
IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 1

Predicate Detection in Asynchronous
Distributed Systems: A Probabilistic Approach

Weiping Zhu; Jiannong Cao, Fellow, IEEE; and Michel Raynal

Abstract —In an asynchronous distributed system, a number of processes communicate with each other via message passing
that has a finite but arbitrary long delay. There is no global clock in that system. Predicates, denoting the states of processes and
their relations, are often used to specify the information of interest in such a system. Due to the lack of a global clock, the temporal
relations between the states at different processes cannot be uniquely determined, but have multiple possible circumstances.
Existing works of predicate detection are based on the definitely modality or the possibly modality, denoting that a predicate
holds in all of the possible circumstances or in one of them, respectively. No information is provided about the probability that
a predicate will hold, which hinders the taking of countermeasures for different situations. Moreover, the detection is based on
single occurrence of a predicate, so the results are heavily affected by environmental noise and detection errors. In this paper, we
propose a new approach to predicate detection to address these two issues. We generalize the definitely and possibly modalities
to an occurrence probability to provide more detailed information, and further investigate how to detect multiple occurrences of a
predicate. We propose a unified algorithm framework for detecting various types of predicates and demonstrate the use of it for
three typical types of predicates, including simple predicates, simple sequences, and interval-constrained sequences. Theoretical
proofs and simulation results show that our approach is effective and outperforms existing approaches.

Index Terms —Predicate detection, asynchronous distributed systems, occurrence probability, occurrence times.

✦

1 INTRODUCTION

IN an asynchronous distributed system, a collection
of distributed computation entities called ”process-

es” communicate with each other via message pass-
ing. The message passing has a finite but arbitrary
long delay. No global clock exists in that system.
The communication requirement in such a system is
quite relaxed, and hence suitable for a wide range of
applications, including network management [1], [2],
[3], circuit design [4], [5], robot control [6], [7], [8], and
pervasive computing [9], [10]. Predicates, denoting
the states of processes and their relations, are often
used to specify the information of interest in these
applications. For example, a potential explosion alarm
of natural gas based on two sensors can be specified
by a predicate: “the value of the temperate sensor is
greater than 580oc and at the same time the value of the
concentration sensor is between 4.4% and 17% (by volume
of air).”

Detecting predicates in asynchronous distributed
systems is quite challenging. Due to the lack of a
global clock, the sequence of global states that a

• Weiping Zhu is with the International School of Software, Wuhan
University, China and Department of Computing, The Hong Kong
Polytechnic University, Hong Kong
E-mail: cswpzhu@gmail.com.

• Jiannong Cao is with the Department of Computing, The Hong Kong
Polytechnic University, Hung Hom, Kowloon, Hong Kong.
E-mail: csjcao@comp.polyu.edu.hk.

• Michel Raynal is with the Institut Universitaire de France & IRISA-
INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France.
E-mail: raynal@irisa.fr.

system has passed in a execution of a program, called
an observation, has different possibilities. A predicate
may hold in some of the possible observations, but
may not in others.

In existing works, the definitely and possibly modal-
ities are used to enable solutions to detect predicates
[11], [12]. It is claimed that a predicate definitely holds
if it can be detected in all observations, and possibly
holds if it can be detected in at least one observation.
These modalities work well in their original target
applications, program testing and debugging, but are
insufficient for many other applications, such as en-
vironmental monitoring and network analysis. There
are two issues that need to be addressed: First, the
definitely modality is too strict and the possibly modal-
ity provides limited information. It is highly desirable
to determine the probability that a predicate will
hold. We call this the occurrence probability. Second,
considering that environmental noise and detection
errors exist frequently, a more reasonable practice is
to take into account the multiple occurrence of a
predicate rather than a single occurrence. For each
occurrence of the predicate, we can specify its oc-
currence probability. This requirement exists in many
applications. For example, in a smart home [13], in
order to infer that a person is reading and then adjust
the light at home, it is necessary to detect that the
person turns the pages of a book for a number of
times with a proper occurrence probability. Another
example can be found in social networks [14], where
the friendship between two persons can be inferred
by using the number of times that they meet, and
each time they meet is detected with a high level of

This is the Pre-Published Version.

The following publication W. Zhu, J. Cao and M. Raynal, "Predicate Detection in Asynchronous Distributed Systems: A Probabilistic Approach,"
in IEEE Transactions on Computers, vol. 65, no. 1, pp. 173-186, 1 Jan. 2016 is available at https://doi.org/10.1109/TC.2015.2409839

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 2

probability.
In this paper, we propose a new predicate detection

approach to address the aforementioned two issues.
We first extend definitely and possibly modalities to
a more generic occurrence probability. The definitely
modality corresponds to an occurrence probability of
1, and the possibly modality corresponds to occurrence
probabilities of between 0 and 1. We further introduce
the concept of the occurrence times of a predicate
subject to an occurrence probability for each single
detection. We propose a unified algorithm framework
to ease the detection of various kinds of predicates,
considering the occurrence probability and occurrence
times. Three typical predicates, including simple pred-
icates, simple sequences, and interval-constrained se-
quences, are used to demonstrate the use of our al-
gorithm framework. Theoretical proofs and extensive
simulations are conducted to validate the effectiveness
of the proposed algorithms. In summary, this paper
makes the following contributions:

• We generalized the definitely and possibly modali-
ties to an occurrence probability, providing more
detailed information to the user.

• We proposed the concept of the occurrence times
of a predicate subject to an occurrence probability,
which is more reliable than focusing on the single
occurrence of a predicate.

• We designed a unified algorithm framework for
the detection of various kinds of predicates, based
on the occurrence probability and occurrence
times.

• We proposed detailed detection algorithms
for simple predicates, simple sequences, and
interval-constrained sequences. The evaluation
results show that the proposed algorithms work
effectively and outperform existing approaches.

The rest of the paper is organized as follows:
Section 2 describes the preliminary work. We then
compose a research framework for predicate detection
in section 3 and formulate our problem in section 4.
Our algorithm is proposed in section 5 and further
discussed in section 6. Simulation results are reported
in section 7. Related works are summarized in sec-
tion 8. We conclude the paper in section 9.

2 PRELIMINARY

We first present some preliminary work on predicate
detection in asynchronous distributed systems.

2.1 Asynchronous Distributed Systems

An asynchronous distributed system includes a num-
ber of n processes Pi (i = 1...n) and an underly-
ing communication network. The communication net-
work facilitates the exchanging of messages among
processes, which involves a finite but arbitrary de-
lay. During the execution of a distributed program

0.3
0

0.7

1

1

0.9

0.1

1 2 3 4 65

0

1

2

3

4

5

6

1 1 1 1 1 1 1

2

2

2

2

2

2

2

2

1

1
1

11

1 1

1

1

1

1 0.5
0.5

0.5

0.5

1

1

0.5

0.5

1

0.5

Fig. 1: An example of a lattice

in such a system, each process Pi records its local
computation, which includes alternate local states and
events s0i , e

0
i , s

1
i , e

1
i , ..., e

j
i , s

j
i [15], where ski denotes the

kth local state and eki denotes the kth event, at the
process i. A state can be described by the values of the
variables in the process (e.g., registers, stacks, memory
content, etc.). The kth event triggers the transition
from the (k-1)th state to the kth state. The events can
be local events (i.e., changing the values of variables in
the process) or external events (i.e., sending messages
to or receiving messages from other processes).

A happen-before relation and a concurrent relation
[16] exist among the states.

A state sa is said to happen before another state sb,
denoted by sa → sb, if

1) sa is a state before sb in the same process.
2) the event just following state sa sends a message

and the event just before state sb receives that mes-
sage.

3) there is a state sc such that sa → sc and sc → sb
[16].

If sa does not happen before sb and sb does not
happen before sa, we say that sa is concurrent with
sb, denoted by sa || sb.

2.2 Global State, Observation, and Lattice

A global state of an asynchronous distributed system
is a set of local states of processes, with one state from
each process. A global state C is called a consistent
global state (CGS) if the local states included in it are
pairwise concurrent:
C = (s1, s2, ..., sn), ∀i, j : 1 ≤ i 6= j ≤ n :: si‖sj
It denotes a snapshot of an asynchronous distribut-

ed system where each local state does not happen
before the others [17], [18].

Two consistent global states C1 and C2 satisfy the
precede relation (C1 ≺ C2) if they differ in only one
local state, say sc1 and sc2 , such that sc1 is immediately
before sc2 . The lead to relation () is the transitive
closure of the precede relation (≺).

A sequence of CGSs starting from the initial CGS
(including all of the local initial states) and ending at
the final CGS (including all of the local final states) is
called an observation of the execution of the program.

