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Physics-Aware Analytic-Gradient Training of Photonic
Neural Networks

Yuancheng Zhan, Hui Zhang,* Hexiang Lin, Lip Ket Chin, Hong Cai,
Muhammad Faeyz Karim, Daniel Puiu Poenar, Xudong Jiang, Man-Wai Mak,
Leong Chuan Kwek, and Ai Qun Liu*

Photonic neural networks (PNNs) have emerged as promising alternatives to
traditional electronic neural networks. However, the training of PNNs,
especially the chip implementation of analytic gradient descent algorithms
that are recognized as highly efficient in traditional practice, remains a major
challenge because physical systems are not differentiable. Although training
methods such as gradient-free and numerical gradient methods are proposed,
they suffer from excessive measurements and limited scalability.
State-of-the-art in situ training method is also cost-challenged, requiring
expensive in-line monitors and frequent optical I/O switching. Here, a
physics-aware analytic-gradient training (PAGT) method is proposed that
calculates the analytic gradient in a divide-and-conquer strategy, overcoming
the difficulty induced by chip non-differentiability in the training of PNNs.
Multiple training cases, especially a generative adversarial network, are
implemented on-chip, achieving a significant reduction in time consumption
(from 31 h to 62 min) and a fourfold reduction in energy consumption,
compared to the in situ method. The results provide low-cost, practical, and
accelerated solutions for training hybrid photonic-digital electronic
neural networks.

1. Introduction

Photonic Neural Networks[1–5] exploit the high connectivity and
parallelism of optics for efficient information processing with
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reduced energy and latency con-
sumption. However, training PNNs
networks[6,7] is challenging due to the
resource-intensive and time-consuming
nature of gradient computation. Conse-
quently, in the early stage, many PNN
implementations[8–12] only support infer-
ence computation with weights obtained
via off-chip training, resulting in low
prediction accuracy and susceptibility
to noise.
On-chip (online) PNN training can

improve prediction accuracy, and it
is classified into two main categories:
gradient-free and numerical-gradient-
based. Gradient-free methods employ
non-gradient search algorithms, such
as genetic algorithms,[13,14] biologically
inspired method[15] and particle swarm
optimization[16] to obtain optimal so-
lutions. While these approaches yield
high accuracy in simple classification
tasks, their computation complexity
increases significantly with the number

of trainable parameters, restricting their scalability for com-
plicated machine-learning tasks. Numerical gradient methods,
on the other hand, measure the gradients through finite

L. K. Chin
Department of Electrical Engineering
City University of Hong Kong
Hong Kong 999077, Hong Kong
H. Cai
Institute of Microelectronics
A*STAR
Singapore 138634, Singapore
M. F. Karim, X. Jiang
School of Electrical & Electronic Engineering
Nanyang Technological University
Singapore 639798, Singapore
M.-W. Mak
Department of Electronic and Information Engineering
The Hong Kong Polytechnic University
Hong Kong 999077, Hong Kong
L. C. Kwek
Centre for Quantum Technologies
National University of Singapore
Singapore 117543, Singapore

Laser Photonics Rev. 2024, 18, 2300445 2300445 (1 of 10) © 2024 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH

http://www.lpr-journal.org
mailto:zh0012ui@e.ntu.edu.sg
mailto:eaqliu@ntu.edu.sg
https://doi.org/10.1002/lpor.202300445
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Flpor.202300445&domain=pdf&date_stamp=2024-02-23


www.advancedsciencenews.com www.lpr-journal.org

difference,[17–20] causing prohibitive complexity and susceptibil-
ity to noise.
Therefore, analytic gradient methods[21–24] have long been de-

