
Revisiting the Description-to-Behavior Fidelity in
Android applications

Le Yu, Xiapu Luo §, Chenxiong Qian, Shuai Wang
Department of Computing, The Hong Kong Polytechnic University

The Hong Kong Polytechnic University Shenzhen Research Institute
{cslyu, csxluo, csxqian, csswang}@comp.polyu.edu.hk

Abstract—Since more than 96% of mobile malware targets
on Android platform, various techniques based on static code
analysis or dynamic behavior analysis have been proposed to
detect malicious applications. As malware is becoming more
complicated and stealthy, recent research proposed a promising
detection approach that looks for the inconsistency between
an application’s permissions and its description. In this paper,
we revisit this approach and find that using description and
permission will lead to many false positives. Therefore, we
propose employing app’s privacy policy and its bytecode to
enhance description and permission for malware detection. It is
non-trivial to automatically analyze privacy policy and perform
the cross-verification among these four kinds of software artifacts
including, privacy policy, bytecode, description, and permissions.
We propose a novel data flow model for analyzing privacy
policy, and develop a novel system, named TAPVerifier, for
carrying out investigation of individual software artifacts and
conducting the cross-verification. The experimental results show
that TAPVerifier can analyze privacy policy with a high accuracy
and recall rate. More importantly, integrating privacy policy and
code level information removes 8.1%-65.5% false positives of
existing systems based on description and permission.

I. INTRODUCTION

The massive success of app economy poses lucrative and
profitable targets for attackers. It has been showed that the
number of mobile malware has jumped 75% in 2014 [1].
Moreover, while Android has taken up 81.5% market share
with millions of applications (or simply apps) [2], 96% mobile
malware targets Android [1].

Many detection systems based on static analysis [3]–[8]
and/or dynamic analysis [9]–[14] have been proposed to detect
mobile malware. However, without well-defined signatures,
it is difficult to differentiate between malware and benign
apps because they may have the same functionality. Recent
research suggested a promising approach that detects malware
by checking its description-to-behavior fidelity (i.e., whether
it behaves as advertised [15]–[17]. For example, whether a
music app collecting users’ location information is suspicious
or not depends on what it claims to do. These approaches
(e.g.,Whyper [15], AutoCog [16]) profile an app’s expected
behaviors by extracting the semantic meaning from its de-
scription, and characterize an app’s behaviors by examining
the permissions required by the app. CHABADA identifies
abnormal sensitive API usages from apps expected to provide
similar functionality according to their descriptions [17].

§The corresponding author.

Although their results are encouraging, there still lacks of a
systematic study on assessing an app’s description-to-behavior
fidelity because of two reasons. First, since descriptions on
Google Play have character limit, they cannot detail all be-
haviors, thus leading to false positives (i.e., “hide” security-
related behaviors). Since more and more apps provide privacy
policies for describing their privacy-related behaviors (e.g., ,
76% of free apps on Google play provide privacy policies
for users in 2012 [18]), we argue that privacy policy should
be taken into account for profiling what an app advertises.
Second, since developers may over-claim permissions [19],
using permissions to represent an app’s behaviors will result
in false positives (i.e., “overclaim” security-related behaviors).
Since the app’s behaviors are determined by its bytecode,
we argue that the app’s bytecode should be considered for
characterizing what an app behaves.

Therefore, in this paper, we leverage both an app’s privacy
policy and its bytecode to revisit its description-to-behavior
fidelity by answering the following two research questions:

RQ1 Does an app’s privacy policy supply useful information
for assessing its description-to-behavior fidelity?

RQ2 Does an app’s bytecode provide useful information for
measuring its description-to-behavior fidelity?

It is challenging to answer these two questions due to
the difficulty of analyzing privacy policies and bytecode and
correlating them with descriptions and permissions. First, since
privacy policies are legal style documents, it is non-trivial
to automatically extract their meanings [20]. We propose
a novel privacy policy data flow model to create semantic
patterns, which are used to automatically identify actions in
privacy policy. Then, we extract an app’s expected behavior
by employing information extraction (IE) and natural language
processing (NLP) techniques. Second, since privacy policy,
bytecode, description, and permission are different kinds of
software artifacts, analysing each of them and then corre-
lating their semantic meanings pose unique challenges. We
develop TAPVerifier, a Text-based APplication Verification
system. TAPVerifier integrates the analysis of these four kinds
software artifacts together and performs the cross-verification
automatically. Our major contributions include:

1) We propose a novel privacy policy data flow model
for defining semantic patterns to infer what sensitive
information an app will collect from its privacy policy.

The following publication L. Yu, X. Luo, C. Qian and S. Wang, "Revisiting the Description-to-Behavior Fidelity in Android Applications," 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), Osaka, Japan, 2016, pp. 415-426 is
available at https://doi.org/10.1109/SANER.2016.67.

This is the Pre-Published Version.

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Based on these patterns, we build up a novel privacy
policy analysis module to automatically extract collected
personal information from privacy policy files.

2) We propose TAPVerifier, a new system for analyzing
privacy policy, bytecode, description, and permission,
and conducting cross-verification among them. More-
over, we have implemented TAPVerifier in 6,381 lines
python code and 11,078 lines java code.

3) Experiment result shows that compared with description,
privacy policies are more likely to describe privacy-
related behaviours regardless of the categories. Further-
more, using privacy policy and bytecode removes 8.1%-
65.5% false positives generated by approaches based on
the description and permission analysis.

The reminder of this paper is organized as follows. We
formulate the problem in detail and describe the motivating
examples in SectionII. SectionIII details how we identify
semantic patterns for analyzing privacy policies. SectionIV
describes the design and the implementation of TAPVeri-
fier. SectionV presents the extensive evaluation results and
observations. After discussing TAPVerifier’s limitations and
introducing our future work in SectionVI, we introduce related
work in SectionVII and conclude the paper in SectionVIII.

II. PRELIMINARIES

A. Background

1) Privacy policy: When publishing an app in Google play
market, developers will provide other information to help user
learn more about the app, such as, description, privacy policy,
screenshots, to name a few [21]. Description is like an ad
for promoting the app and attracting more users to download
this app [22]. To make the description appealing to users,
the app’s most relevant features are put in it. Privacy policy
is a hybrid statement, and contains different aspect about
information collection, such as what information would be
collected, how information is used, how can user access their
personal information, and etc. [23].

2) Android: Each app has an APK file that contains dex
file, manifest file(AndroidManifest.xml), resource file
and other supporting files. An app’s executable is a dex file
which can be disassembled for further analysis. Android use
permissions to limit the access to sensitive data or feature on
the device. If an app wants to use some feature protected by
permissions, it must declare corresponding permission in app’s
manifest file.

We define source functions as the APIs through which an
app can collect information from device. For example, getDe-
viceId can be used to get the device ID [24]. Apart from APIs,
app can also gain information by querying the content provider
with URIs. For example, by calling ContentResolver.Query
and using URI content://com.android.calendar as
parameter, the app can read the user’s calendar. We define sink
functions as the APIs that can transmit information through
internet, SMS, file, log, or other channels [24].

B. Motivating Example

We use the app “com.tinymission.dailyyogafree” to illus-
trate how to use privacy policy to remove false positives
resulted from the insufficiency of description, and another app
“com.ilspl.mahavir” to demonstrate how to use code analysis
to remove false positives due to the overclaimed permissions.

The types of non-personal data Daily Workout may collect and
use include, but are not limited to:
(i) device properties, including, but not limited to unique device
identifier or other device identifier ("UDID");
(ii) device software platform and firmware;
(iii) mobile phone carrier;
(iv) geographical data such as zip code, area code and location;

Fig. 1. Snippet of com.tinymission.dailyyogafree’s privacy policy.