It is difficult to determine the CGSs that really exist
during the execution of a program. Instead, more

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 3

CGSs are claimed to possibly have occurred, which
leads to multiple observations. Predicates may hold in
some of the observations but may not in others. The
definitely and possibly [11], [12] modalities denote cases
in which a predicate holds in all of the observations
or in at least one observation, respectively.

It is observed that CGSs and their precede relations
form a lattice [19]. An example of this can be seen
in Fig. 1. The nodes (the pair of local states, e.g.,
(S1

1 , S
1
2)) denote CGSs, and the edges between two

nodes denote their precede relations. A path from
the initial node to the final node corresponds to an
observation of the execution of the program. A cut of
a lattice is defined as a set of CGSs that are concurrent
with each other and across all the paths. For example,
{(S2

1 , S
3
2), (S

3
1 , S

2
2)} is a cut. A lattice is an effective tool

for detecting predicates.

2.3 Predicate

In distributed systems, a predicate is a boolean func-
tion defined on the states of processes [20], [21].
Predicates vary in stability and form.

A predicate can be a stable predicate or an unstable
predicate [22]. A stable predicate is a predicate that
remains true once it is true. An unstable predicate is
a predicate that is true intermittently. The detection of
unstable predicates is more generic and challenging
than the detection of stable predicates, and hence is
the focus of this paper.

Predicates take different forms. In [23], three typical
forms are investigated, including the simple predicate,
simple sequence, and interval-constrained sequence. In
this paper, these three types of predicates are used
to demonstrate the effectiveness of our approach. We
briefly describe their definitions [23] as follows:

A simple predicate is a predicate defined on a single
CGS. An observation O satisfies a simple predicate e,
if and only if there exists a CGS Ci ∈ O such that
e is true, denoted by Ci(e). Simple predicates can
be further classified into simple conjunctive predicates
and simple relational predicates. The former denotes a
conjunctive expression of local states of processes, and
the latter can specify arbitrary relations between them.

A simple sequence is a predicate defined on a
sequence of CGSs. It is in the form of e1; e2;em,
where ei (1 ≤ i ≤ m) is a simple predicate specifying a
desirable system state. An observation O satisfies this
simple sequence if and only if there exist m distinct
CGSs C1, C2...Cm ∈ O, such that

1) C1 C2 ... Cm

2) C1(e1) ∧ C2(e2) ∧ ... ∧ Cm(em).
An interval-constrained sequence extends a simple

sequence to support undesirable states. It is in the
form of [θ1]e1; ...[θm]em; [θm+1], where ei(1 ≤ i ≤ m)
and θi(1 ≤ i ≤ m+ 1) are simple predicates, and
[θi](1 ≤ i ≤ m+ 1) denotes that θi is false. An obser-
vation O satisfies this predicate if and only if:

detection
cardinality

predicate
type

simple
conjunctive

simple
relational

simple
sequence

interval-constraint
sequence

single detection

repeated detection

detection
modality

physical time

logical time

Fig. 2: Research framework for predicate detection

I

I

I

Fig. 3: Predicate detection under different modalities

1) when m = 0, ∀Ci ∈ O :: ¬Ci(θ1)
2) when m 6= 0, there exist m distinct CGSs

C1, C2...Cm ∈ O such that
a) C1 C2 ... Cm

b) C1(e1) ∧ C2(e2) ∧ ... ∧ Cm(em)
c) ∀Ck : Ck C1 :: ¬Ck(θ1)
d) ∀Ck : Cm Ck :: ¬Ck(θm+1)
e) j = 2....m, ∀Ck : Cj Ck Cj+1 :: ¬Ck(θj)

3 RESEARCH FRAMEWORK FOR PREDI-
CATE DETECTION

In this section, we compose a research framework for
predicate detection, and illustrate the position of our
work in this research field.

We categorize predicate detections according to
three metrics: predicate type, detection cardinality,
and detection modality, as shown in Fig. 2. Predicate
type denotes the inherent properties of a predicate. It
may refer to the forms of predicates, including simple
conjunctive, simple relational, simple sequence, interval-
constraint sequence [23], and others. More detailed
classifications may also take the stability of predicates
into consideration. Detection cardinality includes s-
ingle detection and repeated detection [24]. The former
is to validate whether a predicate is true at least
one time, and the latter is to detect the predicate
multiple times. Finally, detection modality includes
physical time modality and logical time modality. They

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 4

denote the conditions to be satisfied for a predicate in
terms of physical time and logical time, respectively.

Fig. 3 shows the classification of detection modality.
The temporal relations specified by the predicates can
be defined based on physical time or logical time.
For physical time, it is assumed that all process-
es have a global clock. Instantaneously is the most
widely used modality under physical time, denot-
ing that processes are in certain states at the same
time. This modality can be further classified into
Instantaneously(Φ) and InstantaneouslyI(Φ), depending
on time points or time intervals used for the detec-
tion of predicate Φ, respectively. Instantaneously(Φ)
denotes that there exists a time point such that Φ is
satisfied. InstantaneouslyI(Φ) denotes that there exists
a set of pairwise overlapped time intervals I such
that Φ is satisfied. Instantaneously(Φ) is equivalent to
InstantaneouslyI(Φ) [10], [25].

In distributed systems, physical time usually can-
not work due to the lack of a global clock. Predi-
cate detection is more often based on logical time.
Existing work on that can be classified into two
categories. The first category is based on the time
points, using definitely(Φ) and possibly(Φ) [11], [12].
definitely(Φ) means that Φ is true in all observations,
while possibly(Φ) means that Φ is true in at least
one observation. The other category is based on time
intervals, using Def I(Φ) and PossI(Φ) [9]. Def I(Φ)
means that according to the analysis in logical time, a
set of time intervals I can be inferred to be pairwise
overlapped in the physical time during which Φ is
true. PossI(Φ) means that the time interval set I

may be pairwise overlapped, but cannot be validated.
Def I(Φ) and PossI(Φ) can be further investigated
under the fine-grained relations of time intervals [25].
For definitely(Φ) and possibly(Φ), currently no further
information is provided, especially on how probable
it is that a predicate holds.

Different with single detection, repeated detection
[24] is about determining how many times a predicate
Φ holds, denoted by Count(Φ). The concerns here
are two-fold: one is the detection in each occurrence,
which is the same as single detection. The other is the
times that a predicate holds under different criterions.
Most current research focuses on single detection, and
cannot be directly applied to repeated detection.

In this paper, we aim to fill some gaps in the
research, focusing on providing more detailed infor-
mation for definitely and possibly modalities, and in-
vestigating them in the context of repeated detection.

4 SYSTEM MODEL AND THE PROBLEM

We extend a lattice to support the transition probabil-
ity between two consecutive CGSs. Based on that, we
formulate the problem discussed in this paper.

4.1 Extended Lattice and the Occurrence Proba-
bility of Predicates

In existing works, a lattice describes only CGSs
and the precede relations between them. In order
to more precisely describe the transitions of CGSs,
we augment the transition probability between two
CGSs to corresponding edges of the lattice. Generally
speaking, a CGS Ci may have multiple following
CGSs Ci1, Ci2....Cim. The transition probability from
Ci to Cij (1 ≤ j ≤ m) can be arbitrary but satisfy∑

1≤j≤m Cij = 1.

The specific values of transition probabilities can be
determined through different approaches, including
data mining and analyzing context information. For
example, in an intelligent traffic system, suppose that
there are two RFID readers R1 and R2 monitoring the
number of vehicles around two neighboring intersec-
tions, one reader for each intersection. The values of
both R1 and R2 are changed from 50 to 60. Using
”(R1’s value, R2’s value)” to denote a CGS, the initial
CGS is (50, 50) and its following CGSs are (50, 60)
and (60, 50). By analyzing historical traffic data, we
may find that 80% of cases with the same initial
CGS changed to (50, 60). We then set the transition
probability from (50, 50) to (50, 60) as 0.8 and that from
(50, 50) to (60, 50) as 0.2. One more example concerns
the data aggregation of sensor networks [26]. In the
case of a pair of nodes, one node sends the data to
the other node. A probabilistic algorithm is used to
determine which node is the sender and which is the
receiver. The context information of the probabilistic
algorithm can be used to determine the transition
probabilities in this case. If information on constraints
is lacking, it can be assumed that all following CGSs
have an equal probability of being reached. Fig. 1
shows an example of an extended lattice.

Given a path of a lattice, Ω = C1, C2,....Cm,
where the transition probability from Ci to
Ci+1 (i = 1...m− 1) is denoted by pi,i+1, the transition
probability of the path is defined by
prob(Ω) = p1,2 × p2,3 ×× pm−1,m

It denotes the probability that the observation
corresponding to Ω happens.