sired for the training of photonic neural networks for their
fast convergence and low measurement complexity but they
are hindered by the non-differentiable properties[25] of photonic
chips. An in situ training method[26,27] was proposed and re-
cently demonstrated in a 4 × 4 PNN chip, but it requires exten-
sive digital-to-analog conversion, additional infra-red (IR) cam-
eras as the monitors on each Mach-Zehnder interferometer
(MZI), and the frequent switching of bidirectional optical I/O
between forward- and backward-propagating signals. When the
chip scales to practical size, the above requirements will greatly
increase the energy consumption and lengthen the time for cam-
era imaging and I/O switching.
In this paper, we propose a physics-aware analytic-gradient

training (PAGT) method and demonstrate it on an 8 × 8 PNN
chip. The PAGT method uses the PNN, which is a hybrid
photonic-digital electronic neural network in our hardware set-
ting, to perform the forward pass and a pre-established digi-
tal neural network (DNN) to calculate the analytic gradient as
the backward pass. The DNN model is obtained by learning the
unique physical transformations of the PNN. The forward pass
performed by the PNN eases the burden of requiring the differ-
ential DNN model to be exceptionally accurate and inherently
mitigates the unique noise processes and imperfections. The dif-
ferentiable DNN model is only utilized in the backward pass to
supplement parts of the training loop that the physical system
cannot perform.
From the on-chip demonstration, our PAGT method takes ap-

proximately 62 min (52 min for the DNN and 10 mins for the
PNN) for the whole procedure, in contrast to the 31 h duration
required by the in situ method[27] (mostly caused by the camera
imaging). Specifically, once the DNN is obtained, it can be ap-
plied to any task, thus the DNN training is a one-time consump-
tion. The energy consumption of PAGT method is 62 J, which
is significantly lower than 280 J for the in situ method.[27] From
the analysis of the scalability, our PAGT retains its advantages
on energy and time consumption for most of the current PNNs.
Besides, in some special network architectures that require the
derivatives of hybrid photonic-digital models,[28,29] unifying the
non-differentiable photonic part and the derivatives of the differ-
ential digital part into analytic derivatives will greatly accelerate
the training speed and reduce training costs. Using a differen-
tiable DNN to represent the non-differentiable PNN enables our
method applicable to hybrid networks like Generative Adversar-
ial Networks (GAN),[30] while most other methods are not uni-
fied. Our approach demonstrates fast and efficient photonic neu-
ral network training and exhibits broad potential in complicated
network architectures and cascaded PNNs.

2. Framework

We design a hybrid photonic-digital electronic neural network
chip (Figure 1a) incorporated with the PAGTmethod (Figure 1b).
The training algorithm comprises two training phases: the differ-
entiable DNN training and then the on-chip PNN training. The
aim of DNN training is to build a differentiable model to charac-
terize the unique physical transformation of the PNN. This DNN

model is used to calculate the analytical gradient and perform
the backward propagation, in lieu of the photonic chip. Then, the
PNN is used to perform the forward propagation and updates the
free parameters according to the analytic gradients acquired from
the DNN. The details of both training phases are as follows.

2.1. DNN Training

The structure of differentiable DNN is shown in Figure 1c. The
training goal is to attain output consistency between the PNN fp
and the DNN fd for arbitrary inputs, so as to mimic the PNN ac-
curately. The PNN is denoted by yp = fd(𝝋,𝜽p), containing a data-
uploading circuit controlled by parameters 𝝋 and a variational
circuit controlled by parameters 𝜽p. The differentiable DNN is
defined as yd = fd({𝝋,𝜽p},𝜽d), where we amalgamate the 𝝋 and
𝜽p as the DNN input dataset, and 𝜽d represents the training pa-
rameters in DNN.
In the beginning, we sample the 𝝋 and 𝜽p from a random

dataset. Randomization is employed to enhance the generaliza-
tion capability of the DNN being trained. Then, we feed them
into the PNN implemented by the photonic chip. The yp is ob-
tained from the photodetector measurements of the chip. The
sampled dataset and measurements are then labeled as inputs
and labels, respectively, and used to train the differentiable DNN.
In this work, we explore two classical neural network structures
as differentiable DNNs: Convolutional Neural Network (CNN)
andMulti-Layer Perceptron (MLP). The loss function L is defined
as the kullback-leibler divergence loss (KLDiv) between the DNN
outputs and the PNN outputs, L(yd‖yp) = yp ⋅ ln

yp
yd
. The DNN is

trained on a digital computer and employed as a constant 𝜽d pre-
trained model in the PNN training.