Use privacy policy to explain the necessary of per-
mission. Fig.1 lists part of the app’s privacy policy. “Daily
Workout (means “Daily Workout Apps, LLC”) is the developer
of the app “com.tinymission.dailyyogafree”. The item (iv) in-
dicates that the app will collect users’ location information and
the app requires the permission ACCESS_FINE_LOCATION.
Therefore, the privacy policy can explain the necessity of
requesting this permission.

Use privacy policy to remove false positives. When
analyzing this app’s description, Autocog [16] cannot lo-
cate any sentence that can explain why the permission
ACCESS_FINE_LOCATION is needed, and therefore it will
raise a permission alert. However, since the privacy policy can
explain the necessary, such alert is a false positive.

Use code to remove false positives.
The app, “com.ilspl.mahavir”, requests per-
mission ACCESS_FINE_LOCATION and
ACCESS_COARSE_LOCATION without explaining it in
description. AutoCog generates an alert. However, our code
analysis finds that this app does not use any location related
APIs. Therefore, such alert is a false positive.

III. SEMANTIC PATTERNS FOR PRIVACY POLICIES

A. Data Flow Model for Privacy Policies

Data Collection Data Storage

Data Retention

Data Utilization

Data Disclose

Service
Provision

User Consent

Data Provision

WE YOU

Third Partysymbol means this component contains collected information

Data Access

Fig. 2. Data Flow Model for Privacy Policies.

Useful sentence. Not all sentences in privacy policies are
relevant to users’ personal information. We define “useful
sentences” as those sentences that describe what information

will be collected by an app. The extraction of collected
information is based on identifying useful sentences. Other
sentences are regarded as “useless”, and will not be analysed.
For example, although sentence “if you have any question, you
can contact us by using the following information” contains
sensitive word “contact”, we do not analyse it since it is about
how to contact the developer.

Data flow model. Since useful sentences can have diverse
formats, we propose a systematic approach to define semantic
patterns for identifying useful sentences and extracting specific
information. More precisely, we create a data flow model for
major components in privacy policies. This model describes
how users’ information is processed and transmitted. Although
privacy policy writer may use different kinds of sentences for
different parts of this model, we extract the patterns based on
this model so that all sentences related to private information
can be identified.

As shown in Fig. 2, our data flow model has three kinds
of actors, including We, You, and Third Party. The former
two actors can conduct several actions denoted by blocks. The
actor We may refer to the app itself, the developer/owner
of this app, or the service provider. We can collect private
information of user from the app. The actor You refers to the
user of an app or service, and You can provide information
to developer through registering account or other channels.
The actor Third Party collaborates with We, such as Ad
providers, and may receive the information collected by We.
Our model is general and extensible, and it does not require
a privacy policy to have all blocks. Moreover, if a new action
is identified, we can easily add it to the model.

The model in Fig.2 illustrates how information flows from
one actor to another and how it is handled by different actions.
We detail each action as follows because they will guide us
to define semantic patterns in Section III-B.
� Data collection. This action is usually accompanied with
sentences explicitly mentioning which information will be
collected by We, for example, “we may collect and process
information about your actual location.”.
� Data Storage. Since We may store information in some
place after collecting them, the sentences related to this action
will reveal the collected information, such as, “we’ll store
those contacts on our servers for you to use.”.
� Data utilization. Privacy policies also describe what in-
formation will be used and the purpose of this behaviour.
As the information will first be obtained before We can use
it, the sentences about this action will disclose the collected
information, such as, “We may use your location information
to display advertisements for businesses”.
� Data Retention. Privacy policies usually mention how
long the collected information will be kept by We and how
You can access or manipulate the information. Therefore,
the corresponding sentences will describe the information, for
instance, “We’ll retain information you store on our Services
for as long as we need it to provide you the Services. If you
delete your account, we’ll also delete this information.”

� Data access. Since it often denotes limited access to
collected information, the related sentences may provide more
details about the collected information, for example, “Service
providers have access to your personal information only to
perform services on our behalf.”.
� Data disclose. It explains what, when, how the collected
information will be shared with Third Party by We. Hence,
the relevant sentences will give hints to the information, such
as, “We may disclose your information to third parties if we
determine that such disclosure is reasonably necessary.”.
� User consent. You may accept the privacy policy explicitly
by consenting to it. Alternatively, You may accept the privacy
policy implicitly by using the app. In either case, We can
acquire the information mentioned in the related sentences,
for example, “Each time you visit the Site or use the Service,
you agree and expressly consent to our collection, use and
disclosure of the information.”.
� Data provision. Since sometimes We will ask You to
provide certain information directly, the relevant sentences will
present the details, for instance, “you will be asked to provide
us with your phone number, name and a photo (name and
photo are not mandatory) and to allow us access to your
mobile device’s address book.”.

The Service Provision action usually indicates the service
or data provided to the user briefly. Since an app’s description
provides more similar information than Service Provision, we
do no analyze this action.

B. Semantic Patterns

We define semantic patterns according to the data flow
model shown in Fig. 2. More precisely, we first find out
the verbs commonly used in different actions and then define
semantic patterns according to those verbs’ semantic meanings
and common sentence structures in privacy policies.

Verb set. Since the verbs are the basis of semantic patterns,
their comprehensiveness would affect the effectiveness of
semantic pattern. For example, verb “collect” and “gather”
have similar semantic meaning, and developer can use any
one in sentence.

We employ three approaches to select verbs. First, we
select 23 verbs from 35 most commonly-used verbs in privacy
policies summarized by [25]. We ignore the remaining 12
verbs, such as “employ”, “advise”, “aggregate”, etc., because
they do not fit any actions in Fig.2. Second, we manually
examine five privacy policy templates and extract 44 verbs
from them [26] [27] [28] [29] [30]. Since many developers
employ such templates to create privacy policies, these verbs
are representative. Third, we used the tool WordNet [31] to
find out the synonyms of the verbs found in above steps.
Wordnet is a lexical database of English where synonyms of
nouns, verbs, and adjectives, adverbs are collected according
to their meaning similarity.

We finally collect 109 verbs and classify them to 11 sets
according to their semantic meaning. Tab. I lists three sample
verbs for each category. Note that some verbs appear in more
than one category. For example, given that ”provide” is used

in a sentence, if the subject is We, the sentence belongs to the
Service Provision action. Otherwise, if the subject is You, the
sentence should belong to the Data Provision action of You.

Verb Set(Action Name) Example verbs
1 V Pcollect (Data Collection) collect, gather, capture,...
2 V Pcontain (Data Collection) contain, include, involve,...
3 V Paccess(Data Access) access, read, see,...
4 V Paccess−control (Data Access) limit, restrict, gain,...
5 V Pstore (Data Storage) storage, reserve, log,...
6 V Puse (Data Utilization) use, process, link,...
7 V Pdisclose (Data Disclose) share, sell, disclose,...
8 V Prentain (Data Retention) retain, maintain, delete,...
9 V Pallow (All actions) allow, disallow, permit,...

10 V Pprovide (All actions) provide, supply, offer,...
11 V Pconsent (User Consent) consent, agree, assent,...

TABLE I
COMMON VERBS AND THEIR RELATED ACTIONS.

According to the common sentence structures, we define
nine general semantic patterns as listed in Tab. II. We use
V P∗ to represent the verb set (1,3,5,7,8,10) in Tab. I and
use V P pass

∗ to indicate the corresponding passive voice of
the verbs. To ease the presentation of semantic patterns, we
put resource in the place where the collected information will
appear. Note that the semantic patterns for each action in Fig.
2 are derived from these nine general semantic patterns. By
replacing V P∗ in Tab. II with different verb sets defined in
Tab. I, we get the semantic pattern for each action. We detail
them in the following paragraphs.