Given a lattice and a predicate, and assuming that Γ
is a set of paths in each of which the predicate holds,
the occurrence probability of this predicate is defined
by

∑
Ω∈Γ

prob(Ω). In Fig. 1, if we select (S0
1 , S

0
2) as

the initial node and (S2
1 , S

3
2) as the final node, the

occurrence probability of the predicate is 0.9.

In this way, the definitely and possibly modalities are
generalized to an occurrence probability. The definitely
modality is a special case in that the occurrence
probability is equal to 1, and the possibly modality
denotes that the occurrence probability is between 0
and 1. By quantifying the occurrence probability, we
can provide more detailed information to the user.

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 5

4.2 The Occurrence Times of a Predicate Subject
to an Occurrence Probability

In predicate detection, users are often interested in
the repeated occurrences of a predicate. Informally, in
a scenario where a predicate becomes true intermit-
tently, we call each time that the predicate becomes
true an occurrence and the number of times that it be-
comes true occurrence times. The occurrence times can
be obtained determinatively in a single observation.
But considering all observations, the occurrence times
relate to the occurrence probability. We formulate the
problem as follows:

Suppose there is a set of observations Φ = {Oi|i =
1...n}. Each observation Oi has its occurrence prob-
ability prob(Oi) and occurrence times num(Oi). Let
Φ′ ⊆ Φ. Then Φ′’s occurrence probability is defined
by

∑
o∈Φ′ prob(O) and its occurrence times is defined

by mino∈Φ′ num(O). Our problem is to find a subset of
Φ such that its occurrence times are maximized and
its occurrence probability is no less than p. The result
is called the occurrence times of the predicate subject to
occurrence probability p.

Lattice is an effective tool for solving this problem.
An observation Oi corresponds to a path Ω in the
lattice, and then prob(Oi) is equal to prob(Ω). As
shown in Fig. 1, if the occurrence probability is 0.9,
two occurrences of the predicate can be determined,
one from (S0

1 , S
0
2) to (S3

1 , S
3
2) and the other from

(S3
1 , S

4
2) to (S6

1 , S
6
2).

In many applications, such as smart home systems
and social relation analysis systems as mentioned in
section 1, multiple occurrences of a predicate with
a high occurrence probability (but less than 1) are
regarded as a more reliable result than a single occur-
rence, even under the definitely modality. Therefore,
we think that this problem is an important one.

4.3 Further Discussion

It is observed that the solution of the above problem
can also be used to determine the occurrence proba-
bility of a predicate.

When calculating the occurrence times of a predi-
cate, we can request the approach to return the occur-
rence probability once a single occurrence is detected.
We set the occurrence probability threshold to 1 and
run the approach. If the returned occurrence times
is greater than 0, the occurrence probability of the
predicate is 1. Otherwise, the approach returns the
occurrence times as 0 and an occurrence probability,
which is the result we needed. In this paper, we
mainly focus on the problem of occurrence times,
and will also further discuss how to determine the
occurrence probability of a predicate.

5 SOLUTION

We first analyze the challenging issues involved in
solving this problem, and then propose a unified al-

s
0

e
1

e
0

e
2

s
1

s
2

s
3

e
3

s
0 e

0
e

1 e
2 e

3
s

1 s
2 s

3

s
4

s
5

s
6

e
4

e
5

e
4

e
5

s
4

s
5

s
6

a 580

b 5 b--

a=a-10 a 850

b 10

a 50

b 1

e
6

e
6

the first

occurence

the second

occurence

P1

P2

delimitation of the CGS partition
a=0

b=0

Fig. 4: An example of the locality property: space-time dia-
gram. To detect the predicate a > 580

∧
4.4 ≤ b ≤ 17

s
0

s
1

s
2 s

3
s

4 s
6s

5
s

0

s
1

s
2

s
3

s
4

s
5

s
6

1 1 1 1 1 1 1

2

2

2

2

2

2

2

P2

P1

CGS

a single occurrence
of the predicate

delimitation of the
CGS partition

Fig. 5: An example of the locality property: the lattice corre-
sponding to Fig.4

gorithm framework as the solution suitable for generic
predicates. More details are then illustrated by ap-
plying the algorithm framework to simple predicates,
simple sequences, and interval-constrained sequences.

5.1 Design Rationale

This problem is a combinatorial optimization prob-
lem, in which it is necessity to check the occurrence
times of the predicate in each observation. Howev-
er, we have observed that in the real world, each
occurrence of a predicate usually spans over states
in the vicinity, rather than states far away from each
other. We call this property the locality property. This
property is described below, and can simplify the
solution.

Property 1 (Locality Property): Each occurrence of a
predicate can be detected in states in the vicinity.

Accordingly, in a distributed system, each occur-
rence of a predicate spans over CGSs in the vicinity
and these CGSs are similar in different observation-
s. Therefore, CGSs can be partitioned into different
sets, with one set for a single occurrence. If message
exchanges take place sufficiently frequently, the par-
titions will be similar in different observations. For
example, in Fig. 4 and Fig. 5, which show the space-
time diagram and the lattice for an explosion alarm
that was mentioned at the beginning of this paper,
it can be seen that each occurrence of the predicate
only spans over several neighboring CGSs, and that a
common partition into two subsets of CGSs applies
to all observations. Utilizing this property, we can
simplify the solution by constructing a proper CGS
partition for all of the observations and avoiding
enumerating them.

A common CGS partition for all of the observations
should satisfy the condition that all of the observa-
tions must go through each element of it. Otherwise,

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 6

some elements may be circumvented. The following
definition specifies this condition:

Definition 1: A non-concurrent partition of CGS set
W is a collection of CGS sub-sets:
{Pi(i = 1...n)|Pi(i = 1...n) is a partition of W and
¬∃t, k : t ∈ Pi

∧
k ∈ Pj

∧
i 6= j

∧
len(t) = len(k)}

where len(t) is the number of CGSs from the initial
CGS to t following any observation.

The problem is then transferred to determine a non-
concurrent partition of CGSs with maximum cardinal-
ity, where the real program execution goes through
each element of the partition with a probability of
at least p. We analyze the effectiveness of the idea
when p = 1 and p < 1. When p = 1 (i.e., under the
definitely modality) and the locality property holds,
the detected occurrence times are equal to those of
the original problem. When p < 1 and the locality
property holds, the occurrence times are greater than
the real value. For instance, consider a case in which
CGSs are partitioned into two subsets and each subset
makes the predicate hold once. Assuming that the
predicate holds in the observations Φ1 in the first ele-
ment, and Φ2 in the second element,

∑
o∈Φ1

prob(O) >
p and

∑
o∈Φ2

prob(O) > p, the occurrence times
that are detected are 2. In fact, the predicate holds
twice only in the common observations Φ1 ∩ Φ2, and∑

o∈Φ1∩Φ2
prob(O) is not necessarily greater than p.

Let the deviation between the real occurrence times
and the value obtained by this approach be ∆num.
For a given case, ∆num with a larger p is less than
or equal to ∆num with a smaller p, because more
common observations are considered in different par-
titions. The extreme case is that when p = 1, all of the
observations in each partition need to be considered.

The last point is how to determine such partitions of
CGSs. It can be seen that each element of a partition is
determined by its beginning CGSs and ending CGSs,
defined as follows:

Definition 2: The beginning CGSs of CGS set W ,
denoted by beginCGS(W), are the CGSs that no other
CGSs in W can precede:
{C1|C1 ∈ W and ∀C2 : C2 ∈ W,C2 6= C1 :: ¬(C2

C1)}
Definition 3: The ending CGSs of CGS set W , denot-

ed by endCGS(W), are CGSs that cannot precede any
CGS in W :
{C1|C1 ∈ W and ∀C2 : C2 ∈ W,C2 6= C1 :: ¬(C1

C2)}
Clearly, the CGSs in the beginning CGSs or ending

CGSs are pairwise concurrent. We also define the
paths included in a CGS set C:

Definition 4: The paths included in CGS set
W , denoted by path(W) or path(beginCGS(W),
endCGS(W)), are a set of CGS sequences C1, C2.....Cn:
{C1, C2...Cn|C1 ∈ beginCGS(W), Cn ∈ endCGS(W),

Ci ∈ W (i = 1...n), Ci ≺ Ci+1(i = 1...n-1)}
Our task is to determine the partition by addressing

the following two issues:

I1: Determining a set of CGSs that are pairwise
concurrent and across all observations to form the be-
ginning or ending CGSs of an element in the partition.

I2: Calculating the occurrence probability for each
element in the partition.