2.2. PNN Training

The training aims to produce the desired output for a given input
in any given task using both PNN and DNN, where PNN handles
complex forward computations and backpropagation gradients
are computed via a pre-trained DNN.
During the forward propagation stage, the dataset is initially

encoded into a discrete form, denoted as 𝝋0. Simultaneously, a
random set is generated to serve as the initial training parameters
𝜽p for the PNN, and the pre-trained DNN is incorporated into
the system. Assuming we have a PNN with K layers, the PNN
expression in the l-th layer is defined as

ylp = 𝝋l+1 = f lp (𝝋
l,𝜽lp), l = 0, 1,… , K − 1 (1)

and the corresponding DNN for each layer is defined as

yld = f ld ({𝝋
l,𝜽lp},𝜽

l
d) = f ld (𝝋

l,𝜽lp), l = 0, 1,… , K − 1 (2)

In the above equation, 𝜽d are not required in training as they’re
fixed values. The output of the last layer of PNN, yK−1p , is imported
into the digital computer with photodetectors.
During the backward propagation stage, the analytic gradient

of each parameter is obtained by calculating the derivative of the
loss function. Denoting the real gradients in the PNN as gp

𝜽p
, we
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Figure 1. Hybrid Photonic-Digital Electronic Neural Network with PAGT. a) The 8-mode photonic neural network chip fp, comprising a laser generating
light, a data-uploading circuit for encoding light into input states, a variational circuit for performing photonic calculations, and eight photodetectors
for measuring output photons. b) The flowchart of the PAGT method, consisting of differentiable DNN training and PNN training. The PNN training
section illustrates the training methodology for an l-layer PNN, while the DNN training section illustrates the pretraining of fd for each layer of the PNN.
c) The differentiable digital neural network fd, containing five convolutional layers (conv), five batch normalization layers (bn), and a fully-connected
layer (fc).

propose using the fd to perform the derivative operation and sub-
stitute gp

𝜽p
with gd

𝜽p
. Utilizing the backpropagation algorithm, the

analytical gradient of the system can be expressed as

gd
𝝋l =

𝜕L
𝜕𝝋l

= gd
𝝋l+1

𝜕f ld
𝜕𝝋l

(3a)

gd
𝜽lp

= 𝜕L

𝜕𝜽lp

= gd
𝝋l+1

𝜕f ld
𝜕𝜽lp

(3b)

where gd
𝝋l are the gradients with respect to 𝝋l as the intermedi-

ate variables in the calculation. This equation indicates that we
can determine the outermost gradient (gd

𝝋K ) first, and then use
mathematical induction to derive the subsequent inner gradient
(gd

𝝋l and gd
𝜽lp

). We can obtain the gd
𝝋K directly from KLDiv loss as

gd
𝝋K = 𝜕L

𝜕𝝋K
=

𝜕L(ylabel‖yK−1p )

𝜕yK−1p
, where ylabel represent labels for the spe-

cific task. Furthermore, the intermediate gradients 𝜕yd
𝜕𝝋

and 𝜕yd
𝜕𝜽p

can be obtained from the Jacobi Matrix. The parameters are up-
dated by the analytic gradients at a certain learning rate. The
training process of the PNN involves iteratively performing for-
ward propagation and backward propagation until the stopping
criteria (i.e., specified maximum iterations or loss function val-
ues) are met.
The PAGT method of training PNN enables the update of all

parameters through a single measurement with a measurement
complexity independent of the number of parameters, so as to en-
sure the computational efficiency of complicated problems and
cascaded PNNs. Furthermore, due to its gradient-based nature,
it exhibits superior overall efficiency in finding optimal solutions
compared to non-gradient algorithms. Our approach to training
hybrid photon-digital systems represents the non-differentiable
PNN with a differentiable function. This transformation effec-
tively converts the gradient training problem into a purely digital
system, thus simplifying the training process for hybrid systems.