Data Collection. Its semantic patterns include:
Pattern DC 1: sbj V Pcollect resource
Pattern DC 2: resource V P pass

collect

Pattern DC 3: sbj V Pcollect V Pcontain resource
Pattern DC 4: sbj V Pallow obj to V Pcollect resource
Pattern DC 5: sbj V P pass

allow to V Pcollect resource

The sentences related to this action will describe the col-
lected information directly, such as “we would collect your
personal information” (Pattern DC 1) or “your personal in-
formation would be collected” (Pattern DC 2). They may ask
the permission to collect some information, for example, “you
allow us to collect your personal information” (Pattern DC
4) or “we are allowed to collect your personal information”
(Pattern DC 5). Pattern DC 3 indicates a special class of
descriptive sentences that enumerate individual collected in-
formation, for instance, “the information we collect include:
your name, address, age”. The subject and the object form
the part-whole relation [32], where name, address, and age
are part of the collected information.

Data Storage. Its semantic patterns include:
Pattern DS 1: sbj V Pstore resource
Pattern DS 2: resource V P pass

store

Pattern DS 3: sbj V Pallow obj to V Pstore resource
Pattern DS 4: sbj V P pass

allow to V Pstore resource

Pattern DS 1-4 are similar to Pattern DC 1,2,4,5 in Da-
ta Collection, but the verb set V Pcollect is replaced with
V Pstore.

Data Access. Its common semantic patterns include:
Pattern DA 1: sbj V Paccess resource
Pattern DA 2: resource V P pass

access

Pattern DA 3: sbj V Pallow obj to V Paccess resource
Pattern DA 4: sbj V P pass

allow to V Paccess resource
Pattern DA 5: resource ADJaccess to sb
Pattern DA 6: sbj “keep ability ”to V Paccess resource
Pattern DA 7: sbj V Paccesscontrol “access to ”resource to sb

Pattern DA 1-4 are the same as Pattern DC 1,2,4,5 in
Data Collection, but the verb set V Pcollect is replaced with
V Paccess. Pattern DA 5 uses adjective to indicate that the
information can be collected, for example, “your personal
information is accessible”. Pattern DA 6 explains the app’s
ability to collect information, such as, “we keep ability to
access your personal information”. Pattern DA 7 denotes
limited access to certain information, for instance, “we would
limit access to personal to third party”.

Data Utilization. Its common semantic patterns include:
Pattern DU 1: sbj V Puse resource
Pattern DU 2: resource V P pass

use

Pattern DU 3: sbj V Pallow obj to V Puse resource
Pattern DU 4: sbj V P pass

allow to V Puse resource
Pattern DU 1,2 are similar to Pattern DA 1,2, but the verb

are in V Puse. Pattern DU 3, 4 allow “us” to use user’s
personal information.

Data Disclose. Its common semantic patterns include:
Pattern DD 1: sbj V Pdisclose resource
Pattern DD 2: resource V P pass

disclose

Pattern DD 3: sbj V Pallow obj to V Pdisclose resource
Pattern DD 4: sbj V P pass

allow to V Pdisclose resource
For data disclose action, we also defined four semantic

patterns, just like patterns defined in Data Utilization, but
V Puse is replaced with V Pdisclose.

Data Retention. Its common semantic patterns include:
Pattern DR 1: sbj V Pretain resource
Pattern DR 2: resource V P pass

retain

Pattern DR 1 denotes that the retention of data has a time
limit. Pattern DR 2 indicates that if the time reaches the time
limit or the user sends a request, all these data need to be
removed.

User Consent. It has the following pattern meaning that the
user consents to the information collection:
Pattern PCAU: sbj V Pconsent to something

This pattern matches sentences like “you are consent to the
collection of your personal information”.

Data Provision. It has the following pattern indicating that
the user will provide certain information to the app.
Pattern DP: sbjyou V Pprovideresource

This pattern represents sentences like “you should provide
your name and address to register a account”.

IV. APPVERIFIER

A. Architecture

Fig.3 shows the architecture of TAPVerifier, which takes in
the privacy policy, description, and APK file of an app as input.
The privacy policy analysis module (Section IV-B) processes

Semantic Pattern Sample Sentences
1 sbj V P∗ resource We would collect your location information.
2 resource V P pass

∗ Your location would be collected.
3 sbj V P∗ V Pcontain resource The information we collect include: name, age, birthday.
4 sbj V Pallow obj to V P∗ resource You allow us to access your personal information.
5 sbj V P pass

allow
to V P∗ resource We are allowed to access your personal information.

6 resource ADJaccess to sb Your location information is accessible to us.
7 sbj “keep ability ”to V Paccess resource We keep the ability to access your location information.
8 sbj V Paccess−control “access to ”resource to sb We limit access to your personal data stored in our server to employee.
9 sbj V Pconsent to something You are consent to the collection of your personal information.

TABLE II
GENERAL SEMANTIC PATTERNS.

Privacy Policy

APK file

Description

privacy policy
analysis

Permission & code
analysis

Autocog/Whyper

Collected information

Sensitive APIs/URIs

Source to Sink Paths

Permission Alerts

Fusion
Analysis Inconsistency between expected

behaviors and real implementation

Third party library
privacy policies

Contains third party libraries

Uncollected information

Fig. 3. TAPVerifier’s Architecture

the privacy policy file and outputs a list of information that
will (not) be collected. Since many apps contain third-party
libraries that have separate privacy polices, TAPVerifier will
also process the third-party libraries’ privacy policies.

The permission and code analysis module (Section IV-C)
analyzes the manifest file and the dex file to construct an App
Property Graph (APG) for representing the app [33]. APGs
are stored in a graph database. Then the module will look for
sensitive APIs and third party libraries, and conduct depth first
traversal to identify paths from sources to sinks.

Since we focus on privacy policies, TAPVerifier reuses the
start-of-the-art systems (i.e., AutoCog and Whyper) to analyze
descriptions (Section IV-D). The output contains permission
alerts from these systems.

The fusion analysis module (Section IV-E) leverages the ex-
pected behaviors extracted from privacy policy and description
to detect the inconsistency between expected behaviors and
requested permissions. It also inspects the code to remove the
false alerts due to over-claim permissions.

B. Privacy Policy Analysis

1) Overview: We employ IE and NLP techniques to process
privacy policies. As shown in Fig. 4, the procedure has the
following major steps. The pre-processing step (SectionIV-B2)
extracts text from the privacy policy file in HTML format
and splits it into distinct sentences. The syntactic parsing
step (SectionIV-B3) parses distinct sentences and generates
syntactic trees and typed dependencies. The syntactic trees
and typed dependencies are stored in database.

The pattern matching step (SectionIV-B4) identifies useful
sentences by matching sentences with semantic patterns. The
collected information extraction step (SectionIV-B5) decides
the collected information from useful sentences. The negation
analysis step (SectionIV-B6) determines negative sentences
due to negation words. Finally, the privacy policy analysis
module outputs collected (uncollected) information.

2) Pre-processing: Since each privacy policy is saved in
HTML format, we use Beautiful Soup [34] to extract the
text content from the HTML file. For the ease of processing,
we only keep English letters and some specified punctuation
symbols (such as comma, period quotation marks, colon, etc),
and remove all non-ascii symbols and some meaningless ascii
symbols (such as “*”, “#”, “$”, etc.).

