum transportation time was 00:00:25; the standard deviation was 00:13:49; the
ratio of data exceeding the average time was 22.31%. For observations of two or more
consecutive months, some monthly values were continuously larger or smaller than the
whole-year values. From March 2021 to June 2021, the monthly average was continuously
larger than the whole-year average. From December 2020 to February 2021 and from
September 2021 to November 2021, the monthly average was continuously smaller than
the whole-year average. Regarding the standard deviation, from March 2021 to June 2021,
the monthly standard deviation was continuously larger than the whole-year standard
deviation. Meanwhile, from January 2021 to February 2021 and from September 2021
to November 2021, the monthly standard deviation was continuously smaller than the
whole-year standard deviation.

3.2.4. From the Warehouse to the Injection Moulding Workshop

During the ‘Warehouse to Injection’ process, the total number of records was 2008, the
average transportation time was 00:38:00, the maximum transportation time was 81:54:03,
the minimum transportation time was 00:00:31, the standard deviation was 02:42:32 and
the ratio of data exceeding the average time was 19.87%. For observations of two or more
consecutive months, some monthly values were continuously larger or smaller than the
whole-year values. From April 2021 to May 2021, the monthly average was continuously
larger than the whole-year average. From December 2020 to January 2021 and from June
2021 to September 2021, the monthly average was continuously smaller than the whole-year
average. There were no two or more consecutive months that recorded standard deviations
continuously larger than the whole-year standard deviation. However, from December
2020 to March 2021 and from May 2021 to September 2021, the monthly standard deviation
was continuously smaller than the whole-year standard deviation.

After outliers representing an average of approximately 14.82% of the data were
removed from each monthly record, the total number of records retained was 1826; the
average transportation time was 00:10:50; the maximum transportation time was 00:44:29;
the minimum transportation time was 00:00:31; the standard deviation was 00:13:43; the
ratio of data exceeding the average time was 23.55%. For observations of two or more
consecutive months, some monthly values were continuously larger or smaller than the
whole-year values. From June 2021 to July 2021, the monthly average was continuously
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larger than the whole-year average. From December 2020 to May 2021 and from August
2021 to October 2021, the monthly average was continuously smaller than the whole-year
average. There were no two or more consecutive months that recorded standard deviations
continuously larger than the whole-year standard deviation. However, from December
2020 to May 2021 and from July 2021 to October 2021, the monthly standard deviation was
continuously smaller than the whole-year standard deviation.

3.2.5. From the Assembly Workshop to the Warehouse

During the ‘Assembly to Warehouse’ process, the total number of records was 188, the
average transportation time was 17:31:51, the maximum transportation time was 186:37:39,
the minimum transportation time was 00:01:01, the standard deviation was 33:19:54 and
the ratio of data exceeding the average time was 48.40%. For observations of two or more
consecutive months, some monthly values were continuously smaller than the whole-year
values, but there were no two or more consecutive months that the monthly average was
continuously larger than the whole-year average. Nonetheless, from March 2021 to April
2021 and from June 2021 to July 2021, the monthly average was continuously smaller than
the whole-year average. There were no two or more consecutive months that recorded
standard deviations continuously larger than the whole-year standard deviation. However,
from January 2021 to March 2021 and from June 2021 to July 2021, the monthly standard
deviation was continuously smaller than the whole-year standard deviation.

After outliers representing an average of approximately 4.58% of the data were re-
moved from each monthly record, the total number of records retained was 176; the average
transportation time was 10:27:32; the maximum transportation time was 34:03:45; the min-
imum transportation time was 0:01:01; the standard deviation was 10:27:29; the ratio of
data exceeding the average time was 44.89%. For observations of two or more consecutive
months, some monthly values were continuously smaller than the whole-year values,
but there were no two or more consecutive months that the average was continuously
larger than the whole-year average. Nonetheless, from December 2020 to January 2021,
from March 2021 to April 2021 and from June 2021 to July 2021, the monthly average was
continuously smaller than the whole-year average. There were no two or more consecu-
tive months that recorded standard deviations continuously larger than the whole-year
standard deviation. Each month’s standard deviation was smaller than the whole-year
standard deviation.

3.2.6. Comparison of All In-House Transit Processes

Due to there being too few records for ‘Assembly to Warehouse’ (only 188 before the
removal of outliers and 176 after the removal of outliers) compared to the other in-house
transit processes, it was excluded from the comparative analysis. Figures 10 and 11 sum-
marise the transportation data of all in-house transit processes before and after removing
outliers. The percentage change in the average transit time for ‘Injection to Assembly’
before and after removing outliers was −77.98%; the percentage change in the average
transit time for ‘Injection to Warehouse’ before and after removing outliers was −59.74%;
the percentage change in the average transit time for ‘Warehouse to Assembly’ before and
after removing outliers was −91.86%; the percentage change in the average transit time for
‘Warehouse to Injection’ before and after removing outliers was −71.49%.
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4. Discussion

The average idle time for each day was calculated as well as the moving average over
15, 20, 30 and 50 days. Then, the standard deviation and variance of the moving average
were calculated. The 15-day period demonstrated the highest variance, indicating that this
period featured the highest level of sensitivity. Therefore, to balance the workload and
sensitivity, it is suggested that the model be updated every 15 days. A 20-day period would
also be acceptable for balancing the workload and sensitivity. For the 20-day period, the
workload would decrease by 25%, with variance being approximately 11.6% lower. Table 4
shows the data from these different time periods.

