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Abstract
A-type proanthocyanidins (PAs) are a subgroup of PAs that differ fromB-type PAs
by the presence of an ether bond between two consecutive constitutive units. This
additional C–O–C bond gives them a more stable and hydrophobic character.
They are of increasing interest due to their potential multiple nutritional effects
with low toxicity in food processing and supplement development. They have
been identified in several plants. However, the role of A-type PAs, especially their
complex polymeric form (degree of polymerization and linkage), has not been
specifically discussed and explored. Therefore, recent advances in the physico-
chemical and structural changes of A-type PAs and their functional properties
during extraction, processing, and storing are evaluated. In addition, discus-
sions on the sources, structures, bioactivities, potential applications in the food
industry, and future research trends of their derivatives are highlighted. Litchis,
cranberries, avocados, and persimmons are all favorable plant sources. Α-type
PAs contribute directly or indirectly to human nutrition via the regulation of dif-
ferent degrees of polymerization and bonding types. Thermal processing could
have a negative impact on the amount and structure of A-type PAs in the food
matrix. More attention should be focused on nonthermal technologies that could
better preserve their architecture and structure. The diversity and complexity
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of these compounds, as well as the difficulty in isolating and purifying natu-
ral A-type PAs, remain obstacles to their further applications. A-type PAs have
received widespread acceptance and attention in the food industry but have not
yet achieved their maximum potential for the future of food. Further research
and development are therefore needed.
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1 INTRODUCTION

Proanthocyanidins (PAs), also known as condensed tan-
nins, are secondary metabolites formed by the condensa-
tion of flavan-3-ol monomers (Prior et al., 2001). They are
also the end product of the flavonoid biosynthesis path-
way (Alejo-Armijo et al., 2020; Rauf et al., 2019). PAs are
found in awide range of plant foods and beverages, includ-
ing berries, stone fruits, cocoa, legumes, whole grains, tea,
red wine, and so on, and are considered a source of astrin-
gency in beverages, such as wine, juice, and tea (Dixon
et al., 2005; Remy-Tanneau et al., 2003; Zeng et al., 2023).
PAs are also the second most abundant natural phenolic
substances in nature after lignin (Liu, Le Bourvellec et al.,
2021; Zhou et al., 2023). Some studies have found that tan-
nins as chelators inhibit the absorption of dietaryminerals,
such as iron, copper and zinc. This “anti-nutritional” effect
is also thought to cause anemia due to iron deficiency in
the body. However, the harmful effects of ingesting sin-
gle, isolated compounds or phytochemicals are frequently
quite different from the effects of the same compound in a
complex food matrix. Therefore, epidemiological evidence
does not demonstrate any association between iron defi-
ciency anemia and flavanol intake.Moreover, ascorbic acid
contained in many tannin-rich foods may further promote
the absorption of nonheme iron. The health benefits of
consuming awide variety of plant-based, tannin-rich foods
and beverages far outweigh the negative effects of tannins
on the human body. The overall benefits of tannins intake
in humans outweigh the harms (Petroski & Minich, 2020;
Petry et al., 2010). Based on the hydroxylation pattern of
the A and B rings that make up the flavan-3-ol constituent
subunits, PAs could be classified into three subclasses.
PAs consisting of (epi)catechins referred to as procyani-
dins, whereas with (epi)afzelechin or (epi)gallocatechin as
a subunit are referred to as propelargonidins and prodel-
phinidins, respectively (Figure 1) (Alejo-Armijo et al.,
2020; Sieniawska et al., 2019). Procyanidins are the most
commonly reported in plants (Rasmussen et al., 2005).
The flavanol monomers that make up PAs (e.g., cate-

chins and epicatechin) are flavonoids, that is, they have

a typical C6–C3–C6 skeleton: two aromatic rings A and
B and a pyran ring (heterocycle C) (Patanè et al., 2023).
Due to their unique structural features, there are differ-
ent ways to classify them. First, depending on the degree
of polymerization (DP), PAs are arbitrarily divided into
oligomers and polymers. PAs with a DP of 2–4 are called
oligomeric PAs (OPAs), whereas those with a DP of 5 or
more are collectively referred to as polymeric PAs (PPAs)
(Chen et al., 2020; Nie et al., 2023). The physicochemical
and biological properties of PAs depend mainly on their
structure, especially theDP.Dimeric and trimericOPAs are
the mainstay of PAs research, with clear chemical struc-
tures, relatively high bioavailability, and relatively easy
absorption by the human body (Cires et al., 2017). Larger
PPAs are not directly absorbed into the human body. Some
of them are excreted, although others are metabolized
by the intestinal microbiota that convert them into small
molecules, which could be reabsorbed and active at the
same time (Cires et al., 2017; Déprez et al., 2000). PAs
could also contribute to the astringency of wine through
their ability to interact strongly with proteins (e.g., sali-
vary proteins), with the association ability increasing as
the DP of PAs increases (Guyot et al., 1998). Second, PAs
are classified into A-type and B-type based on the dif-
ference in the inter-flavan linkages between the flavanol
monomers (Liu, Le Bourvellec et al., 2021). The flavanol
monomers in B-type PAs are connected by only one C–C
bond, which is mainly located at C4–C8 or, less commonly,
C4–C6 (Gabetta et al., 2000). In contrast, А-type PAs are
characterized by additional ether bonds connecting carbon
C2 and C7 (C2–O–C7) or C2 and C5 (C2–O–C5) (Gu et al.,
2002).Historically, OPAswere named according to the type
of bond between these molecules. In the case of procyani-
dins, for example, procyanidin A is a dimer connected by
an A-type bond, which is further divided into procyani-
din A1 and procyanidin A2 depending on the constitutive
units. For polymers, the naming is specified by the DP. For
example, a procyanidin A with a DP of three is called a A-
type trimer, a DP of four is called a A-type tetramer, and so
on. Procyanidin dimers are listed in Figure 1 as procyani-
din A1, A2, A6, and A7 as well as three common A-type
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A-TYPE PROANTHOCYANIDINS 3 of 28

F IGURE 1 Proanthocyanidin (PA) monomers and some A-type PA dimers, trimers, and tetramers (Dudek et al., 2017; Lou et al., 1999).

trimers and two A-type tetramers (Gu et al., 2004; Li et al.,
2012; Liu, Le Bourvellec et al., 2021). A- and B-type PAs
are general present in plants simultaneously, but their con-
tent is dominated by one structural type. Two types could
be interconverted under appropriate temperature and pH
conditions, catalyzed by oxygen radicals and polyphenol
oxidase (PPO) (Chen et al., 2020). Li et al. (2020) demon-
strated that blueberry extracts originally enriched inB-type
PAs yielded A-type PAs after processing. They promoted

the formation of A-type PAs through the addition reac-
tion of anthocyanins and flavanol monomers, and two
colorless dimeric adducts, A-type cyanidin–epicatechin
and A-type delphinidin–epicatechin, were obtained under
optimal conditions (pH 2.0, 90◦C, 80 min, aerobic). They
were linked by bicyclic bonds (C4–C8 and C2–O–C7), as
detected in A-type PAs. This provides a theoretical basis
for the interconversion of A/B-type PAs. In addition, A-
type PAs have a hard three-dimensional shape that B-type
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does not,making themmore hydrophobic thanB-type PAs,
and therefore it could have more potentially docking sites
(Dudek et al., 2017; McRae et al., 2010).
Some reviews have summarized recent advances in the

chemical structure, food sources, and biological activities
of PAs (B-type) and discussed recent developments and
trends in PA-derived products (Alejo-Armijo et al., 2020;
Maffei et al., 2022; Nie et al., 2023; Qi et al., 2022; Rauf
et al., 2019; Redondo-Castillejo et al., 2023; Tao et al., 2019;
Unusan, 2020; Yang, Tuo et al., 2021). Redondo-Castillejo
et al. (2023) comprehensively validated the different effects
of PAs on intestinal dysfunction in metabolic syndrome
induced by high-fat diet, distinguishing between pro-
phylactic and therapeutic roles, with a special emphasis
on the effects of PAs on the intestinal microbiota. Nie
et al. (2023) summarized the molecular structure and
natural origin of OPAs, their general synthetic pathways
in plants, their antioxidant capacity, and their potential
applications, especially their anti-inflammatory, antiaging,
cardiovascular disease preventive, and antitumor func-
tions. Alejo-Armijo et al. (2020) reviewed the synthesis of
A-type PAs and their analogs, and this synthetic knowl-
edge opens the way to generate a library of bio-assessed
congeners. Unusan (2020) discussed the history, chemi-
cal structure, occurrence, metabolism, and bioavailability,
and industrial applications of grape seed PAs, as well as
their mechanistic and protective effects against various
diseases in recent years. Yang, Tuo et al. (2021) sum-
marized the relationship between the DP of PAs from
dietary sources and their antioxidant, anticancer, antidia-
betic, anti-obesity, and cardioprotective effects, as well as
their potential mechanisms. Maffei et al. (2022) reviewed
the antiviral activity and mechanism of action of A-type
PAs and their potential as broad-spectrum antiviral agents
against current and future viral infections. Tao et al. (2019)
explored the chemical, absorption, and metabolic path-
ways of PAs from monomers to polymers, as well as the
interactions between PAs and the gut microbiota. How-
ever, there is no systematic summary or comparison in
the literature of the food sources, processing, evolutionary
patterns in food systems, biological activities, and indus-
trial applications of A-type PAs. Although a great deal of
work has been performed onA-type PAs in food, no review
has synthetized the results of studies related to A-type
PAs in food systems. Therefore, in addition to presenting
the unique traits of A-type PAs, we provide an updated
resource for the relevant literature. Moreover, we aim to
compile and discuss the effects of dietary sources, process-
ing, and storage on the variation and/or transformation
of A-type PAs in food system and their nutrition effects.
The current research gaps in A-type PAs, possible sugges-
tions for future research, and speculation on potential food
sources of A-type PAs are discussed. These results pro-

vide comprehensive knowledge of the content, diversity,
and bioactive potential of A-type PAs in plant products.
Meanwhile, it could contribute to the search for new and
abundant natural sources of A-type PAs, as well as in the
application and formulation of functional foods for per-
sonal daily consumption, industrial commercialization,
and nutritional well-being.