After that, we use the natural language toolkit (NLTK) to
split the text into sentences, because it has a pre-trained Punkt
tokenizer for English and contains a model for abbreviation
words, collocations, and words that start sentences [35].

3) Syntactic Parsing: For each sentence, TAPVerifier em-
ploys Stanford Parser [36] to parse it and generate the sen-
tence’s syntactic tree and its words’ dependency relations.
Such data serves as the basis for pattern matching and col-
lected information extraction. For example, Fig.5 shows the
result of parsing the sentence: “we would use your location,
account information when you use our app.”, which includes
a prase tree and the typed dependencies.

The parse tree starts from S that denotes the start of a
sentence or a clause. The Stanford Parser divides the sentence
into phrases, each of which occupies one line in the hierarchy

APP Privacy Policy

Third Party Lib
Privacy Policy

Pre Processing Syntactic Parsing Pattern Matching

Collected
Information
Extraction

Negation Analysis

DataBase

1: Privacy policy files
2: Distinct sentences
3: Parse tree and typed dependency
4: Semantic patterns
5: Useful sentences and the corresponding patterns
6: Useful sentence and collected information list
7: Negation analysis result

1

2

3

3 4

5 6

7

Semantic Patterns

Information
Differentiation

Collected
Information

Uncollected
Information

Fig. 4. The procedure of privacy policy analysis

structure. The parser also attaches part-of-speech(POS) tags
to words and phrases according to their syntax behaviors.
Common POS tags for English include noun, verb, adjective,
adverb, pronoun, etc. In Fig.5, NP means noun phrase, V P
denotes verb phrase, PRP indicates pronoun, V B represents
verb, and NN expresses noun. The typed dependencies offer
the relation information between words in multiple lines. Each
line starts with the relation name, followed by the governor
word and the dependent word. Common relations include
nsubj that means the subject, dobj that represents the direct
object, and root that points to the root word of the sentence.

Fig. 5. Parse tree and typed dependencies

4) Pattern Matching: Pattern matching is the core com-
ponent of our privacy policy analysis module. It identifies
all useful sentences and their corresponding semantic pat-
terns based on syntactic information extracted from syntactic
parsing step. Those sentences that cannot be mapped to any
semantic patterns will be removed. The useful sentences found
in this step and their corresponding semantic patterns are
the input of the collected information extraction step. The
pattern matching algorithm is shown in Algorithm 1, where if
a sentence matched any one of the 9 general semantic patterns
defined in Tab. II, it is a useful sentence.

Function getWord(query relation, query word) return-
s a set of words that have the relation query relation
with the word query word in typed dependencies. Func-
tion getV erbCate(query verb) is used to get the ver-
b set that query verb belongs to. For example, “col-

lect” belongs to V Pcollect. The output of Function
len(query set) is the number of words in query set. Func-
tion getWordAfter(str, keyword) searches for the sentence
str, and returns the first word after keyword.

Due to page limit, we just use pattern 1 and 2 as examples
to explain this algorithm. Most actions in the data flow model
contain semantic patterns in active voice (like general semantic
pattern 1 in Tab. II) and passive voice (like general semantic
pattern 2 in Tab. II). To match the general semantic pattern
1 and 2, we look up the dependency relationship, find the
word that has a “root” dependency relation with the node
Root − 0. Note that, in the following section, we call this
word root word. Since sample sentences 1 and 2 in Tab. II
use “collect” as root word, they will be matched in this step.

The category of the root word affects the action of the
corresponding sentence. For instance, verb “collect” indicates
that this sentence belongs to Data Collection, but “use”
indicates that this sentence belongs to Data Utilization. So
after getting root word, in line 2, we look up Tab. I to find
its corresponding verb set and determine the sentence’s action.

We use different methods to extract the collected informa-
tion from passive voice sentences and active voice sentences.
For an active voice sentence (e.g., Tab.II sample sentence 1),
the collected information is the object of root word, while
in a passive voice sentence (e.g., Tab. II sample sentence 2),
the collected information is the subject of root word. After
successfully matching root word, we check whether a sen-
tence uses passive voice in line 5 in order to determine which
general semantic patterns (i.e., 1 or 2) this sentence belongs
to. This is achieved by counting the number of words that have
“auxpass” dependency relation with root word in dependency
relation list (“auxpass” means “passive auxiliary”).

Note that, after identifying the semantic pattern according to
the root word, we check the action executor. If the semantic
pattern belongs to We, the action executor should not be You.
For example, if the root word belongs to V Pprovide, this
sentence’s action executor should not be We because only the
information provided by users will be considered.

5) Collected Information Extraction: For each useful sen-
tence, TAPVerifier locates the collected information according
to the semantic pattern that matches the sentence. In other

Input: str sent : sentence to match; Dep Relations : Typed Dependency
Relation list.

Output: 1,2,3,..,8,9: General semantic pattern number; 0: Match fail.
1 root word = getWord(root, Root − 0)
2 cate = getV erbCate(root word)
3 if cate == V P∗ then
4 // try to match pattern 1,2
5 if len(getWord(auxpass, root word)) == 0 then
6 return 1;
7 end
8 return 2;
9 else if cate == V Pcontain then

10 // try to match pattern 3
11 for sbj in getWord(nsubj, root word) do
12 for mod word in getWords(rcmod, sbj) do
13 if getV erbCate(mod word) == V Pcollect then
14 return 3;
15 end
16 end
17 end
18 else if cate == V Pallow then
19 // try to match pattern 4,5
20 passive words = getWord(auxpass, root word)
21 for verb ∈ getWord(xcomp, root word) do
22 if getV erbCate(verb) == V P∗ then
23 if len(passive words) == 0 then
24 return 4;
25 end
26 return 5;
27 end
28 end
29 else if cate == ADJaccess then
30 // try to match pattern 6
31 return 6;
32 else if “able to” in str sent ||“keep ability to” in str sent then
33 // try to match pattern 7
34 if ”able to” in str sent then
35 verb = getWordAfter(str sent, ”able to”)
36 else
37 verb = getWordAfter(str sent, ”keep ability to”)
38 end
39 if getV erbCate(verb) == V Paccess then
40 return 7;
41 end
42 else if cate == V Paccess−control&&“access to” in str sent then
43 // try to match pattern 8
44 return 8;
45 else if cate == V Pconsent then
46 // try to match pattern 9
47 verb = getWord(prep to, root word)
48 if V P∗inverb then
49 return 9;
50 end
51 else
52 return 0; // all pattern match fail, return 0;
53 end

Algorithm 1: Semantic Pattern Match

words, once a general semantic pattern is determined, TAPVer-
ifier looks for the corresponding resource as shown in Tab.II
in the parse tree. Note that we do not extract the noun phrases
in the conditional clauses. Moreover, we remove stop words
for improving the accuracy.

To improve the performance, we adopt ARKref [37] to
conduct the co-reference resolution. If one pronoun denotes
collected information, the corresponding noun will be added
to the list of collected information.

6) Negation Analysis: When performing the negation anal-
ysis, we consider negative determiners (e.g., “no”, “neither”),
negative adjectives (e.g., “unable”, “improper”), negative
nouns (e.g., “nobody”, “none”), and verbs (e.g., “prevent”,
“prohibit”, “forbid”) with negative connotation, and adverbs
(e.g., “hardly”, “scarcely”, “barely”) [38]. If the subject or
main verb related words contain negative word, we regard this

sentence as a negative one.
7) Privacy Policies of Third Party Libraries: Since many

apps contain third party libraries that have their own privacy
policies, given an app with third party libraries, TAPVerifier
will analyze their privacy policies individually. To prepare the
database for popular third party libraries’ privacy policies, we
download the SDK and the privacy policies of top 83 Ad
libraries listed in [39], 9 social libraries [40], and 24 most
commonly used development tools [41]. After filtering out
the privacy policies written in languages other than English,
we use TAPVerifier to analyze the privacy policies of 46 Ad
libraries, 9 social libraries, and 24 development tools.