I1 guarantees that the result is a non-concurrent
partition, and I2 meets the requirement of occurrence
probability. Both issues can be addressed based on
lattice. The goal is to determine cuts of a lattice such
that the paths between two consecutive cuts, in which
the predicate is true, have an occurrence probability of
at least p. The CGSs in a cut are concurrent with each
other and across all observations (I1). The occurrence
probability between two consecutive cuts, say T1 and
T2, can be computed by accumulating the transition
probability in path(T1, T2), which can be done step by
step without redundancy (I2).

Besides the correctness of the solution as discussed
above, we want to reduce the state space to be ex-
plored in order to save on computation (the worst-
case time complexity, however, has not been changed).
We have the following property:

Property 2 (Elimination Property): A CGS can be
eliminated from further checks if and only if the
specified predicate is detected or cannot be detected
in all of the paths going through this CGS, and this
result cannot be impacted by any following CGS.

Finally, we want a solution that can be adapted to
various types of predicates in an efficient manner. We
will discuss details of the design in later sections.

5.2 Algorithm Framework for Predicate Detection

Since there are various types of predicates and de-
signing a detection algorithm for each of them is
tedious, we propose a unified algorithm framework to
determine the occurrence times of a predicate subject
to an occurrence probability. The framework is shown
in Algorithm 1.

We initiate several variables in lines 1-4. occurTimes
denotes the predicate’s occurrence times detected so
far. iniState denotes the initial CGS of the program
execution. For each occurrence of the predicate, veri-
fiedProb records the accumulated occurrence probabil-
ity, and verifiedSet records some special CGSs whose
following CGSs no longer need to be explored. The
main body of the algorithm is lines 5-22. First, the
initial CGS iniState is configured using Function ini-
Config (line 5). Then, the CGSs immediately following
iniState are obtained using Function extend and put
into current (line 6). In lines 7-21, there is a loop cal-
culating the occurrence times subject to an occurrence
probability. In each iteration of the loop, the CGSs
of current are checked against the predicate, and the
occurrence probability is accumulated to verifiedProb
using Function accumulateProb (line 9). Function veri-
fyState adds some CGSs into verifiedSet if needed (line
10). If verifiedProb is greater than the given occurrence

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 7

Algorithm 1: Algorithm framework for determin-
ing the occurrence times of a predicate subject to
an occurrence probability

Function: detectPredicate(Predicate e, Double occurProb)
1 int occurTimes = 0
2 CGS iniState = Cini

3 Double verifiedProb = 0
4 Set verfiedSet = ∅

5 iniConfig(iniState)
6 Set current = extend(iniState)
7 while current 6= {Cfinal} do
8 foreach Ci ∈ current do
9 verifiedProb=verifiedProb+accumulateProb(e, Ci);

10 verifyState(e, verifiedSet, Ci)
11 if verifiedProb ≥ occurProb then
12 occurTimes = occurTimes + 1
13 restartPredicateDetection(current)
14 verifiedProb = 0
15 verifiedSet = ∅

16 break;
17 end
18 endfch
19 current = elimilateStates(current, verifiedSet)
20 current = extend (current)
21 end
22 return occurTimes

probability (line 11), occurTimes increases (line 12). We
then reset the CGSs in current using Function restart-
PredicateDetection and initiate related variables (lines
13-15). After that, the execution jumps out from the
loop (line 16). Post-processing is undertaken in lines
19-20. Some CGSs in current are eliminated in order
to reduce the number of CGSs to be checked (line 19).
Finally, current is updated for a new iteration of the
loop (line 20). The loop terminates when the final CGS
Cfinal is reached (line 7).

This framework is general and applies to different
types of predicates. Six functions need to be imple-
mented for each type of predicate: iniConfig, extend,
restartPredicateDetection, elimilateStates, accumulateProb,
and verifyState. We give a basic implementation of the
first four functions in Algorithm 2, while the last two
are predicate-specific.

In the basic implementation, we introduce the con-
cept of residual probability, denoted by residualProb,
for a CGS. It represents the probability that a path
from the initial CGS will go through this CGS, exclud-
ing the impact of verified CGSs. We do not consider
the verified CGSs since the predicate has already been
detected or can no longer be detected in the paths that
involve them. The purpose of this design is to reduce
the state space to be explored in the lattice to speed
up the computation.

In Algorithm 2, we initiate the residualProb of inistate
to 1 in Function iniconfig. In Function extend, the
following CGSs of current are obtained, and their
residualProb are then calculated based on the residual
probability of current and the corresponding transition
probability.

In Function elimilateStates, the CGSs in verifiedSet are
removed from current for a further check. Property
2 guides the setting of verifiedSet in Function accu-

Algorithm 2: Basic implementation of the algorith-
m framework

Function: iniConfig(CGS iniState)
1 iniState.residualProb = 1

Function: extend(Set current)
1 Set next = ∅

2 foreach Ci ∈ current do
3 foreach Ck such that Ci ≺ Ck do
4 Ck.residualProb =

Ck.residualProb + Ci.residualProb × tranProb(Ci, Ck)
5 next = next ∪ {Ck}
6 endfch
7 endfch
8 return next

Function: restartPredicateDetection(Set current)
1 find the minimal CGS set extCurrent such that

extCurrent||current and extCurrent ∪ current form a cut of the
lattice

2 current = extCurrent ∪ current
3 processing = verifiedSet
4 while processing 6= current do
5 Set next = ∅

6 foreach Ci ∈ processing do
7 foreach Ck such that Ci ≺ Ck do
8 Ck.residualProb = Ck .residualProb +

Ci.residualProb × tranProb(Ci, Ck)
9 next = next ∪ {Ck}

10 endfch
11 endfch
12 processing=next
13 end

Function: elimilateStates(Set current, Set verifiedSet)
1 current = current − verifiedSet
2 return current

mulateProb, and its detailed implementation will be
shown in later subsections.

In Function restartPredicateDetection, a cut is deter-
mined to be the ending cut of current detection. Since
all of the CGSs in current are concurrent, the problem
is to find the earliest other CGSs that are concurrent
with current to form a cut (lines 1-2). Assuming
that a CGS (Sx

1 , Sy
2) is included in current, we have

extCurrent = {(Sm
1 , Sn

2)|m + n = x + y} − current.
The sum of the occurrence probabilities of these CGSs
should be 1, ensuring that any path starting from the
initial CGS reaches this cut before we begin another
predicate detection. To achieve this, the residual prob-
ability of the cut also takes the residual probabilities
coming from verifiedSet into account (lines 3-13).

We remove the CGSs in verifiedSet for further con-
sideration during the detection, and recover them
when initiating a new detection. We have this design
mainly for two reasons: First, we make the algorithm
also suitable for calculating the occurrence probability
of a predicate. In that case, Function restartPredicateDe-
tection is not called; hence eliminating the CGSs in ver-
ifiedSet can save on computations (the amount saved
on computations depends on specific applications).
Second, the algorithm is efficient if the predicate is
false in most situations. This is common in many
applications where the users are interested only in the
exceptions of a program execution. Our framework
supports the optimization for these cases.

In the following three sub-sections, we demonstrate

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 8

Algorithm 3: Detection of simple predicates

Function: accumulateProb(Predicate e, CGS Cp)
1 if Cp satisfies e then
2 result = Cp .residualProb
3 else
4 result = 0
5 end
6 return result

Function: verifyState(Predicate e, Set verifiedSet, CGS Cp)
1 if Cp satisfies e then
2 verifiedSet = verifiedSet ∪ {Cp}
3 end

Algorithm 4: Detection of simple sequences

Function: accumulateProb(Predicate e, CGS Cp)
1 foreach Cq such that Cq ≺ Cp do
2 for i=1 to m do
3 Cp.subPredicates[i].prob = Cp.subPredicates[i].prob +

Cq.subPredicates[i].prob × tranProb(Cq , Cp)
4 end
5 endfch
6 if Cp satisfies e[1] &&∑m

i=1
Cp.subPredicates[i].prob < Cp.residualProb then

7 Cp.subPredicates[1].prob =
Cp.residualProb −

∑m
i=2

Cp.subPredicates[i].prob
8 end
9 for i=2 to m do

10 if Cp satisfies e[i] && Cp.subPredicates[i− 1] > 0 then
11 Cp.subPredicates[i].prob =

Cp.subPredicates[i].prob + Cp.subPredicates[i− 1].prob
12 Cp.subPredicates[i− 1].prob = 0
13 end
14 end
15 return Cp.subPredicates[m].prob

Function: verifyState(Predicate e, Set verifiedSet, CGS Cp)
1 if Cp.subPredicates[m].prob = Cp.residualProb then
2 verifiedSet = verifiedSet ∪ {Cp}
3 end

the effectiveness of this algorithm framework using
three typical types of predicates.