2 FOOD SOURCES OF A-TYPE PAS

The human health benefits of fresh fruits have beenwidely
explored, and they are known to be a powerful source of
dietary antioxidants, especially condensed tannins, also
known as PAs (Guyot et al., 2001; Xi et al., 2023). B-type
PAs are widely distributed in various parts of plants, such
as fruits, vegetables, nuts, bark, and leaves, and are partic-
ularly abundant in grape seeds. In contrast, natural A-type
PAs have a narrower distribution and are present in only a
few plant species and tissues (Table 1), the exploitation of
which could be a sustainable source of A-type PAs and is
described below. The proportions of A-type PAs and mean
degree of polymerization (mDP) in several representative
foods are presented in Figure 2.

2.1 Litchi

Litchi (Litchi chinensis Sonn.) belongs to the Sapotaceae
family and its fruit consistsmainly of the pericarp, the pulp
(aril), and the seed. This flavorful fruit is native to south-
ern China and is found in tropical and subtropical regions
(Zhao, Wang et al., 2020).
Litchi pericarp is a rich source of A-type PAs. It can be

extracted with organic solvents (ethanol, methanol, and
acetone). The extracts are rich in oligomeric procyanidins
composed of (epi)catechins as monomers, accounting for
about 15% of the total weight of fresh litchi, with a dom-
inance of A-type procyanidins. Some studies have shown
that A-type procyanidins accounted for 41.7% of the total
procyanidins in litchi pericarp, whereas B-type only 24.1%,
with an mDP of 6.4 calculated from high-performance liq-
uid chromatography (HPLC) analysis of thiolysis reactions
(Le Roux et al., 1998; Li et al., 2012, 2016; Miranda-
Hernández et al., 2019). A study characterized OPAs from
litchi pericarp by HPLC–ESI–MS/MS (HPLC–electrospray
tandemmass spectrometry) and found that they consisted
mainly of procyanidin A1, procyanidin A2, catechin, and
(−)-epicatechin. A-type procyanidins accounted for 38.76%
of the total extract, whereas B-type procyanidins accounted
for only 8.66% (Sui et al., 2016). Litchi pulp and seeds are
also good sources of A-type PAs, mainly consisting of A-
type procyanidin dimers and A-type procyanidin trimers
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TABLE 1 Food sources, extraction methods, and major findings of A-type proanthocyanidins (PAs).

Type of PAs Sources Extraction method Main findings References
A-type procyanidins LP and MP 70% EtOH aqueous

solution, in the dark,
at room temperature

Two procyanidin monomers, five
dimers, three trimers, and one
tetramer were identified in LF
and MP extracts

Xie et al. (2023)

A-type procyanidins Litchi seeds 95% EtOH aqueous
solution, 80◦C

The oligomeric procyanidins in
litchi seeds were composed
primarily of A-type procyanidins
dimers, trimers, and tetramers

Man et al. (2017)

A-type prodelphinidins
and procyanidins

Persimmon (Diospyros
kaki L.) peel

70% acetone aqueous
solution, in the dark,
at room temperature

PPPAs contained 25.21% of
procyanidins and 74.79% of
prodelphindins and had a high
degree of 3-O-galloylation
(>74.79%). The mDP was
calculated to be 10.18 and have
A-type linkage and galloylation

Ye et al. (2022)

A-type procyanidins Açaí seed (Euterpe
oleraceaMart.)

100% MeOH, 60% EtOH
aqueous solution,
distilled water, 40◦C

The extracts were mainly composed
of B-type and A-type oligomeric
procyanidins with an mDP of 11.4
(>3000 Da), which were formed
by C and EC as the initiating and
elongating subunits, respectively

Martins et al. (2020)

A-type PAs Bird cherry (Prunus
padus)

Solvent (acetone:
ethanol:
water = 2:2:1), at room
temperature

Bird cherry PAs were oligomerized
by (epi)catechins and
(epi)gallocatechins, with a mDP
of 5.6. These PAs had A-type and
B-type linkages for connection of
(epi)catechins and
(epi)gallocatechins

Zhang, Li et al. (2022)

A-type PA trimers Laurel tree (Laurus
nobilis L.)

EtOAc extraction Three flavan-3-ols, 4 dimeric B-type
PAs, and 2 trimeric A-type
procyanidins were isolated

Alejo-Armijo et al. (2019)

A-type PAs The leaves of persimmon
and loquat

70% acetone aqueous
solution, at room
temperature

Persimmon leaves PAs mainly
consist of catechin with B-type
link along with a small portion of
GC, CG, and A-type link. Loquat
leaves PAs consist of C, GC,
GCG, and afzelechin with B-type
link along with a small portion of
A-type link

Tao et al. (2022)

A-type procyanidins Peanut skins 70% EtOH aqueous
solution, 80◦C

Five compounds were separated
and identified from peanut skin,
including EC-(2β→O→ 7, 4β
→ 8)-ent-EC, EC-(2β→O→ 7, 4β
→ 8)-EC, EC-(2β→O→ 7, 4β
→ 8)-EC-(4β→ 6)-C, EC-(2β→O
→ 7, 4β→ 8)-EC-(4β→ 8)-C, and
EC-(4β→ 6)-EC-(4β→ 8, 2β→O
→ 7)-C

Zhao et al. (2022)

A-type PAs Canthium venosum fruits 100% MeOH, at room
temperature

A new double-stranded A-type PA
trimer was
isolated:EC-(2β→O→7,
4β→8)-C-(5→O→2β, 6→4β)-C
[venosum tannin A-1]

Dongmo et al. (2020)

(Continues)
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6 of 28 A-TYPE PROANTHOCYANIDINS

TABLE 1 (Continued)

Type of PAs Sources Extraction method Main findings References
Procyanidin dimer (A1
or A2)

Chamaecyparis obtusa
VAR. FORMOSANA

Boiling deionized water
extraction

The PAs with higher mDP, higher
proportions of procyanidin dimer
(A1 or A2) and (epi)afzelechin of
extension units and a lower
proportion of EC of terminal
units displayed high
α-glucosidase-inhibitory
activities

Hsu et al. (2018)

A-type procyanidins Avocado seed and seed
coat

50% EtOH aqueous
solution, 200◦C,
11 MPa

Five A-type dimers and tetramers
were found in both seed and seed
coat, five A-type trimers were
found in avocado seed, and seven
A-type trimers were found in
seed coat

Figueroa et al. (2018)

A-type trimers Pear (Pyrus pyrifolia
Nakai) fruit peel

100% MeOH, at room
temperature

Identified three A-type PA trimers
from pear peel for the first time,
namely, (−)-EC-(4β→ 8, 2β→
O-7)-(−)-EC-(4β→ 8)-(−)-C
(cinnamtannins B1), (−)-EC-(4β
→ 8)-(−)-EC-(4β→ 8, 2β→
O-7)-(−)-EC (aesculitannin A),
(−)-EC-(4β→ 6)-(−)-EC-(4β→ 8,
2β→ O→7)-(−)-EC

Jeong et al. (2017)

A-type PAs Prunus spinosa MeOH extraction ent-EC-(4α→ 8; 2α→ O→ 7)-C
and ent-EC-(4α→ 8;2α→ O→

7)-EC were identified

Kolodziej et al. (1991)

A-type PAs Stem-bark of Pavetta
owariensis

MeOH extraction A new A-type PA, ent-EC (4α→8,
2α→O→7)-ent-C, was isolated
and named pavettanin A1

Baldé et al. (1991)

Abbreviations: C, catechin; CG, catechin gallate; EC, epicatechin; EtOAc, ethyl acetate; EtOH, ethanol; GC, gallocatechin; GCG, gallocatechin gallate; LF, litchi
fruitlet; LSE, litchi seed extracts; mDP, mean degree of polymerization; MP, mature pericarp; PAs, proanthocyanidins; PPPAs, persimmon peel proanthocyanidins.