Laser Photonics Rev. 2024, 18, 2300445 2300445 (3 of 10) © 2024 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 2. Results of training the differentiable DNN. Using identical input for both differentiable DNN and PNN, we measure PNN output as labels and
DNN output as predictions. a) The average KLDiv loss and MSE between the DNN predictions and the PNN labels, which converges within 50 epochs.
b) The statistical distribution of the differences between trained DNN and PNN, showing the goodness-of-fit of the trained model.

3. Results and Discussion

The proposed PAGT method was applied to the PNN with a
convolution-based DNN. Figure 2a shows the average KLDiv
loss and mean squared error (MSE) against the training itera-
tions. Figure 2b shows the output discrepancy between trained
the DNN and the PNN. This result demonstrates that the DNN
achieves highly accurate simulations of PNNs in a short train-
ing time of about 52 min. The trained PNN was then employed
for three practical tasks, i.e., the construction of unitary matrices,
the classification of the Iris Flower dataset, and the training of a
hybrid photonic-digital GAN architecture. The scalability of the
PAGT method is discussed. A comparative analysis of our algo-
rithm with other state-of-the-art methods is conducted in terms
of performance and computational complexity at the end.

3.1. Construction of the Unitary Matrix

This task validates the accuracy of the constructed PNN and
demonstrates its adaptability and efficiency without the need
for MZI calibration or matrix decomposition in advance. The
photonic circuit to construct the matrix uses the rectangular
structure[31] of universal multiport interferometers.
The PNN training begins by generating a random set of 𝜽 for

the PNN and importing the pre-trained DNNmodel into the sys-
tem. The matrix U6 is used to represent the PNN fp, where the
superscript 6 indicates that the dimension ofU is 6 andU6 is gen-
erated randomly during the experiment. xin and xout are defined
as the input and output light distribution with xout = U6(𝜽)xin. To
construct an accurate matrix, independent groups of bases were
fed into the chip, and the corresponding outputs were measured.
The different sets of inputs xiin are grouped, where each i repre-
sents light input from port i (e.g., x2in = [0, 1, 0, 0, 0, 0, 0, ]). Then,
we measure the corresponding xiout (which represents the ith-row
vectors of the target U6) to form the output xout = [x1out,… , x6out].

The comparison between the chip-measured output distribution
and the expected labels is shown in Figure 3a–c, which illustrates
that the distribution generated by the PNN at the beginning of the
training is completely random. While the PNN converges, all six
xiout converge to the target vector, demonstrating the capability of
ourmethod in constructing any desired unitarymatrix. Figure 3d
shows the average KLDiv and MSE against the training epoch.
The PNN training converges within 40 epochs, with both KLDiv
andMSE converging. This demonstrates the efficiency and effec-
tiveness of the proposed PAGT method.
Compared to the traditional method of constructing a matrix

on the chip, where the MZI is pre-calibrated and the 𝜽p value of
eachMZI is calculated by a computer and transferred to the chip,
ourmethod eliminates the need for a computer to decompose the
unit matrix to calculate 𝜽p and also eliminates the errors arising
from inaccurate MZI calibrations.

3.2. Iris Flower Classification

We evaluate the performance of our algorithm in classify-
ing the Iris Flower dataset, a widely-used benchmark for low-
dimensional neural networks. We use a subset of the iris dataset,
comprising 100 samples of two types of flowers, the Setosa and
the Versicolor. Each flower species has four characteristic fea-
tures. The PNN architecture utilizes a 4-mode photonic chip
with encoding and tunable parameters 𝝋 and 𝜽p, respectively.
The DNN is pre-trained in advance. The forward propagation
of the PNN is expressed as yiris = fp(𝝋,𝜽p). For data encoding,
we normalize the iris data and map it to 𝝋, and utilize one-hot
encoding to represent the iris labels. For data decoding, we ap-
ply the nearest-neighbor principle, whereby the output is classi-
fied as Setosa if most output photons come from the Setosa port
(|yiris − ysetosa| < |yiris − yversi|), and vice versa. To train the PNN
to perform the classification task, we used the average gradient