C. Code and permission analysis

TAPVerifier improves our static analysis framework, Vul-
Hunter [33], and employs the enhanced version to analyze
each app without source code.

1) Static analysis module: Given an APK file, TAPVer-
ifier extracts the AndroidManifest.xml and the dex
file. If the app is hardened, we leverage the unpacking
tool DexHunter [42] to recover the dex file. By parsing
the AndroidManifest.xml file, TAPVerifier finds out all
components and the required permissions. Then, we use Soot
[43] to transform the Dalvik code in dex file to the interme-
diate representation Shimple. Based on the class hierarchy and
the intermediate representation, we create an Android property
graph (APG) [33] that integrates abstract syntax tree (AST),
interprocedure control-flow graph (ICFG), method call graph
(MCG), and system dependency graph (SDG) of the app.

Since Android is event-driven, there exists implicit control
flow transitions through the Android framework [44]. To im-
prove the precision of our static analysis system, we leverage
the transitions found by EdgeMiner [44] to enhance our MCG,
ICFG, and SDG. The Inter-Component Communication (ICC)
model of Android enables the components to exchange data
through Intent. To handle the inter-component communication,
we use IccTA [45] to map a component’s launch functions to
the corresponding callbacks. FlowDorid [46] is the state-of-art
static taint analysis system. The source to sink paths found by
FlowDroid are also included when building SDG.

To find third-party libraries used in the app, we maintain a
white list which contains class name prefixes of common third
party libraries. When enumerating all class names contained
in an app, if a class name has the same the prefix as a library,
we think that the corresponding third-party library is used.

2) Traversals: After building graphs for each app, we
perform two kinds of traversals to collect information.

(1) APIs and content providers protected by permission.
To find the information obtained by APIs, we check all

invoke_stmt and assign_stmt statements. If source
functions are called, we infer that the corresponding infor-
mation is used by the app.

To find the information obtained by content provider, we
use data dependency relation as the directed edge and do
depth-first search from the URI parameter of the content
provider query functions(e.g., ContentResolver.Query). All

possible URI strings and URI fields appear on the search paths
are recorded. If sensitive URI strings(or URI fields) appear on
the path, we expect that the corresponding information is used.

Currently, TAPVerifier has 128 source functions, which
can get the following information: device ID, IP address,
cookie, location, account, contact, account, calendar, telephone
number, software version, video, and audio, running task,
application information. We also select sensitive 9 URI strings
and 476 URI fields for getting information from content
provider. More will be included in future work.

(2) Path from source to sink.
The existence of a source-to-sink path means that the app

collects some information and delivers to sinks. Apart from
the source functions and related URIs used in (1), we select
54 sink functions which transfer data to SMS, log, file, and
Internet. Since not all source-to-sink paths are executable at
runtime, we use Joogie [47] to detect all infeasible methods
of apps. If a path contains infeasible method, we remove it
from the result.

3) Permission analysis: Certain permissions are required
when an app calls sensitive APIs or queries content providers
with some URIs. To find the permissions that an app actually
requires to call APIs and use content providers, we employ
the mapping between the APIs (URI strings and URI fields)
and the permissions provided by PScout [48]. Similar to (1),
we search all called APIs, used URI strings and fields of the
app. If a specified API or URI is used, we conclude that the
corresponding permission is required by the app.

D. Description Analysis

Since AutoCog handles more permissions with better per-
formance than Whyper [16], we use it to process descriptions.
AutoCog maps the sentences of a description to permissions.
Its description-to-permission relatedness (DPR) module pro-
vides a list of governor-dependent pairs for each permission.

Given a description, TAPVerifier obtains the text content
from the HTML file and then splits the text into distinct sen-
tences. After using the Stanford parser to parse each sentence,
TAPVerifier extracts all possible governor-dependent pairs
from the sentence and compares them with the pairs provided
by AutoCog’s DPR module. If the comparison result exceeds
the threshold, this sentence is mapped to the corresponding
permission. After processing all sentences and all permissions,
if one permission cannot be mapped to any sentence in the
description, AutoCog raises an alert [16].

E. Fusion Analysis

Since existing systems like AutoCog and Whyper have
contrasted an app’s description and its permissions, the fu-
sion analysis module focuses on privacy policy and code.
We describe the methods in next section, and present the
experimental results and insights in Section V.

1) Use privacy policy to explain the necessary of permis-
sion: To map privacy policy to permission, we correlate the
collected information in privacy policies with the resources
protected by permissions. More precisely, for each permission,

we get the APIs under its protection using PScout [48] and
define the corresponding resources by analyzing the permis-
sion’s description and the APIs’ document. For example,
the permission RECORD_AUDIO is mapped to resources like
audio, microphone, speech, etc. This step is similar to building
the semantic graph in Whyper but we do not need to enumerate
the corresponding verbs. Then, we calculate the similarity of
a pair of the collected information from privacy policies and
the resource from permissions using ESA [49], which is a
WiKi-based semantic analysis system. If the result exceeds the
threshold, the collected information (or the sentence in privacy
policies) can be mapped to the resource (or the permission).
We currently set the threshold to be 0.5.

2) Use privacy policy to remove false positives: When de-
velopers request some permissions and mention such behaviors
in an app’s privacy policy instead of its description, we can
leverage privacy policy to remove false alerts resulted from
description analysis. More precisely, after getting the alerts
generated by the description analysis module (i.e., AutoCog),
TAPVerifier locates the suspicious permissions that can be
explained by privacy policy and then removes them, thus
improving the accuracy of description analysis module.

3) Use code to remove false positives: Since apps may
claim more permissions than they need [19], we cannot map
their descriptions and/or privacy policies to some permissions.
To remove such false positives, given a permission and an
app, we perform traversals on the app’s method call graph
and system dependency graph to check whether it uses APIs
or accesses content providers protected by the permission. If
the query returns null, the permission is over-claimed by the
app and related alerts will be removed.

V. EXPERIMENTS AND EVALUATION

We have implemented TAPVerifier in 6,381 lines python
code and 11,078 lines java code. We have also developed
a crawler in 1,334 line python codes to automatically fetch
apps’ APK files, descriptions, privacy policies from Goolge
play market [50].

In this section, we use experiments to answer the following
questions:
Q1: How is the accuracy of our privacy policy analysis
module? More precisely, can it extract all useful sentences
from privacy policies correctly? (Section V-B)
Q2: How many false alerts generated by description analysis
module can be removed by using privacy policy? (Section
V-C1, V-C2)
Q3: How many false alerts generated by description analysis
module can be removed by using code? (Section V-D)

A. Data Set

We randomly select 1,197 apps from Google Play as our
dataset. All these selected apps have descriptions and privacy
policies in English. We use TAPVerifier to process the descrip-
tions, and privacy policies of these apps. The APK’s code level
information are all put into graph database.

B. Accuracy of TAPVerifier’s Privacy Policy Analysis

To evaluate the accuracy of TAPVerifier’s privacy policy
analysis module, we randomly select 100 privacy policies
from 1197 samples and split them into distinct sentences.
Then, we divide these sentences into two groups: one contains
useful sentences from which the collected information can be
extracted and the other one contains useless sentences. The
processing result of these sentences are manually verified by
three researchers who are not authors of this paper. Before
the manual verification, we explain to them the meaning
of privacy policy and the definitions of useful sentence and
useless sentence. Each sentence is checked by three people
and we use the majority opinion as the ground truth.