F IGURE 2 Proportion of A-type proanthocyanidins (PAs) to total PAs (black bold numbers) and mean degree of polymerization (mDP)
in several plant foods (Gu et al., 2003; Li et al., 2012; Ye et al., 2022).
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(Lv et al., 2015; Xu et al., 2010). Generally, the content
of PAs in immature fruits is higher than that in mature
fruits (Renard et al., 2007). A-type procyanidins are abun-
dant in litchi fruitlets and can exist at high levels stably.
The content of A-type procyanidins in the fruitlets of dif-
ferent varieties of litchi accounted for more than 60% of
the total procyanidins, which is about 1.5–3.6 times of that
of the pericarp content of mature fruits (Xie et al., 2023).
Zhou et al. (2011) showed that the PPAs in both litchi peri-
carp and stone were dominated by epicatechin as themain
monomeric unit, and A-type procyanidins were predomi-
nant. In addition, the DP of procyanidins in the litchi stone
was higher than that of procyanidins in the pericarp, and
the antioxidant activity was also higher (Zhou et al., 2011).

2.2 Peanut skin

Peanut (Arachis hypogaea L.) is a Leguminosae of great
interest for its lipid- and protein-rich seeds. Peanut skins,
which are pink in color and astringent in taste, consti-
tute less than 3% of the peanut weight. They are usually
removed from the seeds during rinsing and after dry roast-
ing. Their fate is either to be discarded as waste or to be
used as an animal feed ingredient (Constanza et al., 2012;
Lorenzo et al., 2018). However, the fact that peanut skin is
a rich source of phenolic compounds is overlooked. It con-
tains about 17% procyanidins, most of which are oligomers
with a polymerization degree of 2–4 (Yu et al., 2006). The
polymeric flavan-3-ols in peanut skin are mainly in the
form of A-type PAs (mostly dimers and trimers) with a DP
up to 12, in contrast to the predominance of monomers
and B-type PAs in hazelnuts and almonds (Monagas et al.,
2009). Chang et al. (2020) showed that PAs in peanut
skin aremainlyA-type procyanidinswith (+)-catechin and
(−)-epicatechin as monomers. The dimers isolated from
peanut skin were identified as epicatechin-(2-O-7, 4−8) -
catechin (A1), epicatechin-(2-O-7, 4–8)-epicatechin (A2),
epicatechin-(2-O-7, 4–6)-catechin by Appeldoorn, Sanders
et al. (2009), and epicatechin-(2-O-7, 4–8)-catechin isolated
from peanut skin for the first time. Oldoni et al. (2016) also
successfully isolated procyanidin A1 and A2 from peanut
skin, which has the function of antioxidation. Muñoz-
Arrieta et al. (2021) studied the PAs spectra of peanut skins
from three varieties (Spanish, Valencia, and Virginia type).
The matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF-MS) indicated that
the main mass was typical with catechin monomers of “A-
type” inter-flavan linkages. Deconvolution of overlapping
isotopic patterns observed using MALDI-TOF-MS showed
that, in all peanut skins, 95% of PA oligomers contained
one or more A-type bonds. Hence, peanut variety had little
effect on the percentage of A-type PAs in peanut skin.

2.3 Cranberry

Cranberries (Vacciniummacrocarpon), native to the North
America (mainly found in the Massachusetts, Wiscon-
sin, New Jersey, Oregon and Washington of the United
States, Quebec and British Columbia of Canada), are
mostly processed into juices, jams, dried fruits, and sup-
plements. These berries, as well as their derivatives,
have a high phenolic content (Sun et al., 2002; Vin-
son et al., 2008). For example, lowbush cranberries
accumulate up to 6.2 mg/g fresh weight (FW) of total
phenolics and 2.8 mg/g FW of PAs, which are much
higher than blueberries (Grace et al., 2014). Although
PAs are present in almost all berry fruits, PAs isolated
from cranberry have an unusual A-type linkage struc-
ture. A study showed that more than 91% of the oligomers
have at least one A-type linkage (Feliciano et al., 2012).
Three PA trimers possessing A-type inter-flavan link-
ages, epicatechin-(4β→6)-epicatechin-(4β→8, 2β→O→7)-
epicatechin, epicatechin-(4β→8, 2β→O→7)-epicatechin-
(4β→8)-epicatechin, and epicatechin-(4β→8)-epicatechin-
(4β→8, 2β→O→7)-epicatechin, were isolated from the ripe
fruits of cranberry (Vaccinium macrocarpon) (Foo et al.,
2000). Bresciani et al. (2021) identified a total of 12 flavan-
3-ols from cranberry extracts, with A-type procyanidins
being the most abundant.

2.4 Persimmon peel

Persimmon (Diospyros kaki L.) is a widely cultivated tree
species in some countries of Asia, such as China, Japan,
and Korea (Giordani et al., 2011). Persimmon PAs have a
special main extension unit, which is formed by the poly-
merization of epigallocatechin-3-O-gallate (EGCG) and
epicatechin-3-O-gallate as flavan-3-ol monomers. They
have a high 3-O-galloylation degree (72%) (grape seed
tannins is about 13%) and also contain both A- and B-
type inter-flavan linkages (Peng et al., 2018). Persimmon
peel PAs are shown by MALDI-TOF-MS to contain 25.2%
procyanidins and 74.8% prodelphinidins and have a high
degree of 3-O-galloylation (>75%) and amDP calculated as
10 (Ye et al., 2022). Highly galloylated A-type prodelphini-
dins and procyanidins in persimmon peel are unique for
their structural features and may have better bioactivities
(Ye et al., 2022).

2.5 Others

In addition to the above sources, A-type PAs are also
present in various plant tissues, such as cocoa (De Taeye
et al., 2017), apple puree (Keenan et al., 2011), cinnamon
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(Killday et al., 2011), pear (Jeong et al., 2017), avocado
seeds (Figueroa et al., 2018), and seed coats (Figueroa
et al., 2018). Procyanidin A2 was detected in raw cocoa
beans, fermented cocoa beans, and roasted cocoa beans
(De Taeye et al., 2017). Procyanidin A2 was also found in
apple puree made from apples (cv. Bramley’s Seedling),
with levels as high as 1.3 μmol/g dry weight (DW) (Keenan
et al., 2011). Two A-type trimers (i.e., cinnamon tannin B-
1 and cinnamon tannin D-1) and two A-type tetramer PAs
(i.e., parameritannin A-1 and cassiatannin A) are isolated
from cinnamon by preparative HPLC and countercurrent
chromatographic fractionation, respectively. The latter of
which has not been previously described (Killday et al.,
2011). Jeong et al. (2017) identified three A-type PA trimers
from pear (Pyrus pyrifolia Nakai cv. Chuhwangbae) peel
for the first time, namely, (−)-epicatechin-(4β → 8, 2β →
O-7)-(−)-epicatechin-(4β → 8)-(−)-epicatechin (cinnam-
tannins B1), (−)-epicatechin-(4β→ 8)-(−)-epicatechin-(4β
→ 8, 2β → O-7)-(−)-epicatechin (aesculitannin A), and
(−)-epicatechin-(4β → 6)-(−)-epicatechin-(4β → 8, 2β →
O→7)-(−)-epicatechin. The presence of A-type procyani-
din dimers in the seeds and seed coats of avocados was
also reported byFigueroa et al. (2018). Kolodziej et al. (1991)
identified ent-epicatechin-(4α→ 8; 2α→ O→ 7)-catechin
and ent-epicatechin-(4α → 8; 2α → O → 7)-epicatechin
from Prunus spinosa. This finding extends the spectrum
of natural A-type dimer PAs. Baldé et al. (1991) isolated a
new A-type PA, ent-epicatechin (4α→ 8,2α→ O→ 7)-ent-
catechin, from the stem-bark of Pavetta owariensis, named
pavettanin A1. With advances in detection methods, the
presence of A-type PAs is increasingly being identified in
different plants.

3 REACTION PATTERNS OF A-TYPE
PAS IN FOOD SYSTEMS

During the extraction of A-type PAs and the processing
of foods, many factors could lead to changes in their
structure, content, and bioavailability. In general, some
thermal (e.g., heat pumpdrying, heating, and roasting) and
nonthermal (e.g., freeze-drying, vacuum drying, spray dry-
ing, high pressure treatment, ultrasound, and irradiation)
physical interventions should be considered to assess their
effects on their content, stability, degradation, polymer-
ization, and differentiation. Their changes during thermal
and nonthermal processing of fruits and vegetables are
discussed in the following section and summarized in
Table 2.

3.1 Thermal processing

Thermal processing is the most traditional method of
food processing, which relies on heat to reduce the

growth of microorganisms, retard the growth of foodborne
pathogens, and make the food fit for consumption. Com-
mon thermal food processing methods mainly include
steaming, boiling, and drying, but these treatments have
also been shown to severely damage nutrients in the food
source (Jiang et al., 2023; Sadler et al., 2021).