Table 4. Data from the different time periods of interest.

Period

15 Days 20 Days 30 Days 50 days

Update frequency 24 18 12 7

Standard deviation 1624 1529 1370 1185

Variance 2,648,220 2,340,692 1,878,966 1,404,674

To better utilise the limited resources and time, L.A. could prioritise the machines
recording low efficiency levels (based on the ratio of machine running time to machine
idle time) and low problem ratios (based on the ratio of machine adjusting time to ma-
chine pause time). Efforts should be contributed to investigate the reasons for the low
problem ratio.
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If L.A. wanted to increase the accuracy of the predictions of abnormal idle time
occurrences (output Y), periods of different lengths could be used. For the case study, 80%
of the data were used as the training dataset, with a period of six days found to produce
the highest accuracy level. Further research could be conducted to improve the accuracy of
the predictions by investigating the accuracy in the context of more periods of different
lengths to, ultimately, balance the effort and prediction accuracy.

Investigation and improvement priorities should not only be focused on the machine
level, but also the in-house transit level. The results of the in-house track and trace revealed
that in-house transit type(s) and month(s) with above-average idle time and continuously
high idle time could be identified and assigned the highest handling priority. These
results enabled L.A. to determine informed decisions and plan for the timely control of
the situation.

This study achieved four objectives: The first involved understanding and analysing
the data on the idle time of injection moulding machines. This involved conducting a basic
statistical analysis of machines’ idle times. Analysing the data before and after removing
the outliers, which were defined by the upper control limits, allowed for the determination
of the idle times and statuses of the machines. Efficiency levels and potential problems were
also explored. Using an efficiency and problem ratio matrix, the machines were compared to
determine which needs should be prioritised for each machine (given the limited resources
and tight deadlines). The second objective was to determine abnormal idle times. This was
achieved by using an indicator to investigate abnormal idle time lengths and demonstrate
the occurrence of abnormal idle time over specific time periods. The third objective was
to classify different levels of occurrence of abnormal idle times of injection moulding
machines. This was achieved by classifying idle times into three levels: high, medium and
low. Then, these results were displayed in a confusion matrix and decision tree, which
were useful for determining which machines recorded the most occurrences of idle time. In
addition, abnormal idle time levels were classified to show the concentration of data for the
different machines and months. Furthermore, machine labelling was conducted, showing
symmetrical relationships. Accordingly, it was suggested that the manufacturer should
update its policies to include an updated indicator of abnormal idle times. A possible
period for this oversight was also provided. Nonetheless, due to the limited variables
employed, future research is needed. The fourth objective was to indicate the total idle
time achieved. The occurrence of abnormal time in the overall track and trace and for each
in-house transit process was determined to demonstrate the abnormal idle time.

This study used a limited number of variables due to the data-driven approach
employed. That is, only the status was considered. To improve the classification accuracy
and generalisability of the results, variables related specifically to injection moulding
machines should be included, such as the temperature, pressure and velocity. These were
not considered by this study because they were out of scope.

When a spare part in a machine starts to malfunction and needs to be replaced,
scheduling a repair is challenging because the change requires some downtime [25]. This
study provided insights into analysing idle time without understanding the actual working
process, even though it remains feasible to use the machines to facilitate more efficient
job scheduling.

5. Conclusions

The automation and data exchange of manufacturing technologies have merged with
the industrial IoT to create interconnected manufacturing systems capable of communi-
cating, analysing and using information to drive intelligent actions in the physical world.
This study presented a data-driven framework that can be used to statistically analyse raw
data across machines to provide a comprehensive understanding of idle time and facilitate
machine adjustments to, ultimately, reduce defect rates.

This study provided a quick and practical two-stage data-driven framework to com-
plete the classification. The first stage involved the fundamental statistical analysis of raw
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data to provide a more comprehensive understanding of idle time and suggest further
investigative steps. The second stage involved the identification of indicators and the
occurrence of abnormal idle times, as well as the classification of the abnormal idle time of
injection moulding machines without consideration of machine parameters.

Thus, this study introduced a new data-driven approach to analysing raw data. To
our knowledge, the classification of abnormal idle time without referencing on-site param-
eters is novel and represents a data-driven method for analysing abnormal idle time that
produces insights quickly. In short, idle time levels are tracked with total and abnormal
idle times identified. Different levels of abnormal idle time were classified in the case study
of a manufacturing site. Due to this being a data-driven approach, automated machine
learning and AI approaches did not pertain to the research scope.

This study’s findings represent a framework for analysing raw data and manufacturing
processes at an initial stage. Despite significant advancements in fault prediction research,
there remains ample room for further exploration and development in this area. This is
particularly true given the continuous expansion in the scope and scale of sensor data,
creating new opportunities for enhancing the accuracy and applicability of fault prediction
models. At present, predicting future faults using collected raw signals is a challenging
problem, especially given that data distributions at present and future moments are not
guaranteed. Traditional machine learning algorithms can only resolve classification or
regression issues within identical data distributions. However, deep learning methods, such
as recurrent neural networks (RNNs), convolutional neural networks (CNNs) and transfer
learning, can help to predict future faults using the collected raw signal of the present
moment, even when the data distributions of present and future moments differ [26–28].
The authors plan to design and evaluate these models to ensure their effectiveness and
reliability in the context of machine faults and root cause analyses.
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