Laser Photonics Rev. 2024, 18, 2300445 2300445 (4 of 10) © 2024 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 3. Results of Unitary Matrix Construction. a–c) The comparison between the chip-measured output distribution (solid bar) and the expected
labels (transparent bar), at Iteration of 0, 5, and 50, respectively. d) The average KLDiv loss and MSE as a function of training epochs. The PNN training
converges within approximately 40 epochs.

to update the network parameters. Our approach involves ran-
domly selecting a batch of ten data points (the batch size for con-
ventional approaches is one), calculating the average gradient,
and performing a global update with the PAGT method. This
approach helps to stabilize the training and ensures a smoother
convergence toward the optimal solution.
Figure 4a displays the MSE of the training process, indicating

that the PAGT method efficiently achieves convergence for the
PNN within 35 epochs. Figure 4b presents the decision bound-
aries produced by the trained PNN on a 2D projection, which
illustrates the effectiveness of our training strategy for data cat-
egorization. To assess different pre-trained differentiable DNNs
on the PNN training, we selected three models: a CNN trained
with sufficient random data (pagt-CNN), an MLP trained with
smaller random data (pagt-MLP), and a CNN trained with the
minimal dataset of the iris flower (pagt-irisdata), as shown in
Figure 4c. Our results demonstrate that pre-trained CNNmodels
performed best as a surrogate approximator in terms of accuracy
and convergence speed when DNN trained on large amounts of
data. However, for specific computation tasks, the general mod-
eling of the chip is not always necessary. For example, for iris
classification, using its dataset instead of a random sampling
dataset will reduce the pre-training period of DNNs while main-
taining the effectiveness of PNN training. Meanwhile, for simple
tasks, training anMLP requires fewer samples, making it an eco-
nomical choice for faster and more accurate training. These re-

sults provide greater flexibility in choosing an appropriate model
for different task requirements. In Figure 4d, we compare the
PAGTmethodwith two representative on-chip trainingmethods,
the numerical gradient training[17] and gradient-free training,[2]

under the same experimental conditions in our photonic plat-
form. In terms of training accuracy, numerical gradient training
achieves 80%, while gradient-free training improves the accuracy
by 15%, and our proposed PAGT method shows a superior en-
hancement of 20%.

3.3. Hybrid Generative Adversarial Networks

We constructed a generative model using a hybrid GAN frame-
work, as shown in Figure 5a. The objective of this study is to apply
our PAGT to a hybrid photonic-digital system. Hybrid training
necessitates the concurrent computation of on-chip PNN gradi-
ents and off-chip DNN gradients, a task that proves challenging
for existing chip-only or off-chip training methodologies. Never-
theless, this issue can be addressed by utilizing analytic gradients
through our PAGT method. Here, we used the GAN network as
an example, which involves a generator network in generating
distributions, and a discriminator network in distinguishing the
validity of distributions.
In our experimental setup, we employed an 8-mode PNN

fp(𝝋,𝜽p), trained with the PAGT method as the generator, and

Laser Photonics Rev. 2024, 18, 2300445 2300445 (5 of 10) © 2024 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 4. Results of Iris Flower Classification. a) The average KLDiv loss and MSE of the training process, demonstrating convergence within 30 epochs.
b) Decision boundaries of the iris data, projecting the 4D data into the sepal width and sepal length dimensions, showcasing the effectiveness of PNN in
accurately separating the data. Similar results can be obtained for other projections. c) Accuracy during the training process using different pre-trained
DNN models. d) Accuracy during the training process for various training methods.