3.1.1 Heat treatment

Most fruit and vegetables, in addition to being
eaten directly, are cooked (e.g., steamed, boiled, and
microwaved) for consumption, which may result in
various changes in their physicochemical properties (Liu,
Le Bourvellec et al., 2022). Boiling resulted in the most
detrimental changes in A-type PAs in treated sweet chest-
nut samples, with the 15 min boiling process resulting in
a loss of 4.8%, 9.3%, and 11.1% of procyanidin A2 in seeds,
inner shells, and outer shells, respectively. Moreover, sig-
nificant changes in antioxidant capacity are also observed
compared to untreated raw sweet chestnuts (Mustafa
et al., 2021). In addition, the highest levels of procyanidin
A2 (0.3 mg/g DW) and procyanidin B2 (0.02 mg/g DW)
are found in the roasted inner shells, whereas the lowest
levels (0.01 mg/g DW) were found in the boiled outer
shells. The concentration of procyanidin A2 is higher
than that of procyanidin B2 in all treated shell samples
compared to the seeds (Mustafa et al., 2021). Some studies
have analyzed that during boiling, the heat causes rupture
of both the cell walls and the cellular components, and
nutrients can diffuse into the boiling water as a result,
resulting in the loss of the more water-soluble PAs (Bohn,
2014). A-type procyanidin trimer was the most unstable
polyphenol, with its concentration decreasing to 53.0%,
42.8%, and 36.1% of that of fresh blueberries after 15 min
of baking, 10 min of boiling, and 45 s of microwaving,
respectively, whereas catechins were the most stable,
with no significant change in concentration. In general,
microwave heating caused the greatest loss of polyphenols
when cooking blueberries (Zhao et al., 2017).
Heat treatment is also widely used in the food indus-

try for its efficacy in enzyme inactivation and prevention
of microbial spoilage. It has also been shown to be effec-
tive in retaining PAs, probably due to PAs that could be
oxidized by a couple oxidoreduction reaction with other
polyphenols. However, high temperature accelerates the
release of bound PAs from the pericarpmatrix (Alves Filho
et al., 2018; You et al., 2018). Su et al. (2019) investigated the
effect of different heat treatments on the procyanidin A2
content of different varieties of litchi. Procyanidin A2 con-
tent of the juice of three varieties of litchi (Guiwei, Huaizhi,
and Nuomici) is significantly increased compared to the
untreated group after heat treatments at 70 and 121◦C. The
121◦C treatment is better than the 70◦C treatment. The
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most obvious increase is the 121◦C treatment group of the
Huaizhi variety, with procyanidin A2 content increasing
nearly by five times, probably due to the oxidation of B- to
A-type during processing (Su et al., 2019). Similar studies
have demonstrated that the total phenolic content, pro-
cyanidin A2 content, and antioxidant activity of canned
lychee can be improved by high-temperature treatment
(Wang, Wu et al., 2020). It is also reported that open-air
drying reduced the procyanidin A2 content of litchi peel by
30.5%, that hot-air oven drying above 40◦C degraded pro-
cyanidinA2 by nearly 51%, and that a combination of steam
blanching and hot-air oven drying at 60◦C significantly
increased the concentration of procyanidin A2 (p < .05)
(Kessy et al., 2016). This could be due to inactivation of
enzymes such as PPO and peroxidase (POD) and enhanced
release of bound procyanidins from the pericarp matrix, or
it is possible that procyanidinA2 acts as a substrate for PPO
enzyme-catalyzed oxidation, leading to their degradation
during drying and dehydration (Renard et al., 2001; Sun
et al., 2010).

3.1.2 Heat pump drying

Fresh fruits and vegetables have a high moisture content
and are classified as highly perishable commodities, in
which phenolics are easily lost. Drying is an alternative
method to extend their shelf life and to preserve their
nutritional value (Rodríguez-Pérez et al., 2015). Mild heat
pump drying (c.a. 65◦C) resulted in a significant increase
in procyanidin A2 content in litchi pulp, after 33 h of dry-
ing, the procyanidin A2 per kilogram of DW litchi pulp
was nearly 1.4 times higher than that of the undried one.
Phenolics are usually present in plants in free, esterified,
and insoluble bound forms (Remy-Tanneau et al., 2003).
Free phenolics generally refer to phenolics that can be
extracted using different solvents. The esterified and insol-
uble bound forms of phenolics typically bind to cell wall
polysaccharides or proteins to form insoluble stable com-
plexes (Acosta-Estrada et al., 2014; Wang et al., 2019). It
is noted that during heat pump drying of litchi pulp, free
phenolics can be converted to bound phenolics, producing
new substances that result in an increase in antioxidant
activity (Shu et al., 2022). Some other studies reported
that drying may also cause a decrease of A-type PAs in
fruits. Compared to fresh grape skins, the procyanidin A2
content of conventionally oven- and freeze-dried grape
skins decreased by 23% and 72%, respectively (Silva et al.,
2020). Similar effects have been observed in other fruits,
such as saskatoon berry (Lachowicz et al., 2019). How-
ever, the rate of decline varied, which may be related to
the drying method and the variety of fruit. Early studies
have reported that polyphenol losses during processing can
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be minimized by adding different prebiotics (inulin and
oligofructose), which can be taken into account (Keenan
et al., 2011). Overall, heat pump drying promotes an
increase in certain types ofA-type PAs, butwhether it is the
processing that drives the conversion of other monomeric
phenols is not clear.

3.2 Nonthermal processing

Someheat-sensitive foods undergo changes at the physical,
chemical, and microbiological levels, including changes
in taste, color, and texture, after heat treatment. This
inevitably triggers the need for extensive research and
in-depth development of existing food processing tech-
nologies (Singla & Sit, 2021). Some of the creative and
effective alternatives to thermal processing currently used
in food processing, including supercritical fluid extrac-
tion, high-pressure processing, pulsed electric fields, cold
plasma, ultrasound, and ultraviolet irradiation, are col-
lectively referred to as nonthermal processing (Barbhuiya
et al., 2021).

3.2.1 Nonthermal drying

Some mild drying methods such as freeze-drying and vac-
uum drying can also affect the content of A-type PAs.
Vacuum drying caused the greatest degradation of A-type
procyanidin dimers in cranberry juice, whereas spray dry-
ing and freeze drying retained the A-type procyanidins
content well (Michalska et al., 2018). In other words, spray
drying and freeze drying could retain the content of A-type
PAs well, whereas PAs are easily affected by high ther-
mal degradation or the combination of thermal oxidation
and enzymatic oxidation in traditional heat pump drying
resulting in a decrease in content. But mild heat pump
drying combined with short time blanching could effec-
tively blunt the enzymatic activity and also have the effect
of preserving A-type PAs.

3.2.2 Ultrasonication

The strong vibrations generated by ultrasound (i.e., cavi-
tation effect) can disrupt the cell walls of plants (Wang,
Guo et al., 2018). Using this principle to apply ultra-
sound to A-type PA extraction can accelerate the entrance
of the solvent into the cells and improve the extraction
efficiency. Ultrasonic extraction can be used in combina-
tion with other extraction techniques to achieve optimal
extraction rates. For instance, it has been shown that the
extraction of oligomeric procyanidins from litchi pericarp

can be enhanced by using a combination of enzymatic
and ultrasonic treatments (Li, Yang et al., 2018). The
optimized ultrasonic treatment parameters (cell wall cleav-
age enzyme concentration 0.12 mg/mL, ultrasonic power
300 W, ultrasonic time 80 min, liquid–solid ratio 10 mL/g)
were obtained by RSM (response surface methodology)
experimental design. Based on the optimal extraction con-
ditions, the extraction rate reaches 13.5%, which is six times
higher than that of the conventional ethanol extraction (Li,
Yang et al., 2018). Although the relative procyanidin con-
tent of the extract of the combined extraction process was
89.6%, which was slightly lower than that of the enzyme-
assisted extraction, it showed a more abundant content
in various oligomers. The presence of epicatechin and
procyanidins A2 and A3 in the extracts of the ultrasound-
assisted extraction process was confirmed by comparison
with the retention time and UV spectra of the standards.
An isomer of A2 was also detected and inferred to be pro-
cyanidin A1, epicatechin-(4β→8, 2β→O→7)-catechin. This
could be due to the conversion of procyanidin A2 to A1 by
the energy effect of ultrasound. The above phenomenon
suggests that ultrasound can catalyze the conversion of
flavanol compounds during the extraction process. In
other words, extraction techniques involving ultrasound
treatment have the potential to be scaled up and used
universally for the production of procyanidins from plant
resources. A coupled extraction technique similar to the
combination of enzymatic and ultrasonic treatment can
be considered a novel green, simple, rapid, and efficient
method for the extraction of bioactive components.