The privacy policy analysis module outputs 4,576 useful
sentences and 5,501 useless sentences. The manual verification
shows that among 4,576 useful sentences, 82 sentences are
useless sentence (i.e., false positive), which account for 1.7%.
Moreover, among 5,501 useless sentences, 104 sentences are
useful sentences (i.e., false negative), which account for 1.9%.
Then, our module’s precision is 98.2%, recall rate is 97.7%,
F-score is 97.9%.

Cause of false positives. One major cause is the hidden
action executor in imperative sentences. For example, when
processing the imperative sentence ”please read our summary
of the changes.”, although TAPVerifier successfully matches
the verb ”read”, it decides that the action is executed by the
app due to the lack of real action executor in this sentence, and
therefore regards it as a useful sentence by mistake. However,
the ”read” action is conducted by the user.

Cause of false negatives. One major cause is due to the
rare patterns that are not included in TAPVerifier. For example,
the sentence ”you will be required to submit a valid user
ID and password for authentication” describes that the user
will submit personal information to server. However, in our
semantic pattern defined for the user, we only consider the
sentence whose root word is in V Pprovide. Since this sen-
tence’s root word is “require”, it is missed. To remove such
false negative, we need to add the word “require” to V Pallow

so that “be required to” will be matched and processed like
“be allowed to”.

C. Use privacy policy to remove false alerts

AutoCog raises an alert if a permission cannot be mapped to
the description. However, some alerts are false alerts because
the permissions can be mapped to the privacy policies or the
permissions are over-claimed.

1) Using Apps’ Privacy Policies: Tab. III shows the number
(percentage) of Autocog alerts we can remove by using app
privacy policies through TAPVerifier(i.e., column “PP Map
Num (Percentage)”) and the precision of TAPVerifier when
mapping privacy policy to permission (i.e., column “TAPVer-
ifier Precision”).

We can see that employing privacy policies
can remove false alerts for all but the permission
RECEIVE_BOOT_COMPLETED, which cannot be mapped
to any privacy policy. But, the effectiveness of privacy

policies is diverse for different permissions. For example,
they can remove 109 false alerts for the permission
WRITE_EXTERNAL_STORAGE. However, only 29 false
alerts can be removed for the permission GET_ACCOUNTS.
The reason is although many privacy policies contain account
related sentences, the majority of them refer to account
registration or sign up instead of accessing accounts in
smartphone. Therefore we filter out such sentences.

Permission AutoCog PP Map Num TAPVerifier
Alert Num (Percentage) Precision

WRITE SETTINGS 74 6 (8.1%) 85.7% (6/7)
READ CONTACTS 98 26 (26.5%) 83.8 % (26/31)
RECORD AUDIO 89 5 (5.6%) 100.0% (5/5)

WRITE EXTERNAL STORAGE 582 109 (18.7%) 88.6 % (109/123)
WRITE CONTACTS 53 17 (32.1%) 73.9 % (17/23)

ACCESS COARSE LOCATION 243 51 (21.0%) 98.0 % (51/52)
CAMERA 201 30 (15.0%) 93.8 % (30/32)

RECEIVE BOOT COMPLETED 184 - -
GET ACCOUNTS 463 29 (6.3%) 100.0% (29/29)

READ CALENDAR 31 6 (19.4%) 85.7 % (6/7)
ACCESS FINE LOCATION 203 40 (19.7%) 93.0 % (40/43)

TABLE III
NUMBER (PERCENTAGE) OF AUTOCOG ALERTS WE CAN REMOVE

THROUGH APP PRIVACY POLICY AND THE PRECISION OF APPVERIFER
WHEN MAPPING PRIVACY POLICY TO PERMISSION.

False positives when mapping privacy policy to permis-
sion. As you can see in Tab. III, the precision of TAPVerifier
is not 100%. After checking the errors, we find that such
false positives are caused by ESA. For example, since “credit
card number” have a high semantic similarity with “sd card”,
it is mapped to permission WRITE_EXTERNAL_STORAGE.
ESA transforms a text into a series of related words before
calculating the semantic similarity value, and such wrong
matching is unavoidable.

2) Using Third Party Libraries’ Privacy Policies: We also
use third party libraries’s privacy policies to remove false
alerts. Since they cannot be mapped to all permissions, we
show the result of relevant permissions in Tab.IV. The result
shows that such privacy policies can remove many false alerts
due to the permissions ACCESS_COARSE_LOCATION,
ACCESS_FALSE_LOCATION, READ_CONTACTS and
WRITE_EXTERNAL_STORAGE.

Permission Autocog Alert PP Map Num (Percentage)
READ CONTACTS 98 54 (55.1%)
RECORD AUDIO 89 1 (1.1%)

WRITE EXTERNAL STORAGE 582 39 (6.7%)
ACCESS COARSE LOCATION 243 152 (62.5%)

ACCESS FINE LOCATION 203 133 (65.5%)

TABLE IV
NUMBER (PERCENTAGE) OF AUTOCOG ALERTS WE CAN REMOVE

THROUGH THE PRIVACY POLICIES OF THIRD PARTY LIBRARIES.

D. Use code to remove false alerts

Tab. V shows the number of false alerts that are generated
by AutoCog but can be removed because they are over-claimed
permissions. The column “#AutoCog Alert” lists the number

of AutoCog alerts for each permission. The column ”Lib Use”
shows the number of alert apps whose third library uses such
permission. We maintain a white list of third party libraries.
The column “Total Use” shows the number of alerted apps that
use this permission in its code. The column “#Over Claim
Num” illustrates the number of alerted apps that over-claim
certain permissions. The result clearly shows that many alerts
can be removed after locating over-claim permissions.

E. Answers to RQs

We can use the number of removed false alerts to measure
the information that can be provided by privacy policy and
bytecode for accessing description-to-behavior fidelity. More
precisely, we compare Tab.III and Tab.V to answer RQ1 and
RQ2.

Answer to RQ1: For some permissions, privacy policy can
supply more information for accessing description-to-behavior
fidelity, including:READ_CONTACTS, WRITE_CONTACTS,
WRITE_EXTERNAL_STORAGE. For location related
permissions, (i.e., ACCESS_COARSE_LOCATION,
ACCESS_FINE_LOCATION), both privacy policy and
bytecode can provide more information. Moreover,
privacy policy cannot provide information related to
REVEIVED_BOOT_COMPLETED related information, but
bytecode can.

Answer to RQ2:For some permissions, byte-
code can provide more information for mea-
suring description-to-behavior fidelity, including:
WRITE_SETTING, RECORD_AUDIO, CAMEAR,
RECEIVE_BOOT_COMPLETED, GET_ACCOUNTS,
READ_CALENDAR.

VI. THREATS TO VALIDITY

Construct validity. Some threats will affect the construct va-
lidity of our system, for example, TAPVerifier only considers
verbs of five privacy policy templates. To mitigate this threat,
we will analyze more templates in future work.

Our static taint analysis system cannot verify paths dy-
namically, and hence dead code may cause false alerts. To
reduce this threat, we integrate the tool Joogie [47] to remove
paths that contain infeasible methods. At the same time, the
static analysis module cannot identify the APIs used by app
and the APIs used by injected malware. Since ResDroid
[51], a repackaged app detection tool, can find the major
packages by using PageRank algorithm, we will integrate it
into TAPVerifier in future work.