5.3 Detection of Simple Predicates

Based on the algorithm framework and the basic
implementation shown in Algorithm 1 and 2, the de-
tection of simple predicates is a quite simple process.
The detailed algorithm is shown in Algorithm 3.

It includes the implementation of two functions,
accumulateProb and verifyState. Since simple predi-
cates are detected at individual CGSs, the occurrence
probability can be accumulated directly. The residual
probability is simply returned by Function accumu-
lateProb. For Function verifyState, if a CGS makes the
predicate true, it is marked as a verified CGS, which
will be eliminated from further processing (Function
elimilateStates of Algorithm 2). This is because it sat-
isfies Property 2, considering that if a predicate is
detected at one CGS, this fact cannot be changed by
the following CGSs.

5.4 Detection of Simple Sequences

We use an array e to represent a simple sequence
e1; e2;em, where e[i] denotes ei. For each CGS, we

define an array subPredicates to record the detection
results, where subPredicates[i] corresponds to e[i]. The
prob of subPredicates[i] records the occurrence proba-
bility of e[i] accumulated from the initial CGS to the
current CGS.

The detailed algorithm is shown in Algorithm 4.
In Function accumulateProb, the residual probabili-
ty of CGS Cp is calculated based on its preced-
ing CGSs. In lines 2-4, the residual probabilities are
transferred from the preceding CGSs to Cp, taking
transition probabilities into account. This is neces-
sary because the observations involving Cp’s pre-
ceding CGSs only go through Cp with certain tran-
sition probabilities. In lines 5-13, the predicate is
checked at Cp. The first step is to check whether∑m

i=1
Cp.subPredicates[i].prob < Cp.residualProb. If the

inequality holds, it is known that e[1] is not true in
some paths going through Cp. Then, e[1] will become
true in these paths if Cp satisfies e[1]. We add the
probability into Cp.subPredicates[1].prob, as in lines 5-
7. In lines 8-13, the detection of e[i] is based on the
detection of e[i− 1]. If Cp makes e[i] true, it transfers
the residual probability of e[i− 1] to e[i] (2 ≤ i ≤ m).
Finally, the function returns Cp.subPredicates[m].prob,
denoting the accumulated occurrence probability of
the whole predicate.

In Function verifyState, the CGSs satisfying Property
2 are eliminated from further processing. For a simple
sequence, when e[1]...e[m − 1] is detected at a CGS,
there is no guarantee that the whole predicate will be
detected. Only when e[m] is detected at the CGS can
the conclusion be reached, which will not be changed
by the following CGSs. It is noted that there are
multiple observations going through one CGS, so that
a simple sequence can be true in some of the observa-
tions, but not in others. In such a case, the CGS cannot
be eliminated. The exploration of CGS Cp is stopped
when Cp.subPredicates[m].prob = Cp.residusalProb. This
means that the predicate holds in all of the paths
passing through Cp.

5.5 Detection of Interval-constrained Sequences

An interval-constrained sequence, in the form of
[θ1]e1; ...[θm]em; [θm + 1], can be viewed as a simple
sequence with additional specifications of undesir-
able states in some intervals. We still use an ar-
ray e to describe the predicate where e[i].pos and
e[i].neg are used to denote ei and [θi], respectively.
e[m + 1].pos is not defined. The array subPredicates
is used to record the detection results. For example,
subPredicates[1] records the detection result of [θ1]e1,
and subPredicates[2] records the detection result of
[θ1]e1; [θ2]e2, and so on. Since an interval-constrained
sequence includes both positive predicates and neg-
ative predicates, we use Cp.failProb to denote the
probability that the paths going through Cp can never
make the whole predicate true.

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 9

Algorithm 5: Detection of interval-constrained se-
quences

Function: accumulateProb(Predicate e, CGS Cp)
1 foreach Cq such that Cq ≺ Cp do
2 for i=1 to m do
3 Cp.subPredicates[i].prob = Cp.subPredicates[i].prob +

Cq.subPredicates[i].prob × tranProb(Cq , Cp)
4 end
5 endfch
6 for i=2 to m do
7 if Cp satisfies e[i].neg then
8 Cp.failProb = Cp.failProb+Cp.subPredicates[i− 1].prob

9 Cp.subPredicates[i− 1].prob = 0
10 else if Cp satisfies e[i].pos then
11 Cp.subPredicates[i].prob =

Cp.subPredicates[i].prob + Cp.subPredicates[i− 1].prob
12 Cp.subPredicates[i− 1].prob = 0
13 end
14 end
15 if Cp satisfies e[1].neg then
16 Cp.failProb =

Cp.residualProb −
∑m

i=1
Cp.subPredicates[i].prob

17 else if Cp satisfies e[1].pos then
18 Cp.subPredicates[1].prob = Cp.residualProb −∑m

i=2
Cp.subPredicates[i].prob− Cp.failProb

19 end
20 if e[m+ 1].neg 6= null && Cp satisfies e[m+ 1].neg then
21 Cp.failProb = Cp.failProb + Cp.subPredicates[m].prob
22 Cp.subPredicates[m].prob = 0
23 end
24 return Cp.subPredicates[m].prob

Function: verifyState(Predicate e, Set verifiedSet, CGS Cp)
1 if e[m+ 1].neg = null then
2 if Cp.subPredicates[m].prob = Cp.residualProb then
3 verifiedSet = verifiedSet ∪ {Cp}
4 end
5 end
6 if Cp.failProb = Cp.residualProb then
7 verifiedSet = verifiedSet ∪ {Cp}
8 end

The detailed algorithm is shown in Algorithm 5.
In Function accumulateProb, the residual probability of
CGS Cp is first transferred from its preceding CGSs,
taking transition probabilities into account (lines 2-4),
which is similar to simple sequences. The interval-
constrained sequence has a special feature that it
includes both positive predicates and negative pred-
icates. The detailed processing for that is illustrated
in lines 5-22. If e[i − 1].pos is true and Cp satis-
fies e[i].neg, the predicate cannot be true according
to the definition of interval-constrained sequences;
hence, Cp.subPredicates[i − 1].prob is transferred to
Cp.failProb (lines 6-8). If the preceding CGSs satis-
fy e[1].neg e[1].pos...e[i− 1].neg e[i− 1].pos and Cp

satisfies e[i].pos, Cp.subPredicates[i− 1].prob needs to
transfer to Cp.subPredicates[i].prob (lines 9-12). Simi-
lar processing is performed for e[m + 1].neg (lines
19-22), while there is no e[m + 1].pos to be de-
fined as our definition. Special processing is need-
ed for e[1] (lines 14-18). If Cp satisfies e[1].neg,
the predicate cannot be true in the paths going
through Cp, with the exception of the paths that
already satisfy e[i](1 ≤ i ≤ m). Therefore, the prob-
ability Cp.residualProb −

∑m

i=1
Cp.subPredicates[i].prob

is transferred to Cp.failProb (lines 14-15). Otherwise,

if Cp satisfies e[1].pos for the first time, the residual
probability is added to Cp.subPredicates[1].

In Function verifyState, we consider both positive
and negative predicates. If e[m+1].neg does not exist,
the predicate detection ends with e[m].pos, which
is the same with a simple sequence (lines 1-5). If
e[m+ 1].neg exists, it cannot come to any conclusion
as to whether or not the predicate is detected, because
e[m+ 1].neg may be satisfied in one of the following
CGSs. In this situation, no CGS can be eliminated.
However, if a negative predicate is detected in corre-
sponding intervals, the predicate cannot be satisfied.
Similar to the analysis of positive predicates, if failProb
is equal to residualProb, the paths going through the
current CGS cannot make the predicate hold, and
hence can be eliminated (lines 6-8).

6 DISCUSSION

We further prove the correctness of the proposed
algorithms and discuss some extended topics.

6.1 Correctness of the Algorithms

We prove the correctness of the proposed algorithms.
Theorem 1: Algorithm 3 detects the maximum oc-

currence times of a simple predicate subject to an
occurrence probability.

Proof: The detection process starts from the initial
CGS and advances level by level until the final CGS.
During this process, the detection of simple predicates
is monotonic, which means that if a simple predicate
is detected at a CGS, all of the following CGSs in the
paths starting from this CGS also admit the detection.
With this property, if a simple predicate is detected at
a CGS, the occurrence probability can be accumulated
to verifiedProb and is invariable in any cut of the
lattice following this CGS. Therefore, the CGS can
be eliminated from further checks and also from the
calculation of residual probability. As the processing
continues, if verifiedProb reaches the given occurrence
probability at a cut of the lattice, the predicate can
be guaranteed to be detected because all of the paths
contributing to verifiedProb pass this cut. Since we find
the minimal cut, there is no earlier cut that can meet
the requirement of occurrence probability. The process
is repeated, and occruenceTimes finally returns the
maximum occurrence times of the predicate subject
to the occurrence probability.