3.2.3 High pressure processing

High pressure processing (HPP) is one of themost success-
ful commercially available nonthermal treatment tech-
nologies. It can efficiently extend the shelf life of food
products while maintaining organoleptic properties and
nutritional value. Some studies have reported that HPP
also improves the bio-accessibility of bioactive compounds
through molecular compression and volume reduction,
thereby promoting structural changes andmolecular inter-
actions between macromolecules and small molecules. In
recent years, HPP has been widely used in the processing
of fruit juices and beverages (Putnik et al., 2019).
Keenan et al. (2011) reported that HPP was superior

to pasteurization in maintaining the stability of procyani-
din A2 in apple puree during storage. The content of PA
A2 in hawthorn juice was significantly reduced by 23.4%–
57.1% after being subjected to 300 and 600 MPa ultrahigh
pressure treatment for 2 or 3 min. The loss of PA A2 con-
tent was more than 73.5% after heating and sterilization
at 65◦C for 30 min. This may be due to the accelerated
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12 of 28 A-TYPE PROANTHOCYANIDINS

depolymerization of PA A2 in the HPP treatment and may
also induce the increase of flavanols. In contrast, after in
vitro gastrointestinal digestion, the content of PA A2 in
hawthorn juice without HPP and hawthorn juice treated
with 600 MPa for 6 min reached sevenfold (1.2 μg/ mL)
and eightfold (0.9 μg/ mL), respectively, compared to that
before digestion. The increase in PA A2 may be due to
the chemical reaction of procyanidin B2 resulting from
the periodic oxidation of o-diphenol B to the correspond-
ing highly reactive o-quinone. It is also possible that HPP
induced a higher DP of PA A2, thereby increasing the
chemical composition of PA A2 (Lou et al., 2022).

3.2.4 Irradiation

Food irradiation is a nonthermal, energy-efficient, non-
chemical food preservation technology that exposes food
to a variety of ionizing and non-ionizing radiation to elim-
inate pathogenicmicroorganisms and thereby extend shelf
life, with less impact on the original flavor, color, nutri-
tional value, and other characteristics of the food (Bisht
et al., 2021). The effects of radiation have been scientifi-
cally proven for a long time (at least 40 years), but it has
had problems with consumer and regulatory acceptance,
andmany consumers havemisconceptions about the tech-
nology, believing that irradiation makes food radioactive
(Wilcock et al., 2004).
The effect of irradiation on A-type PAs is mainly

reflected in changes of content and the oxidation, hydrol-
ysis, and isomerization. de Camargo et al. (2015) reported
that γ-irradiation at 5.0 kGy reduced the microbial popula-
tion of peanuts, whereas total phenol and total PA content,
ABTS radical cations, DPPH radicals, HO and hydroxyl
radical scavenging capacity, and reducing power of the
samples increased in both free and insoluble bound phe-
nolic fractions after γ-irradiation. Of note was the increase
in procyanidin dimer A in all phenolic fractions, with the
highest increase of 130% in the insoluble-bound phenolic
fraction in both peanut species tested. In contrast, pro-
cyanidin dimerBwas relatively reduced,whichmay be due
to the ability of γ-irradiation to convert procyanidin dimer
B to A-type, whereas depolymerization may occur in the
free and esterified fractions and cross-linkingmay occur in
the insoluble bound fractions. γ-irradiation may increase
the bioavailability of procyanidins through depolymeriza-
tion, which may enhance the biological activity of these
compounds. Rodríguez-Pérez et al. (2015) stored commer-
cial cranberry syrup after γ-irradiation (5 kGy) at 25◦C and
60% relative humidity for 6 months under accelerated stor-
age conditions and found that most compounds such as
quercetin and some of its derivatives could be highly sta-
ble at 25◦C for 1 month. A significant increase (p < .05) in
procyanidin A2 (from 83 to 93 μg/ml) was observed after

irradiation compared to nonirradiated syrups, which may
be related to the degradation of A-type procyanidin trimers
or pentamers.

4 BIOACTIVE PROPERTIES OF A-TYPE
PAS

There has been a great interest in the biological activ-
ity of natural compounds and their beneficial effects on
human health. Numerous studies have confirmed that A-
type PAs have varied and pronounced biological activities.
Studies on the health benefits and medicinal properties of
A-type PAs in the last 5 years are summarized in Table 3.
The bioactive properties of A-type PAs for humans are
summarized in Figure 3.

4.1 Antioxidant effect

Oxidation is a necessary process for all organisms to gen-
erate energy for biological processes (Hu et al., 2011). How-
ever, the emergence of many diseases is directly related to
the uncontrolled production of oxygen radicals, such as
cancer, rheumatoid arthritis, and atherosclerosis, as well
as degenerative processes associated with human aging
(Mau et al., 2002). A-type PAs have a wide range of appli-
cations as antioxidants, and the antioxidant mechanisms
include scavenging of free radicals as well as inhibition of
PPO, as has been demonstrated in several studies (Ishihara
et al., 2018; Liu et al., 2007; Xu et al., 2010). H2O2-induced
oxidative stress in prostate DU145 cells would disrupt the
normal cell cycle and initiate apoptosis, while decreased
levels of antioxidants, such as total superoxide dismutase
(SOD), catalase, and glutathione (GSH) (Yan et al., 2021).
ProcyanidinA1 and procyanidinA2, extracted frompeanut
skin, were found to ameliorate these abnormalities, in
addition to reducing the expression of proapoptotic pro-
teins (Bax, cleaved caspase-9, and cleaved caspase-3) and
increasing the expression of antiapoptotic proteins (Bcl-2).
A-type procyanidin dimers were found to block phospho-
rylation of the MAPKs signaling pathway, which is closely
related to the antioxidant activity of A-type PAs (Yan et al.,
2021). Cranberry concentrate enriched with A-type PAs
enhanced GSH peroxidase activity and improved cardiac
SOD activity in a d-galactose-induced aging mouse model
(Jiao et al., 2017).

4.2 Contribution to control of blood
sugar

Long-term consumption of a diet rich in procyanidins
could prevent and reduce the risk of type 2 diabetes (Zhang
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A-TYPE PROANTHOCYANIDINS 13 of 28

TABLE 3 The main biological activities of A-type proanthocyanidins (PAs).

Type of PAs Sources Assay model
Nutritional prevention
mechanism References

Antioxidant activity
Highly polymeric
A-type PAs

Seed Shells of Japanese
Horse Chestnut
(Aesculus turbinata
BLUME)

Bright light-induced
retinal damage in
rats

Inhibiting oxidative stress and
apoptotic mechanisms.

Ishihara et al. (2018)

A-type PAs Cranberry D-galactose-induced
aging mouse

Enhanced glutathione peroxidase
activity and improved cardiac
superoxide dismutase activity

Jiao et al. (2017)

Anti-diabetic
activity

A-type oligomeric
procyanidins

Litchi pericarps HFD and STZ induced
diabetic mice

Regulation of hepatic and muscle
glucose metabolism, improving
glucose homeostasis by
modulating mTOR signaling, and
oxidative stress

Li et al., 2016 (2018)

Procyanidin A2 Tender shoots of
Wendlandia glabrata
DC

STZ-induced diabetic
mice

Decrease of protein content
(G-6-pase) and suppressed mRNA
levels and increase glucose
uptake in CC1 hepatocytes and
C2C12 myoblasts

Sheikh et al. (2019)

A-type procyanidins Peanut skins STZ-induced diabetic
mice

Decrease of symptoms of T2DM by
reducing inflammation,
modulating gut microbiota and
improving gut integrity

Liu, Huang et al. (2022)

A-type PAs Cinnamomum
osmophloeum twigs

HFD and STZ induced
diabetic mice

Inhibits intestinal disaccharidase,
amylase, and lipase activities,
increases HDL-cholesterol levels,
reduces leptin levels and protects
bilirubin from oxidative stress

Lin et al. (2018)

A-type procyanidin
oligomer

Litchi seeds HFD and
STZ-induced
diabetic
Sprague-Dawley
rats

Decrease of the insulin resistance
index and the levels of glucose in
urine through elevating the
mRNA level of insulin.
Regulation of the glucose and
fatty acid metabolisms via
increasing the expression of Glu2,
Glu4, IR, and IRS2

Man et al. (2017)

Hepatoprotective
effect

Procyanidin A2 Litchi pericarps Carbon tetrachloride-
induced
hepatotoxicity in
mice

Decrease of serum glutamate
oxaloacetate transaminase and
glutamate pyruvate transaminase
levels, retention of the hexagonal
structure of hepatocytes, and
reduction of necrotic cells

Chen et al. (2017)

Anti-inflammatory
activity

A-type procyanidins Peanut skins UC mice induced
with DSS

Alteration of the colon tissue
metabolome (taste transduction,
mTOR, PI3K-Akt, and FoxO
signaling pathway)

Huang, Wang et al.
(2022)

(Continues)
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14 of 28 A-TYPE PROANTHOCYANIDINS

TABLE 3 (Continued)

Type of PAs Sources Assay model
Nutritional prevention
mechanism References

Anti-
atherosclerosis
activity

Procyanidin A2 Litchi pericarps HFD-induced
atherosclerosis in
mice

Reduces histological abnormalities,
lipid accumulation, oxidative
stress, and inflammation in the
aorta

Yang, Zhang et al. (2021)

A-type procyanidins Peanut skins HFD-induced
atherosclerosis in
ApoE−/− mice

Reduction of inflammatory
responses and enhancement of
antioxidant defenses, alleviation
of atherosclerosis by modulating
gut microbiota