When we use the privacy policies of third party libs to
remove false positives of AutoCog, our system do not check
the user of the resources. This may affect the correctness of
the fusion analysis module. For example, if the resource is
used by one third party lib, but the corresponding resource is
only declared by another third party lib. In this case, the alert
should not be removed.

The last threat in system design is that we do not analyze the
action of each permission. For example, if the app requires per-
mission WRITE_CONTACTS, but the privacy policy declares

“we will read contacts”, then our system will not send alert.
However, the privacy policy and permission are inconsistent.
To avoid such errors, we will enhance the permission and code
analysis module by extracting the actions of permissions.
Internal validity. The major threat to internal validity is the
correctness of the ground-truth when we check the useful
sentences and the permissions identified by TAPVerifier. To
mitigate this threat, we ask three researchers to check the
processing results at the same time. In future work, we will
invite more people with experiences in handling privacy policy
to create corpus for verification.
External validity. The major threat to external validity is
the representativeness of our dataset. Currently, we randomly
select 1,197 sample apps, and wewill add more apps into the
data set in future work.

VII. RELATED WORK

A. Text Analysis for Mobile Security

The descriptions of apps are analysed for mobile security.
Whyper [15] and AutoCog [16] extract word pairs from
description and then map them to permissions requested by
apps. The difference is that Whyper’s semantic model is
built by manually analyzing API documents while AutoCog
creates it by conducting statistical analysis on a large number
descriptions.

CHABADA [17] combines description and the called APIs
to find abnormal apps. It uses LDA to extract topic words
from descriptions for grouping apps into different clusters.
Then it identifies abnormal apps with abnormal API usages
in the same cluster. Note that, CHABADA is different from
Whyper and AutoCog since CHABADA finds abnormal APIs
by comparing the app with other apps in the same cluster.
However, Whyper and AutoCog find suspicious permissions
by checking the descriptions of apps. ACODE [52] first finds
APIs/URIs used in code, and then it uses keywords search
technique to find related sentences in the description of the
app. The reviews of apps can also be used. AUTOREB [53]
searchs keywords in review and then uses a trained spare linear
support vector to map the review to security-related behaviors.
Slavin et al. detected the sensitive APIs called in code but
are not mentioned in privacy policy [54]. Different from
TAPVerifier, they manually extract data collection phrases
from many privacy policies and do not consider retrieving
sensitive information through content providers.

B. Mobile Malware Detection Based on Static Analysis

Various features that can be extracted by static analysis
have been proposed to detect mobile malware. DroidSIFT
[4] represents app with weighted contextual API dependen-
cy graphs and then uses Naive Bayes classifier to identify
malware family. AppContext [55] extracts security-sensitive
API calls and their context information as features, and then
uses SVM to determine whether an action is legitimate or not.
Apposcopy [6] uses inter-component call graph to represent
the control flow property and then uses static taint analysis
to get the data flow property to represent an app. Some other

Permission #Autcog Permission Used in Code Over Claim Num
Alert Lib Use Total Use (Percentage)

WRITE SETTINGS 74 4 35 39 (52.7%)
READ CONTACTS 98 0 82 16(16.3%)
RECORD AUDIO 89 0 65 24 (27.0%)

WRITE EXTERNAL STORAGE 582 240 518 64 (11.0%)
WRITE CONTACTS 53 0 47 6(11.3%)

ACCESS COARSE LOCATION 243 103 188 55 (22.6%)
CAMERA 201 0 119 82(40.8%)

RECEIVE BOOT COMPLETED 184 - - 29 (15.8%)
GET ACCOUNTS 463 7 229 234(50.5%)

READ CALENDAR 31 2 17 14 (45.2%)
ACCESS FINE LOCATION 203 77 164 39 (19.2%)

TABLE V
NUMBER OF APPS AUTOCOG ALERT BUT ARE OVER-CLAIMED PERMISSIONS IN FACT. THE COLUMN “OVER CLAIM NUM” REFERS TO NUMBER OF APPS

AUTOCOG ALERT BUT DO NOT USE THE PERMISSION IN CODE.

static analysis systems focus on detecting the privacy leaks
in app. AAPL [56] uses the conditional data flow analysis
and joint data flow analysis to find data leakages in apps. It
also leverages the similar apps recommended by Google Play
to remove false alarms. SUPOR [57] uses NLP techniques
to identify sensitive input fields and conducts taint analysis on
the data originated from sensitive input fields to detect privacy
leakage. UI-Picker [58] extracts all text labels in UI and sends
them to a supervised learning classifier to determine the input
is sensitive or not.

C. Privacy Policy Analysis
Privee performs coarse-grained analysis on privacy policies

by classifying them into six categories [20]. Costante et
al. performed a sentence-level analysis to determine what
information will be collected by a web site [59]. It divides
the action verbs in three groups and defines five semantic
patterns in an ad-hoc manner. Massey et al. used topic model
to extract key words from 2,061 policy documents [23] and
proposed a taxonomy that can be applied to many domains
[60]. Recently, HMM is used to align the sections in privacy
policies according to their contents [61], [62]. Breaux et al.
evaluate the time and resource required for crowdsourcing
the tasks of analyzing privacy policies [63]. Moreover, they
proposed Eddy to find conflicts between privacy policies [64].
Since not all apps in Google Play provide privacy policies,
a system named AutoPPG is developed [65]. AutoPPG can
leverage static analysis to find sensitive API/URIs used in
code and then utilize NLP technique to generate privacy policy
sentences for developers.

VIII. CONCLUSION

We propose involving privacy policy and bytecode to en-
hance malware detection systems that rely on checking the
description-to-behavior fidelity in apps. More precisely, we
propose a novel data flow model for analyzing privacy policy,
and develop TAPVerifier for carrying out investigation of
privacy policy, bytecode, description, and permissions, and
conducting the cross-verification among them. The experimen-
tal result through real apps shows that our privacy policy anal-
ysis module can achieve 97.7% recall and 98.2% precision.

Moreover, TAPVerifier can remove 8.1%-65.5% false alerts
generated by original systems.

IX. ACKNOWLEDGMENT

We thank the anonymous reviewers for their quality re-
views and suggestions. This work is supported in part by the
Hong Kong GRF (No. PolyU 5389/13E), the National Natural
Science Foundation of China (No. 61202396), the HKPolyU
Research Grant (No. G-UA3X), the Hong Kong ITF (No.
UIM/285), and China Postdoctoral Science Foundation (No.
2015M582663).

REFERENCES

[1] Lookout Inc., “2014 mobile threat report,” http://goo.gl/8mD8tz, 2015.
[2] IDC Corporate, “Android and ios squeeze the competition, swelling to

96% of the smartphone operating system market for both 4q14 and
cy14,” http://goo.gl/Lo9cwq, Feb. 2015.

[3] K. Chen, N. Johnson, V. Silva, S. Dai, K. MacNamara, T. Magrino,
E. Wu, M. Rinard, and D. Song, “Contextual policy enforcement in
android applications with permission event graphs,” 2013.

[4] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android mal-
ware classification using weighted contextual api dependency graphs,”
in Proc. ACM CCS, 2014.

[5] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket,” in Proc. NDSS, 2014.

[6] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in Proc.
ACM FSE, 2014.

[7] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets,” in Proc. NDSS, 2012.

[8] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
Scalable and accurate zero-day android malware detection,” in Proc.
ACM MobiSys, 2012.

[9] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth,
“Taintdroid: An information-flow tracking system for realtime privacy
monitoring on smartphones,” in Proc. OSDI, 2010.

[10] L. Yan and H. Yin, “Droidscope: Seamlessly reconstructing OS and
Dalvik semantic views for dynamic Android malware analysis,” in Proc.
USENIX Security, 2012.