Theorem 2: Algorithm 4 detects the maximum oc-
currence times of a simple sequence subject to an
occurrence probability.

Proof: For a CGS Cp, Cp.subPredicates[i].prob
records the residual probability of e[1]....e[i] consider-
ing the paths starting from the initial CGS and ending
at Cp. This can be proofed by the induction of the
level number in the lattice. For level 1, this holds
since Cp.subPredicates[1].prob is calculated based on
the initial CGS, and Cp.subPredicates[i].prob (i > 1)

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 10

is 0. Assume that the statement is true for level u,
and that Cq in level u precedes Cp in level u + 1.
This means that Cq.subPredicates[i−1].prob records the
residual probability of e[1]....e[i − 1] considering the
paths starting from the initial CGS to Cq . Extending
the path one step to Cp, the residual probability of
e[1]....e[i] can be obtained if Cp satisfies e[i] (lines 5-
13). Special processing is needed for e[1] and e[m+1],
but the idea is the same (lines 14-22).

The detection process starts from the initial CGS
and then advances level by level until the final CGS.
Cp.subPredicates records all of the possibilities in the
paths starting from the initial CGS and ending at
Cp. Cp can only be eliminated when the predicate is
detected in all possibilities. If verifiedProb reaches the
given occurrence probability at a cut of the lattice, the
predicate can be guaranteed to be detected since all
of the paths contributing to verifiedProb go to this cut.
The cut is minimized to guarantee that the maximum
number of occurrence times can be determined.

Theorem 3: Algorithm 5 detects the maximum oc-
currence times of an interval-constrained sequence
subject to an occurrence probability.

Due to limited space, we omit the proof of Algo-
rithm 5, the idea of which is similar to the proof of
Algorithm 4, but which takes both positive predicates
and negative predicates into consideration.

6.2 Relations with Definitely Modality and Possi-
bly Modality

In our paper, the definitely and possibly modalities
[11], [12] are generalized to the occurrence probability.
With our algorithms, the detection under the definitely
and possibly modalities also can be done, by setting
the occurrence probability threshold to 1 (see the
discussion in section 4.3). This method may check all
of the CGSs in the worst case. If we only want to
know whether a predicate is true under the possibly
modality, a simpler solution is possible: set the oc-
currence probability to a sufficiently small value and
make Function restartPredicateDetection simply exit.
The processing can immediately be stopped when an
occurrence of the predicate is detected, which can save
computation time.

7 PERFORMANCE EVALUATION

Simulations are carried out to validate the effective-
ness of the proposed algorithms. We show the results
of our algorithms in different types of predicates,
including simple predicates, simple sequences, and
interval-constrained sequences.

7.1 Simulation Setup

We simulate an asynchronous distributed system that
monitors the number of vehicles at two neighboring
intersections, A and B, as shown in Fig. 6. Each

intersection A intersection B

RFID reader

RFID interrogation area

control center

RFID reader

data

communication

Fig. 6: Simulation scenario

TABLE 1: Parameters adjusted in the simulation

Parameter Value
msgInterval time intervals at which the readers generate mes-

sages
delay the mean of the message delays in traveling from

one reader to another (following an exponential
distribution)

noise the mean of noise data collected by the readers
(following a normal distribution)

intersection is equipped with an RFID reader that has
no synchronized clock. The two RFID readers com-
municate with each other via the message piggyback
of passing vehicles. Since not all vehicles provide this
kind of help and their motion is quite complex, there
are different delays in the transmission of messages.
The RFID readers report their results to a control
center via Wi-Fi, 3G, or vehicle networks.

It is assumed that the vehicles follow a Poisson
arrival process to emerge at the intersections. The
average number of vehicles arriving at intersection
A is 20 and at intersection B is 30. Each vehicle
stays at an intersection for several minutes before
leaving for other places. The staying time follows
an exponential distribution, with a mean of 2 min
for intersection A and 1 min for intersection B. The
RFID readers continuously monitor the number of
vehicles at the intersections and record the results
every minute. An RFID reader sends the messages to
the other reader every msgInterval minutes to build the
happen-before relations. The delay of the messages
follows an exponential distribution with a mean of
delay. The default values of msgInterval and delay are
both 2 min. Detection noise is assumed following a
normal distribution of N(noise, σ2). We vary these
parameters (summarized in TABLE 1) to check the
performance of our proposed algorithms. Each data
point of the result figures is obtained through 1000
runs of simulations with a confidence interval of 0.95.

7.2 Occurrence Times of Simple Predicates

We first check the occurrence times of a simple
predicate: “the total number of vehicles around the two
intersections is more than 75”. The results are shown in
Fig. 7-10.

The occurrence times of the predicate is subject to
the occurrence probability threshold. We vary it to
check the result in Fig. 7. According to the curve

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 11

0.8 0.85 0.9 0.95 1
2

4

6

8

10

occurrence probability threshold

oc
cu

rr
en

ce
 ti

m
es

ground truth
msg delay=1 min
msg delay=2 min
msg delay=3 min

Fig. 7: Detected occurrence times
vs. occurrence probability threshold
(simple predicate)

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

message generation interval (min)

oc
cu

rr
en

ce
 ti

m
es

ground truth
OPT=0.85
OPT=0.9
OPT=0.95
OPT=1

Fig. 8: Detected occurrence times vs.
message generation interval (simple
predicate)

80 85 90 95 100
0

1

2

3

4

specified number of vehicles

oc
cu

rr
en

ce
 ti

m
es

ground truth
OPT=0.85
OPT=0.9
OPT=0.95
OPT=1

Fig. 9: Detected occurrence times in
different ground truths (simple predi-
cate)

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

occurrence timesfa
ls

e
de

te
ct

io
n

pr
ob

ab
ili

ty

noise=1
noise=2
noise=3
noise=4
noise=5

Fig. 10: False detection probability
under the definitely modality and con-
sidering occurrence times

1 1.5 2 2.5 3

3.5

4

4.5

5

5.4

message delay (min)

oc
cu

rr
en

ce
 ti

m
es

ground truth
OPT=0.85
OPT=0.9
OPT=0.95
OPT=1

Fig. 11: Detected occurrence times vs.
message delay (simple sequence)

1 1.5 2 2.5 3

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

message generation interval (min)

oc
cu

rr
en

ce
 ti

m
es

ground truth
OPT=0.85
OPT=0.9
OPT=0.95
OPT=1

Fig. 12: Detected occurrence times vs.
message generation interval (simple
sequence)

1 1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

0.9

message delay (min)

oc
cu

rr
en

ce
 ti

m
es

ground truth
OPT=0.85
OPT=0.9
OPT=0.95
OPT=1

Fig. 13: Detected occurrence times vs.
message delay (interval-constrained
sequence)

1 2 3 4 5

0.4

0.5

0.6

0.7

0.8

message generation interval (min)

oc
cu

rr
en

ce
 ti

m
es

ground truth
OPT=0.8
OPT=0.9
OPT=1

Fig. 14: Detected occurrence times vs.
message generation interval (interval-
constrained sequence)

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

message delay (min)

 d
et

ec
tio

n
pr

ob
ab

ili
ty

ground truth
MGI=1 min
MGI=3 min
MGI=5 min
MGI=7 min
MGI=9 min

Fig. 15: The detection result of a
simple predicate under the definitely
modality, with different message de-
lays and generation intervals

OPT: occurrence probability threshold; MGI: message generation interval

labeled with a message delay of 1 min, the detected
occurrence times of the predicate decreases when the
occurrence probability threshold increases. For the
detection under the definitely modality (i.e., occurrence
probability threshold = 1), we can see that the result
deviates greatly from the ground truth (by about
38.1%). When we gradually relax the occurrence prob-
ability threshold from 1 to 0.9, the result approximates
the ground truth. It is noticed that the probability
threshold should not be over-relaxed to become less
than 0.9, as this causes false-positive results. How to
choose a proper occurrence probability threshold is an
interesting topic for future research. We further adjust
the message delay from 1 min to 2 min and 3 min, and
obtain similar results. As the message delay increases,
the detected occurrence times decreases, because a

larger message delay leads to more CGSs and causes
more uncertainty, hence making it difficult to detect
the occurrences of the predicate with accuracy.

In Fig. 8, we vary the message generation interval of
the RFID readers to check the result. The occurrence
times of the predicate decreases when the message
generation interval increases. The reason for this is
similar to that of the message delay; a larger message
generation interval leads to a larger number of possi-
ble CGSs, which makes the detection difficult.