Xu et al. (2022)

Procyanidin A2 Standards ox-LDL-treated
macrophage cells

Inhibition of conversion of
macrophage into foam cells via
regulating cellular lipid
metabolism and suppressing
cellular oxidative stress and
inflammation

Zhang et al. (2018)

Neuroprotection
A-type PA oligomer Cinnamon MPTP-induced

neurotoxicity in
mice

Inhibition of the MPTP-induced
activation of P38MAPK and P53,
along with the downstream
expression of BAX in the
substantia nigra

Xu et al. (2020)

Procyanidin A2 Litchi seed Amyloid β-induced
BV-2 cells

Upregulation of Bcl-2 and
downregulation of Bax protein
expression to inhibit Aβ-induced
apoptosis of BV-2 cells

Tang et al. (2018)

A-type EGCG dimer Persimmon fruits Amyloid β-peptides40
(Aβ40)

Inhibition of the formation of Aβ40
amyloid fibrils

Yan, Zhong et al. (2020)

Anticancer activity
A-type PAs Cranberry Nonobese

diabetic/severe
combined
immunodeficient
mice

Decrease AML of tumor burden Bystrom et al. (2019)

Antiviral activity
A-type PAs Cranberry HSV-1 and HSV-2 Impaired HSV-1 and HSV-2

replication in vitro, prevention of
HSV-1 and HSV-2 attachment to
target cells, and changes in HSV-1
and HSV-2 envelope
glycoproteins

Terlizzi et al. (2016)

Procyanidin A2 Cranberry IAV and IBV Prevention of IAV and IBV
attachment and entry in target
cells; antiviral activity

Luganini et al. (2018)

Anti-hyperuricemia
activity

A-type procyanidin
dimer, trimer

Litchi pericarps Male Sprague-Dawley
rats

High inhibitory activity and strong
antioxidant activity against
xanthine oxidase

Sui et al. (2021)

Abbreviations: AML, Acutemyeloid leukemia; BAX, BCL-2 associated X protein; CCl4, carbon tetrachloride; DSS, sodium dextran sulfate; EGCG, epigallocatechin
gallate; G-6-Pase, glucose-6-phosphatase; Glu 2/Glu 4, glucose transporter 2/4; HDL, high density lipoprotein; HFD, high fat diet; HSV-1/ HSV-2, herpes simplex
virus type 1/ type 2; IAV/IBV, influenzaA viruses/influenza B viruses; IR, insulin receptor; IRS2, IR substrate-2;MPP, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine;
ox-LDL, oxidized low-density lipoprotein; P38 MAPK, P38 mitogen activated protein kinase; STZ, streptozotocin; UC, ulcerative colitis.
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A-TYPE PROANTHOCYANIDINS 15 of 28

F IGURE 3 Potential benefits of A-type proanthocyanidins for humans.

et al., 2018). Dietary starch is an important source of
blood glucose. A important enzyme that catalyzes the
conversion of starch to monosaccharides is α-glucosidase
(Sheikh et al., 2019; Wei et al., 2017). A-type PAs regu-
late glucose metabolism and reduce blood glucose levels
by inhibiting α-glucosidase activity and slowing down glu-
cose uptake, thereby effectively preventing tissue damage
caused by hyperglycemia (Hsu et al., 2018; Zhao, Wen
et al., 2020). Zhao,Wen et al. (2020) found that A-type pro-
cyanidinsmay have better α-glucosidase inhibitory activity
than B-type procyanidins. Among them, the compound
A-type trimer with the best inhibitory effect reversibly
inhibits the activity of α-glucosidase in a mixed manner.
Another potential target for the prevention of type 2 dia-
betes is glucose-6-phosphatase (G-6-Pase), which catalyzes
the final steps of gluconeogenesis and glycogenolysis to
produce glucose. Procyanidin A2 not only significantly
inhibits α-glucosidase but also reduces G-6-Pase content
and mRNA expression levels in diabetic mice, thereby
reducing blood glucose levels (Sheikh et al., 2019). The
A-type procyanidins containing the C2–O–C7 bond were
more fat-soluble than the B-type procyanidins. The rigid
structure enables better binding to targets (Li et al.,
2016). Interestingly, A-type procyanidins could also effec-
tively prevent the occurrence of diabetes by inhibiting
the aggregation of amyloid polypeptides and promoting
the decomposition of existing amyloid polypeptide aggre-
gates (Tanaka et al., 2021). In addition to inhibiting related
enzyme activities, A-type procyanidins can also alleviate

the symptoms of type 2 diabetes by reducing inflammatory
responses, regulating intestinalmicrobiota, and improving
intestinal integrity (Liu, Huang et al., 2022).

4.3 Anti-inflammatory effect

Inflammation is the host’s defense response to tissue
damage or infection caused by various stimuli, such as
chemicals, physical trauma, and infectious agents (Mbaoji
et al., 2020). At present, the anti-inflammatory effects of
natural A-type PAs have been widely reported (Galarraga-
Vinueza et al., 2020; La et al., 2010; Xie et al., 2023). For the
treatment of periodontitis, A-type PAs in cranberry have
been shown to inhibit biofilm formation and adhesion
of major periodontal pathogens, such as Porphyromonas
gingivalis (P. gingivalis), to reduce the virulence of P. gin-
givalis and to enhance epithelial barrier integrity (La et al.,
2010). Cranberry concentrate rich in A-type PAs signifi-
cantly downregulated the expression of pro-inflammatory
cytokines and significantly upregulated the expression
of anti-inflammatory factors in macrophages, exhibiting
anti-inflammatory effects (Galarraga-Vinueza et al., 2020).
Further, studies have shown that litchi fruitlet extract rich
in A-type procyanidins has excellent anti-inflammatory
activity. A-type procyanidin trimers were significantly cor-
related with anti-inflammatory activity, indicating that
A-type trimers may have higher anti-inflammatory activ-
ity (Xie et al., 2023). Procyanidin A2 protects cells from
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16 of 28 A-TYPE PROANTHOCYANIDINS

inflammation and oxidative damage by targeting the NF-
κB, MAPK, and Nrf2 pathways in RAW264.7 cells. This
is a potential strategy for preventing inflammation and
oxidative stress (Wang, Gao et al., 2020). Similarly, another
A-type dimer, procyanidin A1, also exhibits significant
anti-inflammatory effects, suggesting it as a potential
method for the prevention of inflammatory (Han et al.,
2019).
Ulcerative colitis (UC) is a relapsing chronic inflam-

matory disease. The main symptom of UC is diarrhea,
including bloody stools. Experiments at the animal level
have shown that A-type PAs could inhibit inflammation
and relieve UC symptoms by restoring the intestinal bar-
rier, regulating oxidative stress levels and inflammatory
cytokines, improving intestinal microbiota, and reducing
pathogens. However, the underlying regulatory mecha-
nism would be further verified through gene knockout
mouse models (Liu, Huang et al., 2022; Nakase et al., 2022;
Zhang, Lang et al., 2022).

4.4 Prevention of anticancer effect

Cancer is the second leading cause of human death world-
wide, after cardiovascular diseases (ReFaey et al., 2021).
Acute myeloid leukemia (AML) is a heterogeneous cancer
characterized by significant toxicity and great variability in
response to therapy (Pinto-Merino et al., 2022). Bystrom
et al. (2019) demonstrated that A-type PAs could selec-
tively target primary AML cells without damaging healthy
CD34+ cord blood cells. Tumor burden was reduced more
than two folds compared with controls. Cinnamon B-1
(CTB-1) is a A-type PA trimer isolated from cinnamon. It
was found to regulate the expression of proteins with pro-
and antiapoptotic functions and downstream molecular
targets, with the ability to significantly reduce colon can-
cer survival and induce apoptosis in colon cancer cells. In
addition to its anticancer activity, CTB-1 exhibits minimal
cytotoxicity on normal colon epithelial cells, suggesting
that CTB-1 has a low potential for adverse effects. CTB-1
could also significantly enhance the efficacy of anticancer
drugs and their clinical significance through synergistic
drug interactions (Alejo-Armijo et al., 2022; Carriere et al.,
2018).