a four-layer CNN, denoted by D𝝉 , trained with a traditional gra-
dient descent algorithm as the discriminator, where 𝜽p and 𝝉 are
trainable parameters generated randomly as initial. Light is inci-
dent to one input port of the chip, and generates eight-bin pro-
grammable light distribution at the output ports. The generator
output yp and the real probability distribution y are then fed into
the discriminator as input. Using the Wasserstein GAN loss,[32]

we can obtain the generator and discriminator losses, LG(𝜽p, 𝝉)
and LD(𝜽p, 𝝉), respectively,

LG(𝜽p, 𝝉) =
1
N

N∑
i=1

D𝝉

(
fp(𝝋i,𝜽p)

)

LD(𝜽p, 𝝉) =
1
N

N∑
i=1

[
D𝝉 (yi) − D𝝉

(
fp(𝝋i,𝜽p)

)]
(4)

where i represents the i-th in the input dataset. Using Equa-
tion (3), we calculate the gradients of the generator with LG and
fd and then update 𝜽p. We also update 𝝉 with LD and fd. These
two steps are repeated until both networks converge. The advan-
tages of the proposed PAGT training method for hybrid systems
are demonstrated in this experiment. Specifically, for the gen-
erator (PNN), we directly obtain the gradient of it using our al-
gorithm, while for the discriminator, we derive its loss function
(e.g., Equation (4)) involving both generator and discriminator
networks simultaneously and calculate the gradient. Our PAGT
method addresses this process by deriving the analytic gradient
expression of the generator and incorporating it into the discrimi-

nator gradient formula, allowing for simultaneous derivation in a
digital computer. In contrast, gradient-free methods that cannot
derive the gradient face difficulties in updating the discrimina-
tor. Numerical gradient and other analytical gradient methods,
where the gradient is not an expression, require resetting the ex-
perimental setup to calculate the gradient once in each formula
that contains the generator gradient, leading to a significant hin-
drance in training speed.
We used the PAGT method to generate three different distri-

butions by PNN: Normal Distribution, Poisson Distribution, and
Lognormal Distribution. The performance of the PNN is com-
pared against the real distributions in Figure 5b–d. The accu-
racy of the PNN in generating the desired distributions is evi-
dent from the near equivalence of the probability values in the
final epoch. The training process of the generator loss and dis-
criminator loss is depicted in Figure 5e–g, while the training pro-
cess of MSE is shown in Figure 5h. The loss value of LG and LD
approach 0, which is in accordance with theoretical values, in-
dicating good convergence of the PNN. Furthermore, the MSE
reaches below -48 dB within 50 epochs, which demonstrates the
fast convergence of our algorithm.

3.4. Scalability of the PAGT Method

As the PNN dimension increases, the PAGT method requires a
substantial number of training samples to ensure that DNN can
accurately approximate the underlying PNN. Here, we discuss
the requirements imposed on the necessary volume of training

Laser Photonics Rev. 2024, 18, 2300445 2300445 (6 of 10) © 2024 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 5. Results of Hybrid GAN. a) The flow chart of Hybrid GAN Training. b) A comparison between the PNN-generated distribution and the real dis-
tribution for Normal Distribution. c) The Poisson Distribution case. d) The Lognormal Distribution case. e–g) The generator loss (LG) and discriminator
loss (LD) during training for Normal, Poisson, and Lognormal Distributions, respectively, showcasing convergence around 20 epochs. h) The MSE of
three distributions during training, with all MSE values converging around 50 epochs and reaching below -48dB.