In Fig. 9, we check the result by changing the real
occurrence times of the predicate (i.e., the ground
truth). We adjust the total number of vehicles specified
in the predicate from 80 to 100, denoting that the
predicate holds more and more rarely. It can be seen
that the detected occurrence times with different oc-

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 12

currence probability thresholds all decrease. However,
the result with an occurrence probability threshold of
0.85 is closer to the ground truth than that with a
larger value. It shows that a proper occurrence prob-
ability threshold is more reasonable than the definitely
modality (i.e., occurrence probability threshold = 1).

After we check the change in occurrence times
against different factors, we justify the usage of occur-
rence times taking into consideration the noisy results
from RFID readers. The noise is assumed following
a normal distributed N(noise, 10). We set the total
number of vehicles specified in the predicate to the
actual maximum value plus 20 (which means that
the specified predicate is never true), to check the
probability of false detection in different approaches.
This average noise is changed from 1 to 5, and the
occurrence probability threshold is set to 0.95. The
result is shown in Fig. 10. We can see that if we
consider only a single occurrence of the predicate,
that the predicate holds or not, the probability of
false detection is quite high. Although the specified
number of vehicles is never reached in the real world,
the probability that the predicate is claimed to be
true is much more than 0 (e.g., up to 0.86 when
noise = 5, and 0.28 when noise = 3). To obtain a more
convincing result, we need to consider the occurrence
times of the predicate. According to the figure, the
false detection probability can be reduced when the
considered occurrence times increases. The result is
even more obvious when the noise level is high. When
noise = 5, the false detection probability is 0.13 if
5 times of occurrences are considered, and 0.02 if 8
times of occurrences are considered. These results are
much better than those where only a single occurrence
of the predicate was considered. This justifies the
importance and usefulness of predicate detection that
takes occurrence times into consideration.

7.3 Occurrence Times of Simple Sequences

We then consider simple sequences. Supposing that
we want to investigate the relationship between the
crowd status of the two intersections, we define a
simple sequence e1; e2, where e1 denotes that “the
number of vehicles around intersection A is more than
30”, and e2 denotes that “the number of vehicles around
intersection B is more than 35 and at the same time the total
number of vehicles around these two intersections is more
than 60”. We check the effectiveness of our algorithm,
and the results are shown in Fig. 11 and Fig. 12.

We first check the occurrence times of the pred-
icate under different message delays. According to
Fig. 11, the detected occurrence times decreases when
the message delay increases. We also see that the
result of our approach is quite close to the ground
truth. Considering the case with a message delay of
3 min, when the occurrence probability threshold is
0.85, the derivation is bounded to 19.3%, while under

0.5 1 1.5 2 2.5

0.4

0.6

0.8

1

message delay (min)

oc
cu

rr
en

ce
 p

ro
ba

bi
lit

y

ground truth
MGI=1 min
MGI=3 min
MGI=5 min
MGI=7 min
MGI=9 min

Fig. 16: The occurrence probability of a simple predicate with
different message delays and generation intervals

the definitely modality (i.e., the occurrence probability
threshold = 1), the derivation is 41.5%. After that,
we change the message generation interval to further
check the performance. As shown in Fig. 12, the de-
tected occurrence times decreases when the message
generation interval increases. The reason for this is
similar to that for message delay. Again, detecting
a predicate based on its occurrence times subject to
an occurrence probability is more effective than that
under the definitely modality.

7.4 Occurrence Times of Interval-constrained Se-
quences

Finally, we consider interval-constrained sequences,
which specify not only desirable states but also unde-
sirable states. Supposing that we want to investigate
a quite crowed situation caused by intersection A,
we define an interval-constrained sequence e1; [θ2]e2,
where e1 denotes that “the number of vehicles around
intersection A is more than 40”, e2 denotes that “the
number of vehicles around intersection B is more than 45
and at the same time the total number of vehicles around
the two intersections is more than 80”, and [θ2] denotes
that “the number of vehicles around the two intersections is
not less than 65”. The detection results of our algorithm
are shown in Fig. 13 and Fig. 14.

We can see that the results of our algorithm are
quite close to the real values when using a proper
occurrence probability threshold. According to Fig. 13,
assuming that the message delay is 2 min, the de-
tected occurrence times is about 85.5% of the real
value when the occurrence probability threshold is
0.85 and only 67.0% under the definitely modality
(occurrence probability threshold = 1). According to
Fig. 14, assuming that the message generation interval
is 3 min, the detected occurrence times is 93.0% of the
real value when the occurrence probability threshold
is 0.8, while the comparable figure is 64.0% under
the definitely modality. The detected occurrence times
decreases when the message delay or message gener-
ation interval increases, which is consistent with the
results for other types of predicates.

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 13

7.5 Occurrence Probability of Predicates

Since our algorithm can also be used to determine
the occurrence probability of a predicate, we check its
effectiveness in this sub-section. Usually, it is prefer-
able to determine the occurrence times of a predicate
when the predicate holds several times in the real
world, and to determine the occurrence probability
of a predicate when the predicate rarely holds.

We consider the same simple predicate discussed in
section 7.2. The results of the other types of predicates
are similar, and thus are omitted. We compare the
results of different approaches in Fig. 15 and Fig. 16.

The detection result under the definitely modality
is shown in Fig. 15. The returned result is binary,
“yes” or “no”, where “yes” means that the specified
predicate definitely holds and “no” means the other
cases. According to the figure, given a message delay
of 0.5 min, the predicate can be detected with a prob-
ability of 0.7 when the message generation interval
is 1 min. This probability is less than 0.3 when the
message generation interval is 3 min, and decreases
quickly when the interval increases. The probability
also decreases quickly when the message delay in-
creases. It is noticed that the probability denotes the
probability that the predicate is true, while in other
cases the predicate is claimed to be false.

The result of our algorithm is different, as shown
in Fig. 16. Instead of a binary result, our algorithm
always returns a continuous quantity, the occurrence
probability. It describes the possibility that the pred-
icate holds. This value decreases with the increase
of the message delay and message generation inter-
val, which matches the ground truth. The occurrence
probability distinguishes different cases in distributed
systems and provides more detailed information.

8 RELATED WORK

Predicates are classified into stable predicates and
unstable predicates [19], [20]. The detection of stable
predicates is relatively simple and can be solved by
distributed snapshot approaches [22]. The detection of
unstable predicates is more challenging since multiple
observations exist. The definitely and possibly modal-
ities are introduced in [11] for detecting unstable
predicates. The lattice serves as a tool for detecting
generic predicates, called relational predicates, under
the definitely and possibly modalities [11], [12]. As
a special class of predicates, conjunctive predicates,
specified by a conjunctive expression of local states,
are also investigated under these two modalities [15],
[27], [28]. In [29], a sequence of predicates that denote
both preferred and forbidden properties are formally
defined and a solution for their detection is proposed.
In [23], three typical types of predicates, including
simple predicates, simple sequences, and interval-
constrained sequences are further studied. Different
from the logical clock, an approximately synchronized

physical clock is used to detect predicates in distribut-
ed systems [30], [31]. In [10], [32], predicate detection
is used for real-time context detection, based on the
definitely modality.

All of the above works detect only the first occur-
rence of predicates. In [24], an approach is proposed to
detect all occurrences of a conjunctive predicate under
the definitely modality. The latest work on this topic is
[9], where all of the occurrences of both conjunctive
predicates and relational predicates are considered. It
is based on a software logical clock called strobe clock,
which resides in each process and gets synchronized
once a relevant event happens. The events at the pro-
cesses are checked to determine whether a predicate
holds in the physical world, slightly different from
the definitely modality. The above two works do not
refine the possibly modality to provide more detailed
information. Moreover, the detection is carried out
under the definitely modality (or a similar modality)
rather than under a generic occurrence probability,
which is not sufficient in an error-prone distributed
environment.

9 CONCLUSION

In this paper, we investigated the problem of detect-
ing predicates in asynchronous distributed systems.
Rather than using the definitely and possibly modalities,
we generalized the predicate detection as based on an
occurrence probability, and then further based on the
occurrence times subject to an occurrence probability,
to provide more detailed information to users. A gen-
eral algorithm framework was proposed to solve this
problem for various types of predicates. We carried
out a basic implementation of this algorithm frame-
work and, based on this implementation, developed
the algorithms for three typical predicates, namely
simple predicates, simple sequences, and interval-
constrained sequences. The evaluation results show
that our algorithms are effective and outperform ex-
isting approaches.

ACKNOWLEDGMENTS

This research is supported in part by Outstanding
Academic Talents Startup Funds of Wuhan Univer-
sity No. 216-410100004, Hong Kong RGC under AN-
R/RGC Joint Research Scheme A-PolyU505/12 and
Germany/HK Joint Research Scheme G-PolyU508/13.