4.5 Anti-urinary tract infection effect

The prevention and treatment of urinary tract infections
(UTIs) is a unique and recognized health effect of A-type
PAs. UTI is the most common disease caused by extra-
intestinal pathogenic Escherichia coli (ExPEC) (Johnson
& Russo, 2002; Russo & Johnson, 2003). Numerous sci-

entific studies have confirmed that the A-type PAs bind
specifically to bacteria, which prevents them from coloniz-
ing and infecting the urinary tract (Table 3). A-type PAs
in cranberries could reduce bacterial adhesion by binding
and compressing E. coli hairs with up to 70% inhibition,
and these mechanisms do not kill the bacteria, making the
development of resistant strains less likely. Second, A-type
PAs affect the agglutination reaction of ExPEC by bind-
ing to the bacterial hairs, thereby reducing the ability of
these virulence factors to adhere to intestinal epithelial
cells (Feliciano et al., 2014; Howell et al., 2005). Preven-
tion of transient intestinal colonization would reduce the
likelihood of ExPEC entering and colonizing the urinary
tract, thus acting as a prophylactic agent inUTI.A-type PAs
also have the potential to affect ExPEC by altering the gene
expression of virulence factors in the intestine. In vitro
studies have shown that A-type PAs affect ExPEC motil-
ity by downregulating the fliC gene, a flagellin-producing
subunit, also reducing biofilm formation (Wojnicz et al.,
2012). Therefore, they act as an effective antibacterial agent
against the adhesion of bacteria such as E. coli to the uri-
nary tract wall and help maintaining the health of the
urinary tract.
PAs with more A-linked bonds and a higher DP were

found to have higher ExPEC agglutination and higher
capacity to lower bacterial invasion in cranberry (Feliciano
et al., 2014). Meta-analyses of clinical trials have shown
that consumption of A-type PAs-rich cranberry juice and
cranberry dietary supplements reduced the recurrence of
UTI in women and maintained urinary tract health over a
12-month period (Pinzón-Arango et al., 2009). In addition,
A-type PAs inhibit the activity of the transcription fac-
tor NF-κB to reduce the inflammatory response and thus
control the development of infectious diseases of the uri-
nary tract (Feldman et al., 2012). Although positive results
on the interaction between A-type PAs and UTIs have
been published in the last two decades, the research field
still lacks qualitative and quantitative methods to facilitate
standardized application of A-type PAs and comparative
analysis between different preparations used in clinical
trials.

4.6 Other biological properties

In addition to the abovementioned functions, other biolog-
ical properties, for example, anti-atherosclerosis, antiviral,
antibacterial activity, anthelmintic properties, hepatopro-
tective effects have also been investigated. Fauvelle et al.
(2017) demonstrated that the A-type PA from cinna-
mon significantly and dose-dependently inhibited HCV
(chronic hepatitis C virus) entry into human hepatocytes.
Indian scholars Vasudevan et al. (2020) evaluated the
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antimicrobial and anti-biofilm activities of A-type PAs
from Cinnamomum zeylanicum against a clinically iso-
lated multidrug-resistant strain of uropathogenic E. coli,
QSLUPEC7. The A-type PAs did not affect their growth
but the formation of biofilms, with an inhibition rate
as high as nearly 70%. Alejo-Armijo et al. (2017) came
to a similar result of laurel wood extract, that is, the
A-type trimeric PAs have antibacterial and anti-biofilm
activities. A-type PAs, obtained from Vaccinium merid-
ionale Swartz slag, have also been shown to be effective
in controlling pathogenic bacteria (Garzón et al., 2020).
Procyanidin A2, isolated from the Australian plant Alec-
tryon oleifolius, exhibits significant anthelmintic activity
in the equine parasite cyathostomins larval developmen-
tal assay, completely inhibiting development from egg to
third larval stage at concentrations as low as 50 μg/mL,
the IC value was 12.6 μg/mL (Payne et al., 2018). Pro-
cyanidin A2 extracted from litchi pericarp had excellent
liver-protecting and hepatocyte regeneration-promoting
functions in mice with carbon tetrachloride-induced liver
injury (Chen et al., 2017).
Although A-type PAs have many biological activities

that are beneficial to human health, but the depth of
research on A-type PAs is still far from enough. Whether
added to functional foods or health products, exten-
sive in vivo and in vitro experiments are required to
prove their safety and bioavailability before entering the
market.

4.7 Interaction with gut microbiota

The intestinal tract is generally considered a key organ
involved in the digestion of food and the provision of nutri-
ents to the body for proper maintenance (Paone & Cani,
2020). In the human intestinal tract, there are hundreds
of millions of microorganisms, collectively known as gut
microbiota, they are an important part of the body’s nutri-
tion, to maintain the normal physiological function of the
intestinal tract, and to regulate the host immune systems
(Huang, Feng et al., 2022; Tao et al., 2019; Wang, Zhang
et al., 2018). PAs could interact with other food compo-
nents during processing, intake, and digestion (Liu et al.,
2020; Liu, Li et al., 2022: Liu, Renard, Bureau, et al.,2021;
Liu, Renard, Rolland-Sabaté, et al.,2021) and subsequently
interact with the gut microbiota in the human body. On
the one hand, PAs are naturally occurring bioactive com-
ponents of the daily diet, especially in fruits and vegetables,
and there are several lines of evidence suggesting that the
intake of PAs or PAs-rich diets has a positive impact on
the gut microbiota, both in terms of increasing micro-
bial diversity and regulating intestinal homeostasis, as

well as in terms of ameliorating intestinal inflammation,
immune response, and oxidative stress (Han et al., 2016;
Redondo-Castillejo et al., 2023). For example, an increase
in Bifidobacterium spp. and Lactobacillus–Enterococcus
was found in human gut microbiota cultures incubated
with grapeseed PAs for 36 h in vitro, showing their pre-
biotic effects, both Lactobacillus and Bifidobacterium spp.
are well-recognized as probiotic bacteria contributing to
the integrity of the gastrointestinal barrier, remodeling the
gut microbiota, and providing metabolic benefits such as
improved insulin sensitivity and anti-inflammatory effects
(Ferreira et al., 2023; Zhou et al., 2016). And at the in vivo
level, A -type PAs from peanut skin are shown to attenu-
ate weight loss and colon shortening in mice, as well as
restoring the intestinal barrier, lowering the level of oxida-
tive stress, and decreasing the secretion of inflammatory
cytokines. Meanwhile, the A-type PAs interacted with the
gut microbiota, and the relative abundance of beneficial
genera, for example, Bacteroides, Helicobacter, Parabac-
teroides, Escherichia-Shigella, and Erysipelatoclostridium,
was shown to increase at the genus level, and that of
detrimental genera, such asOscillibacter, Lachnospiraceae,
and Roseburia, was shown to decrease. Meanwhile, they
decreased the presence of pathogens in the intestinal tract,
suppressed inflammation, and attenuated the symptoms of
colitis in mice (Huang, Wang et al., 2022).
Moreover, the gut microbiota, in turn, can absorb PAs

ingested through the diet and convert them into more bio-
logically active compounds (Ou & Gu, 2014; Pierre et al.,
2013). Bioavailability is a key determinant of the health
impact of polyphenols (Cosme et al., 2020). In contrast, PAs
have limited bioavailability in the human body (Yang &
Chan, 2017). Although some PA dimers can be absorbed in
the small intestine, their bioavailability is only 5%–10% of
that of the monomers (Appeldoorn, Vincken et al., 2009).
This is due to the fact that as the concentration increases,
the solubility of PAs in aqueous solution decreases, as
does their bioavailability in the intestine. The most highly
absorbed PAs in the intestine have a DP less than or equal
to 4 (DP ≤ 4) (Lin et al., 2014). PAs with a DP greater than
4 are hardly absorbed by the gastrointestinal tract due to
their largemolecular size and intestinal barrier (Yang, Tuo
et al., 2021). It can be said that whether PAs can be effec-
tively absorbed by the human body is highly dependent
on their DP (Ou & Gu, 2014; Yu et al., 2022). Most PAs
reach the colon intact and are degraded to aromatic acid
by the colonic microbiota, and these microbial metabolites
may contribute to the health-promoting properties of PAs
in vivo (Gonthier et al., 2003; Zhang et al., 2016). Thus, the
gut microbiota may play a key role in the biotransforma-
tion, absorption, metabolism, and physiological activities
of PAs (Chen et al., 2021).

 15414337, 2024, 3, D
ow

nloaded from
 https://ift.onlinelibrary.w

iley.com
/doi/10.1111/1541-4337.13352 by H

ong K
ong Poly U

niversity, W
iley O

nline L
ibrary on [22/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 of 28 A-TYPE PROANTHOCYANIDINS

5 TECHNO-FUNCTIONAL
APPLICATIONS OF A-TYPE PAS

A-type PAs are well known for their excellent biological
activities, and attempts have beenmade to rationally apply
them in specific practices, such as the food industry, phar-
maceuticals, and nutraceuticals. Although the application
of A-type PAs in the above fields is still in its infancy, the
accumulation of research results over the past few years
will be significantly developed in the near future.