[11] C. Qian, X. Luo, Y. Shao, and A. T. Chan, “On tracking information
flows through jni in android applications,” in Proc. DSN, 2014.

[12] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic large-
scale dynamic analysis of android applications,” in Proc. CODASPY,
2013.

[13] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio,
V. Veen, and C. Platzer, “Andrubis: Android malware under the magni-
fying glass,” http://goo.gl/f7Ci0k, 2014.

[14] K. Tam, S. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Automatic
reconstruction of android malware behaviors,” 2015.

[15] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards
automating risk assessment of mobile applications,” in Proc. USENIX
Security, 2013.

[16] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description to permission fidelity in android applications,”
in Proc. ACM CCS, 2014.

[17] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proc. ICSE, 2014.

[18] “The state of mobile app privacy policies,” http://goo.gl/2A18Wj.
[19] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android

permissions demystified,” in Proc. ACM CCS, 2011.
[20] S. Zimmeck and S. M. Bellovin, “Privee: An architecture for automati-

cally analyzing web privacy policies,” in Proc. USENIX Security, 2014.
[21] “Upload and distribute apps,” https://support.google.com/googleplay/android-

developer/answer/113469?hl=en.
[22] Trademob, “How to write an app description and drive more download,”

http://goo.gl/q1mJ2k, 2013.
[23] A. Anton, J. Earp, Q. He, W. Stufflebeam, D. Bolchini, and C. Jensen,

“Financial privacy policies and the need for standardization,” IEEE
Security & Privacy, vol. 2, no. 2, 2004.

[24] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for
classifying and categorizing android sources and sinks,” in Proc. NDSS,
2014.

[25] A. Anton and J. Earp, “A requirements taxonomy for reducing web site
privacy vulnerabilities,” Requirements Engineering, vol. 9, no. 3, 2004.

[26] FreePrivacyPolicy.com, “Create a free custom privacy policy,”
http://www.freeprivacypolicy.com/, 2015.

[27] termsfeed.com, “Sample privacy policy template,”
https://termsfeed.com/blog/sample-privacy-policy-template/, 2015.

[28] seqlegal.com, “Privacy policy,” http://www.seqlegal.com/free-legal-
documents/privacy-policy, 2015.

[29] upcounsel.com, “Privacy policy template,”
https://www.upcounsel.com/privacy-policy-template, 2015.

[30] shopify.com, “Personalized privacy policy generator,”
https://ecommerce.shopify.com/policy-generator, 2015.

[31] “Wordnet,” http://wordnet.princeton.edu/.
[32] R. Girju, A. Badulescu, and D. Moldovan, “Learning semantic con-

straints for the automatic discovery of part-whole relations,” in Proc.
NAACL, 2003.

[33] C. Qian, X. Luo, Y. Le, and G. Gu, “Vulhunter: toward discovering
vulnerabilities in android applications,” IEEE Micro Mag., vol. 35, no. 1,
2015.

[34] “Beautiful soup,” http://goo.gl/0Lh7Dk.
[35] “Natural language toolkit,” http://www.nltk.org/.
[36] D. Cer, M. Marneffe, D. Jurafsky, and C. Manning, “Parsing to stanford

dependencies: Trade-offs between speed and accuracy,” in Proc. LREC,
2010.

[37] B. OConnor and M. Heilman, “Arkref: A rule-based coreference reso-
lution system,” arXiv:1310.1975, 2013.

[38] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated ex-
traction of security policies from natural language software documents,”
in Proc. ACM FSE, 2012.

[39] AppBrain, “Top 80 popular ad libraries,” http://goo.gl/GBhXOi, 2015.
[40] “Android social sdks,” http://goo.gl/Bsth3A.
[41] “Android development tools,” https://goo.gl/hRTlMW.
[42] X. L. Yueqian Zhang and H. Yin, “Dexhunter: Toward extracting hidden

code from packed android applications,” in Proc. ESORICS, 2015.
[43] R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,

“Soot-a java bytecode optimization framework,” in Proc. CASCON,
1999.

[44] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and
Y. Chen, “EdgeMiner: Automatically Detecting Implicit Control Flow
Transitions through the Android Framework,” in Proc. NDSS, 2015.

[45] L. Li, A. Bartel, T. Bissyande, J. Klein, Y. Traon, S. Arzt, R. Siegfried,
E. Bodden, D. Octeau, and P. Mcdaniel, “Iccta: Detecting inter-
component privacy leaks in android apps,” in Proc. ICSE, 2015.

[46] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proc. PLDI, 2014.

[47] S. Arlt, P. Rümmer, and M. Schäf, “Joogie: From java through jimple
to boogie,” in Proc. SIGPLAN, 2013.

[48] K. Au, Y. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing the android
permission specification,” in Proc. ACM CCS, 2012.

[49] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis.” in Proc. IJCAI, 2007.

[50] “Google play unofficial python api,”
https://github.com/egirault/googleplay-api, 2015.

[51] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards a scalable
resource-driven approach for detecting repackaged android applications,”
in Proc. ACSAC, 2014.

[52] T. Watanabe, M. Akiyama, T. Sakai, H. Washizaki, and T. Mori,
“Understanding the inconsistencies between text descriptions and the
use of privacy-sensitive resources of mobile apps,” in Proc. SOUPS,
2015.

[53] D. Kong, L. Cen, and H. Jin, “Autoreb: Automatically understanding
the review-to-behavior fidelity in android applications,” in Proc. CCS,
2015.

[54] R. Slavin, X. Wang, M. B. Hosseini, W. Hester, R. Krishnan, J. Bhatia,
T. D. Breaux, and J. Niu, “Toward a framework for detecting privacy
policy violation in android application code,” http://goo.gl/E13Fst, 2015.

[55] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcon-
text: Differentiating malicious and benign mobile app behavior under
contexts,” in Proc. ICSE, 2015.

[56] K. Lu, Z. Li, V. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, W. Lee, and
G. Jiang, “Checking more and alerting less: Detecting privacy leakages
via enhanced data-flow analysis and peer voting,” in Proc. NDSS, 2015.

[57] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang, “Supor:
Precise and scalable sensitive user input detection for android apps,” in
Proc. USENIX Security, 2015.

[58] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “Uipick-
er: User-input privacy identification in mobile applications,” in Proc.
USENIX Security, 2015.

[59] E. Costante, J. Hartog, and M. Petkovic, “What websites know about
you,” in Proc. DPM, 2012.

[60] A. Massey, J. Eisenstein, A. Anton, and P. Swire, “Automated text
mining for requirements analysis of policy documents,” in Proc. IEEE
RE, 2013.

[61] R. Ramanath, F. Liu, N. Sadeh, and N. Smith, “Unsupervised alignment
of privacy policies using hidden markov models,” in Proc. ACL, 2014.

[62] F. Liu, R. Ramanath, N. Sadeh, and N. Smith, “A step towards usable
privacy policy: Automatic alignment of privacy statements,” in Proc.
COLING, 2014.

[63] T. Breaux and F. Schaub, “Scaling requirements extraction to the crowd:
Experiments on privacy policies,” in Proc. IEEE RE, 2014.

[64] T. Breaux, H. Hibshi, and A. Rao, “Eddy, a formal language for
specifying and analyzing data flow specifications for conflicting privacy
requirements,” Requirements Engineering, vol. 19, no. 3, 2014.

[65] L. Yu, T. Zhang, X. Luo, and L. Xue, “Autoppg: Towards automatic
generation of privacy policy for android applications,” in Proc. SPSM,
2015.