REFERENCES

[1] S. Ji and Z. Cai, “Distributed data collection and its capacity
in asynchronous wireless sensor networks,” in Proc. of INFO-
COM, 2012, pp. 2113–2121.

[2] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu, “Joint asyn-
chronous congestion control and distributed scheduling for
multi-hop wireless networks,” in Proc. of INFOCOM, 2006, pp.
1–12.

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 2013 14

[3] F. Babich and M. Comisso, “Analysis of asynchronous multi-
packet reception in 802.11 distributed wireless networks,” in
Global Telecommunications Conference, 2009. GLOBECOM 2009.
IEEE, 2009, pp. 1–6.

[4] C. Van Berkel, M. Josephs, and S. Nowick, “Applications of
asynchronous circuits,” Proceedings of the IEEE, vol. 87, no. 2,
pp. 223–233, 1999.

[5] B. Tang, S. Longfield, S. Bhave, and R. Manohar, “A low
power asynchronous gps baseband processor,” in Proc. of IEEE
International Symposium on Asynchronous Circuits and Systems,
2012, pp. 33–40.

[6] J. L. Crowley, “Asynchronous control of orientation and dis-
placement in a robot vehicle,” in Proc. of IEEE International
Conference on Robotics and Automation, 1989, pp. 1277–1282.

[7] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, “Gath-
ering of asynchronous robots with limited visibility,” Theoret-
ical Computer Science, vol. 337, no. 1-3, pp. 147–168, 2005.

[8] Z. Bouzid, M. Potop-Butucaru, and S. Tixeuil, “Optimal byzan-
tine resilient convergence in asynchronous robots networks,”
in Proc. of the International Symposium on Stabilization, Safety,
and Security of Distributed Systems, 2009, pp. 165–179.

[9] A. D. Kshemkalyani and J. Cao, “Predicate detection in asyn-
chronous pervasive environments,” IEEE Trans. on Computers,
vol. 62, no. 9, pp. 1823–1836, 2013.

[10] Y. Huang, Y. Yang, J. Cao, X. Ma, X. Tao, and J. Lu, “Runtime
detection of the concurrency property in asynchronous per-
vasive computing environments,” IEEE Trans. on Parallel and
Distribued Systems, vol. 23, no. 4, pp. 744–759, 2012.

[11] R. Cooper and K. Marzullo, “Consistent detection of global
predicates,” in Proc. of the ACM/OCR Workshop on Parallel and
Distributed Debugging, 1991, pp. 163–173.

[12] K. Marzullo and G. Neiger, “Detection of global state pred-
icates,” in Proc. of the 5th Workshop on Distributed Algorithms,
1991, pp. 254–272.

[13] H. Lee, C. Wu, and H. Aghajan, “Vision-based user-centric
light control for smart environments,” Pervasive and Mobile
Computing, vol. 7, no. 2, pp. 223–240, 2011.

[14] N. Eagle, A. S. Pentland, and D. Lazer, “Inferring friendship
network structure by using mobile phone data,” Proc. of the
National Academy of Sciences of the United States of America, vol.
106, no. 36, pp. 15 274–15 278, 2009.

[15] V. K. Garg and B. Waldecker, “Detection of weak unstable
predicates in distributed programs,” IEEE Trans. on Parallel and
Distributed Systems, vol. 5, no. 3, pp. 299–307, 1994.

[16] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21, no. 7,
pp. 558–565, 1978.

[17] O. Babaoğlu and K. Marzullo, Consistent Global States of Dis-
tributed Systems: Fundamental Concepts and Mechanisms. ACM
Press/Addison-Wesley Publishing Co., 1993.

[18] R. Schwarz and F. Mattern, “Detecting causal relationships
in distributed computations: In search of the holy grail,”
Distributed Computing, vol. 7, no. 3, pp. 149–174, 1994.

[19] A. D. Kshemkalyani and M. Singhal, Distributed computing:
principles, algorithms, and systems. Cambridge Univ. Press,
2008.

[20] M. Raynal, Distributed Algorithms for Message-passing Systems.
Springer, 2013.

[21] V. K. Garg, Elements of distributed computing. Wiley, 2002.
[22] K. M. Chandy and L. Lamport, “Distributed snapshots: de-

tetermining global states of distributed systems,” ACM Trans.
on Computer Systems, vol. 3, no. 1, pp. 63–75, 1985.

[23] Ö. Babaoglu and M. Raynal, “Specification and verification
of dynamic properties in distributed computations,” Journal of
Parallel and Distributed Computing, vol. 28, no. 2, pp. 173–185,
1995.

[24] A. D. Kshemkalyani, “Repeated detection of conjunctive pred-
icates in distributed executions,” Information Processing Letters,
vol. 111, no. 9, pp. 447–452, 2011.

[25] ——, “A fine-grained modality classification for global predi-
cates,” IEEE Trans. on Parallel and Distributed Systems, vol. 14,
no. 8, pp. 807–816, 2003.

[26] H. Luo, Y. Liu, and S. K. Das, “Routing correlated data with
fusion cost in wireless sensor networks,” IEEE Tran. on Mobile
Computing, vol. 5, no. 11, pp. 1620–1632, 2006.

[27] V. K. Garg and B. Waldecker, “Detection of strong unstable
predicates in distributed programs,” IEEE Trans. on Parallel and
Distributed Systems, vol. 7, no. 12, pp. 1323–1333, 1996.

[28] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal, “Efficient
distributed detection of conjunctions of local predicates,” IEEE
Trans. on Software Engineering, vol. 24, no. 8, pp. 664–677, 1998.

[29] M. Hurfin, N. Plouzeau, and M. Raynal, “Detecting atomic
sequences of predicates in distributed computations,” in Proc.
of ACM/ONR workshop on Parallel and distributed debugging,
1993, pp. 32–42.

[30] J. Mayo and P. Kearns, “Global predicates in rough real time,”
in Proc. of the 7th IEEE Symposium on Parallel and Distributeed
Processing, 1995, pp. 17–24.

[31] S. D. Stoller, “Detecting global predicates in distributed sys-
tems with clocks,” Distributed Computing, vol. 13, no. 2, pp.
85–98, 2000.

[32] H. Wei, Y. Huang, J. Cao, X. Ma, and J. Lu, “Formal spec-
ification and runtime detection of temporal properties for
asynchronous context,” in Proc. of Percom, 2012, pp. 30–38.

Weiping Zhu is currently an associate pro-
fessor of the International School of Software
at Wuhan University. He received the BSc
degree from Chongqing University, China, in
2003, the MSc degree from Shanghai Jiao-
Tong University, China, in 2006, and the PhD
degree from Hong Kong Polytechnic Univer-
sity, Hong Kong, in 2013, all in computer
science. Before current position, he worked
as a postdoctoral fellow for Hong Kong Poly-
technic University, and a technical officer for

The University of Hong Kong. He also visited IRISA-INRIA, France,
from Nov. 2011 to May. 2012. His research interest includes RFID,
WSN, distributed computing, and pervasive computing.

Jiannong Cao is currently a chair professor
and the head of the Department of Com-
puting at Hong Kong Polytechnic University.
He received the BSc degree from Nanjing
University, China, in 1982, and the MSc and
PhD degrees from Washington State Univer-
sity, USA, in 1986 and 1990, all in computer
science. His research interests include paral-
lel and distributed computing, computer net-
works, mobile and pervasive computing, fault
tolerance, and middleware. He co-authored

4 books, coedited 9 books, and published more than 300 technical
papers in major international journals and conference proceedings.
He has directed and participated in numerous research and develop-
ment projects and, as a principal investigator, obtained over HK$25
million grants. He is the Chair of Technical Committee on Distributed
Computing, IEEE Computer Society, a fellow of IEEE, a member of
ACM, and a senior member of China Computer Federation. He has
served as an associate editor and a member of editorial boards of
many international journals, and a chair and a member of organizing
/ program committees for many international conferences.

Michel Raynal is a professor of computer
science at IRISA-INRIA, Rennes, France. His
main research interests are the basic prin-
ciples of distributed computing systems. He
is a world leading researcher in the domain
of distributed computing. He is the author of
numerous papers on distributed computing
(more than 120 in journals and 250 papers
in intl conferences) and is well-known for his
distributed algorithms and his nine books on
distributed computing. He has chaired the

program committee of the major conferences on the topic (e.g.,
ICDCS, DISC, SIROCCO, and OPODIS). He has also served on
the program committees of many international conferences, and is
the recipient of several “Best Paper” awards (ICDCS 1999, 2000 and
2001, SSS 2009, Europar 2010). His h-index is 45. Since 2010, he
has been a senior member to the prestigious “Institut Universitaire
de France”.