5.1 Inhibition of acrylamide

Acrylamide is a toxic substance that is formed during high-
temperature cooking and is common in carbohydrate-rich
foods such as cookies and bread, with the highest concen-
trations found in French fries and coffee. Known for its
in vivo neurotoxic and carcinogenic effects, acrylamide is
considered a potential human carcinogen (Esposito et al.,
2021; Timmermann et al., 2021). Therefore, it is very impor-
tant to select effective acrylamide inhibitors to reduce the
level of acrylamide produced during the thermal process-
ing of food. Some studies have indicated that A-type PAs
are also effective in inhibiting such toxic substances. The
flavan-3-ol unit and its derivatives have a strong inhibitory
effect on acrylamide. As one of the flavan-3-ol polyphe-
nols, A-type procyanidins may be effective and efficient
inhibitors of acrylamide. Zhao et al. (2022) isolated and
identified five structurally different A-type procyanidins
from peanut skins, including epicatechin-(2β → O → 7,
4β→ 8)-semi-epigallocatechin, epicatechin-(2β→ O→ 7,
4β → 8)-epigallocatechin, epicatechin-(2β → O → 7, 4β
→ 8)-epigallocatechin-(4β→ 6)-catechin, and epicatechin-
(2β→ O→ 7, 4β→ 8)-epigallocatechin-(4β→ 8)-catechin,
epicatechin-(4β→ 6)-epigallocatechin-(4β→ 8, 2β→ O→

7)-catechin. All A-type procyanidins inhibited acrylamide
formation even at concentrations as low as 5 μg/mL. In
particular, epicatechin-(2β→O→7,4β→8)-ent-epicatechin
inhibited acrylamide formation by 73% at a concentration
of 50 μg/mL, which was significantly better than the inhi-
bition rate of 40% for the same concentration of catechins
and epicatechins. Yan, Zhao et al. (2020) also demonstrated
at the cellular model level that procyanidin A1 and its
product obtained after gastrointestinal digestion inhibited
acrylamide-induced cytotoxicity best, significantly better
than catechins, epicatechins, procyanidin B3, and A-type
trimers (p < .05).
Overall, the present findings contribute to a better

understanding of the relationship between the structure of
PAs and their inhibitory effect on acrylamide, especially for
A-type. It has potential practical implications if one usesA-
type PAs as acrylamide inhibitors in thermally processed

foods in the future, although sensory consequences would
need to be taken into account.

5.2 Inhibition of starch retrogradation

Starch regeneration often has a negative impact on
starch quality. These include reduced organoleptic quality
(increased synthesis rate, hardness, etc.), reduced stor-
age stability (shorter shelf-life), and impact on nutritional
quality. This results in shorter shelf life, reduced con-
sumer acceptance, significant waste and losses, and limits
the range of starch-based food applications (Thakur et al.,
2019; Wang et al., 2015). Most of the literature suggests that
polyphenols have the potential to retard starch regrowth,
which is mainly attributed to the interaction between
polyphenols and starch. As a member of the polyphe-
nol family, PAs contain a large number of OH groups
in its molecular structure. This may help to enhance the
interaction between PA and starch, thereby interfering
with the original interaction between starch chains (Xiao
et al., 2013). Wang et al. (2021) compared the inhibition
of starch regrowth of three PAs derived from grape seeds,
peanut skin (PSPA), and pine bark and found that PSPA
had the most significant inhibition of starch regrowth.
This is possibly due to their A-type inter-flavan linkages
and the presence of a high DP, which makes PSPA more
hydrophobic. The higher polymerization means more
hydroxyl groups, also implying stronger hydrophobicity
and hydrogen bonding interactions. In addition, PA (espe-
cially PSPA) tended to interfere with the reordering of
starch chains and inhibit the regeneration of maize starch.
This further confirms that the interaction between PA
and starch may be the main reason for the inhibition of
starch regeneration (Amoako & Awika, 2016; Du et al.,
2019). Therefore, due to structural properties, the interac-
tion between PSPA and maize starch during storage may
be enhanced, protecting the starch chain ordering from
being disrupted, resulting in a more significant inhibition
of starch regrowth by PSPA compared to the other two
PAs. This also suggests that A-type PAs may be a novel
inhibitor of starch regrowth, not only modifying starch
but also adding to its nutritional value (e.g., antioxidant,
hypolipidemic effects).

5.3 Enhance antimicrobial
performance of food packaging

Food spoilage and deterioration caused by foodborne
pathogens and other microorganisms is a serious problem.
As a result, the demand for antimicrobial components in
food packaging is growing (Huang et al., 2019). As a natural
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polyphenol with excellent antimicrobial activity, the appli-
cation of A-type PAs in the food industry can be further
extended to antimicrobial food packaging. It interacts with
food surfaces to prevent the growth of foodborne microor-
ganisms. Thus, antimicrobial food packaging not only has
minimal negative impact on food but also provides antimi-
crobial properties that can preserve food for a long time
(Huang et al., 2019; Zang et al., 2013). A study combin-
ing cranberry extract (rich in A-type PAs) with chitosan
developed a new food-active packaging film that signifi-
cantly reduced biofilm of E. coli and S. aureus, and the
observed antioxidant activity became an added value in
extending food shelf life at the same time (Severo et al.,
2021). There are two major trends for future food process-
ing applications of A-type PAs due to their remarkable
ability to inhibit microbial growth and biofilm formation:
(i) food preservatives or disinfectants for processing equip-
ment where foodborne pathogens are located and (ii) for
obtaining active plastics or films for food packaging.

5.4 Improving spermmotility

A-type PAs protect mammalian sperm from oxidative
stress through their powerful antioxidant capacity, thereby
improving sperm motility. A study has demonstrated
for the first time that CNB-1, a A-type PA trimer, as a
strong antioxidant, can effectively inhibit oxidative sperm
damage in horse deer. Its mechanism of action seems
to be through improving sperm progression and veloc-
ity, reducing the production of reactive oxygen species,
and preventing lipid peroxidation after oxidative dam-
age while also effectively maintaining the persistence of
sperm viability; therefore, the addition of CNB-1 to semen
is promising (Sánchez-Rubio et al., 2018). At present, the
research on A-type PAs to protect animal sperm vitality
is not deep enough, and if it can be applied on a large
scale, it would be of great significance to the development
of animal husbandry in the future.

5.5 Developed as a novel drug and
dietary supplement

As mentioned above, cranberries are rich in A-type PAs
that inhibit the adhesion of E. coli to urinary tract epithe-
lial cells. This affects tissue colonization and subsequent
infection and is a key component in the prevention ofUTIs.
Prolonged clinical use of antibiotics in immunocompro-
mised patients may lead to the development of antiviral
viral strains, which may result in treatment failure. Nat-
ural products appear to have emerged as novel sources of
drugs that can supplement or replace common antibiotics.

Oximacro is a cranberry extract developed by Biosfered. It
contains high levels of PAs and a high proportion of A-type
PAdimers and trimers.Oximacrowas shown to be effective
in preventing UTIs in a preclinical double-blind controlled
study (Occhipinti et al., 2016).
Meanwhile, Oximacro has been shown for the first time

to exhibit potent dose-dependent antiviral activity against
clinical isolates of herpes simplex virus types 1 (HSV-1)
and 2 (HSV-2), by a mechanism involving inhibition of
the initial attachment of the virus to the surface of tar-
get cells. Themechanism involves inhibition of initial viral
attachment to the surface of target cells. Oximacro is also a
promising natural candidate for the development of novel
topical microbicides for the prevention of HSV-1 and HSV-
2 infections (Terlizzi et al., 2016). Oximacro is also an
ideal natural candidate for the development of novel top-
ical microbicides for the prevention of HSV-1 and HSV-2
infections.

6 CONCLUSIONS AND FUTURE
PERSPECTIVES

In terms of the food sources of A-type PAs, it is much
less widely distributed than B-type PAs. There is a strong
consumer demand for natural actives like A-type PAs to
be used in the food and nutritional industries because
of their obvious advantages over chemically synthesized
substances. However, cost-effective extraction and isola-
tion methods are essential to obtain A-type PAs with high
purity. At present, the natural sources of A-type PAs are
mainly concentrated in a few plants, such as peanut skins,
cranberries, and litchi pericarps, and the extraction meth-
ods mainly rely on organic solvent extraction. Therefore,
future research could focus on exploringmore high-quality
and inexpensive plant sources as well as more green and
economical extractionmethods, for example, deep eutectic
solvents.
Evidence was obtained that the levels of A-type PAs

increased or decreased after nonthermal processing. The
decrease could be due to accelerated depolymerization of
A-type PAs by nonthermal processing or induced increase
in flavanols. The increase in A-type PAs could be due to
the chemical reaction of B-type PAs following cyclic oxida-
tion of o-diphenol B to the corresponding highly reactive
o-quinone. It is also possible that nonthermal process-
ing induced higher DP of A-type PAs, which increased
the chemical composition of A-type PAs. A-type PAs are
highly nutritious and have a variety of nutrition benefits
(e.g., regulation of gutmicrobiota).Meanwhile, A-type PAs
have outstanding effects in inhibiting acrylamide produc-
tion and inhibiting starch regrowth. The physicochemical
and biological properties of A-type PAs are closely related
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to their structural characteristics. However, their con-
formational relationships, exact metabolic processes, and
mechanisms have yet to be deeply explored.
Therefore, future studies could include: (a) focusing on

investigating the availability of awider range ofA-type PAs,
especially more qualitative and affordable plant sources,
and exploring greener and more economical extraction
methods; (b) understanding the relationship between dif-
ferent food sources and different polymerization levels of
A-type PAs and human digestion, absorption, metabolism,
and overall bioavailability, in particular their interactions
with the gut microbiota; (c) focusing the innovate pro-
cessing technology that maximize the preservation/non-
destruction of the intact structure and content of A-type
PAs; (d) studying the nutritional activity of A-type PAs
in the daily diet (as food/food ingredients/dietary supple-
ments).
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