sample for a surrogate DNNwhen the PNNdimension increases,
thereby identifying the optimal chip dimension to which the
PAGT method is applicable. The Iris classification and MNIST
classification tasks are used as examples to evaluate the PAGT
method. Numerical experiments are conducted in the following
three scenarios: 1) For an 8-mode PNN, we investigated the
volume of training data required to obtain a surrogate DNN. The
performance (i.e., accuracy andMSE) when training data volume
varies from 0.2k to 625k are shown in Figure 6a,b. For an 8-mode
PNN, 5k samples are sufficient to train a surrogate DNN without
suffering from underfitting issues, thus ensuring its capability
to handle various complex tasks. 2) Given the training data

volume, we investigate the maximum PNN dimension that can
be surrogated. We studied PNN dimensions ranging from 4 to
24modes, which correspond to 12 to 552 training parameters. As
shown in Figure 6c, a data volume of 5k samples is sufficient to
train an 8-mode PNN (dotted line), while a volume of 15 million
is required to train a 20-mode PNN (solid line). 3) Finally, we dis-
cuss the general trend of the required training data volume as the
PNN dimension increases. As shown in Figure 6d, the required
training data volume DDNN exhibits an exponential relationship
with the PNN dimension and can be fitted by DDNN = a × bN ,
where a = 13.7 and b = 1.97 obtained from fitting, and N rep-
resents the PNN dimension. Our method demonstrates high

Laser Photonics Rev. 2024, 18, 2300445 2300445 (7 of 10) © 2024 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 6. Scalability of the PAGTmethod. a,b) The accuracy andMSE of the PAGTmethod on an 8-mode PNN chip when the training data volume varies
from 0.2k to 625k. c) The training accuracy of different PNN dimensions, when training data volumes of 5k and 15M samples are given, respectively. d)
Relationship between PNN dimension and the required training data volume. The data points shown in the graph are the training data volumes needed
to achieve a 90% accuracy on the MNIST dataset (excluding N = 4, which is on the Iris dataset).

efficiency for PNN dimensions below 20 modes, as the required
training data volume can be controlled below 15 million, which
remains advantageous over othermethods (see the section “Com-
parison to Other Training Methods”). However, when N exceeds
20, the significantly increased data requirement leads to high en-
ergy consumption and latency and poses challenges to maintain-
ing accuracy when the data requirement cannot be fulfilled. In
summary, a training dataset with onemillion samples is adequate
to support a PNN with up to 16 modes, which meets the require-
ments of the current largest-scale programmable photonic inte-
grated neural networks.[33,34] Additionally, cascading PNNs pro-
vide a feasible approach to enhance PNN scalability. Our method
offers a potential strategy for training cascading PNNs bymanag-
ing complex parameter interactions and mitigating cumulative
noise errors (see details in Note S7, Supporting Information).

3.5. Comparison to Other Training Methods

We present a comparative analysis of various on-chip training
methods for photonic chips, including our proposed method,
gradient-free method,[2] numerical gradient method,[17] and an-
other analytic gradient method (in situ method).[27] The com-
parison results of most methods are based on our experimental
platform conditions, except for in situ method, which requires
some additional devices. We compare these methods based on
two key performance metrics, energy consumption, which refers
to the total energy used by the chip throughout the entire training
process, is calculated by multiplying the energy used in a sin-

gle training epoch by the total epochs, and latency, the time
consumption of operations and computations. Consumptions of
other devices (e.g., lasers, digital computers, etc.) are not com-
pared here due to different experimental devices and configura-
tions across different methods. We assume that eachMZI on our
chip consumes power P = 4.8 mW, the operation and effect time
of the thermo-optic phase modulator for each MZI is TMZI = 1 s,
and the operation time of analog-to-digital conversion and updat-
ing parameters in the digital computer is TDIG = 2 s. The time
required for each optical computation, from the photon entering
the chip to being detected by the photodetectors, can be ignored
(<4 us).
Each layer of the photonic neural network with N dimen-

sion requires N2 MZIs. The gradient-free method requires N2 ×
M × P × E energy consumption and (M × TMZI + TDIG) × E time
consumption, where M is the number of groups of initial vari-
ables (M = 1 in other methods) and E is the number of epochs
needed for PNN convergence (assuming same for everymethod).
The numerical gradient method requires N2 × N2 × P × E en-
ergy consumption and (N2 × TMZI + TDIG) × E time consumption
since the gradient of each parameter requires N2 operations to
derive. The in situ method requires (N2 × 3P + N × 3Pextra) × E
energy consumption, where 3 represents the number of mea-
surements required for each epoch, Pextra represents the addi-
tional digital-to-analog converter and analog-to-digital converter.
The in situ method requires 31 h for a task similar to ours,
which includes time for the operation of MZIs, IR camera imag-
ing, switching the bidirectional I/O, and digital readout and
subtraction.

Laser Photonics Rev. 2024, 18, 2300445 2300445 (8 of 10) © 2024 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH

 18638899, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/lpor.202300445 by H

ong K
ong Poly U

niversity, W
iley O

nline L
ibrary on [11/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

Table 1. Comparison to other training methods in energy and latency consumption. The settings in our experiment are N = 8, M = 50, E ≈ 200, P =
4.8 mW, Pextra = 20 mW, TMZI = 1 s, TDIG = 2 s, a = 13.7, b = 1.97.

Gradient-free Numerical gradient In situ Our PAGT

PNN DNN (one-time)

Energy N2 ×M × P × E N2 ×N2 × P × E (N2 × 3P +N × 3Pextra) × E N2 × P × E N2 × P × a × bN

(3072 J) (3932 J) (280 J) (62 J) (963 J)

Latency (M × TMZI + TDIG) × E (N2 × TMZI + TDIG) × E 31 h (TMZI + TDIG) × E TMZI × a × bN

(173 min) (220 min) 31 h (10 min) (52 min)

The PAGT method can be separated into PNN training and
one-time DNN training. The PNN training requires N2 × P × E
in energy and (TMZI + TDIG) × E in time. The energy consump-
tion and latency of various methods are compared in Table 1 for
PNN training. Our PAGT method outperforms the compared
methods in terms of energy consumption and latency. Specifi-
cally, under the condition of the 8-mode chip, it reduces energy
consumption by 4 to 63 times and time consumption by 17 to
186 times.
The consumption of DNN training is the only additional com-

ponent of PAGT compared to others. It largely depends on
the cost of collecting DNN training data, measurable in terms
of N2 × P × a × bN energy consumption and TMZI × a × bN time
consumption, where a and b are from dataset volume DDNN =
a × bN . However, it is worth noting that the training of DNNs
is a one-time consumption. In contrast to PNNs, which neces-
sitate retraining for each distinct task, DNNs don’t require the
process. Although this method requires some initial cost, its
scalability surpasses existing methods as the number of train-
ing tasks increases. This is because the training burden of the
every-time PNN is outsourced to the one-time DNN training.
This can be viewed as a larger intercept but a smaller slope when
compared to other methods, as shown in Figure S2 (Supporting
Information).

4. Conclusion

We demonstrate a significant advancement in PNN training by
proposing a physics-aware analytic-gradient training algorithm
for hybrid photonic-digital electronic neural networks. Low
power consumption, efficient computation, fast convergence,
and superior accuracy have been achieved compared to existing
methods. The algorithm is validated using an 8-mode photonic
neural network chip and exhibits great potential in various
machine-learning tasks. In the construction of unitary matrices,
the MSE between the reconstructed matrix and the original
matrix was as low as 0.015, and the iris flower classification
achieved an accuracy of 96.7%. Furthermore, our photonic
GAN structure exhibited an impressive MSE below -48 dB for
hybrid generating distributions. The analysis of PAGT scalability
shows that PAGT meets the requirements of training most of
the current PNN. Compared to other methods, our approach
offers substantial improvements in both energy consumption
and latency. Additionally, our method utilizes differentiable
DNN to represent non-differentiable PNN, streamlining the
training process and reducing costs in hybrid photonic-digital
networks. These results demonstrate a promising path toward

the development of highly efficient and accurate PNNs, with
potential applications in optimization,[35] cryptography,[36] quan-
tum machine learning,[37,38] quantum finance,[39–41] cascaded
photonic neural network,[42] etc.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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