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Abstract—In recent years, the use of Graphics Processing
Units (GPUs) for data mining tasks has become popular. With
modern processors integrating both CPUs and GPUs, it is also
important to consider what tasks benefit from GPU processing
and which do not, and apply a heterogeneous processing approach
to improve the efficiency where applicable.

Similarity search, also known as k-nearest neighbor search,
is a key part of data mining applications and is used also
extensively in applications such as multimedia search, where only
a small subset of possible results are used. Our contribution is
a new exact kNN algorithm with a compressed partial heapsort
that outperforms other state-of-the-art exact kNN algorithms by
leveraging both the GPU and CPU.

I. INTRODUCTION

k-nearest neighbor search, also known as similarity search,
involves finding the top k results (e.g., top 10 most similar) to
each query. It is a key component of data mining applications
such as kNN join [1], [2], which uses two datasets rather than
a dataset and a query set. kNN is also a key part of real world
applications such as multimedia search and classification of
images, music and video [3]. In a server setting, there are also
typically many simultaneous queries that need to be satisfied
in a timely fashion.

Formally, similarity search can be defined as:

Given a set D of points in a r-dimensional space and a
query point q, find the k points in D with the smallest distances
dist(q, p).

There are two major approaches to similarity search —
(i) exact methods, which return the exact set of k-nearest
neighbors, and (ii) approximate methods, which may not return
the exact set of neighbors.

Several efficient kNN algorithms have been proposed in
the literature, designed to reduce the number of high dimen-
sional distance calculations that bottlenecks performance on
traditional CPUs. These approaches include exact kNN with
indexing [4], [5] as well as approximate kNN methods [6],
[7]. However, since an exact kNN process is required at some
stage in any kNN operation, even in approximate kNN search
[8], there is a lot of interest in optimizing exact kNN.

Exact similarity search can be decomposed into two fun-
damental operations: distance computation between the data
points and the query points, followed by sorting the results to
find the smallest distances (i.e., the points that are most similar
to the query).

Our proposed algorithm1 is in the exact kNN family of
algorithms and utilizes threshold pruning compression with a
heap based partial sort that is faster than competing state-of-
the-art kNN algorithms with parallel partial sorting. This is
achieved using a heterogeneous computing platform combining
a GPU for distance computation and a CPU for sorting.

Fig. 1: CPU-GPU system

Fig. 1 shows a typical system containing a CPU and a
GPU. There are four key points to such a system:

• the potential computing performance of a GPU (thou-
sands of GFLOPS) is much greater than CPUs (hun-
dreds of GFLOPS), if fully utilized

• the memory bandwidth available to a GPU (hundreds
of GB/s) is much greater than that of CPUs (tens of
GB/s)

• the host memory connected to a CPU (dozens of GB)
is much larger than the video memory connected to a
GPU (a few GB)

• the GPU must copy data to host memory into video
memory and vice versa over the PCIe interconnect
(approx. 32GB/s)

Heterogeneous processing, which uses a combination of
processors (in this case a CPU and GPU) on a single task,
is an area of growing interest as processors with powerful
integrated GPUs become commonplace. These technologies
are commonly seen in mobile System-on-a-Chip (SoC) pro-
cessors that are required to fit in the limited power and thermal
envelope of a mobile device (e.g., smartphones), however most
mainstream CPUs now integrate GPUs as well.

Distance computation has been established as a highly
parallelizable task well suited to GPUs. In our proposed
algorithm, distance computation occurs twice: once on a small
sample to quickly determine a threshold value for the k-nearest
neighbors, and then on the full dataset.

1The source code for the implementation used in this paper is available at
https://bitbucket.org/cstakazumi/knn-gpu/src
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While distance computation is readily parallelized, sorting
is also a large cost to consider. Some well known CPU efficient
algorithms such as quicksort are challenging for GPUs as
diverging code branches reduce parallel efficiency [3], [9].
Existing parallel exact similarity search has focused on using
the fastest GPU sorting algorithms, such as radix sort [10],
[11].

However, such sorting algorithms do not exploit the result
size k to further reduce the sorting cost. The solution to this is
a partial sort such as the heapsort, which involves maintaining
only the set of nearest k neighbors in memory. A state-of-the-
art GPU partial sorting method, based on a parallel bitonic-
merge sort, has been proposed in [8]. This method first splits
the input dataset recursively until each partition is of length 1,
then proceeds to merge them bottom-up in sorted order. Unlike
in a full bitonic sort, once a sorted sublist reaches length 2k,
the upper half is discarded.

Bitonic sort is well known as a parallel sorting algorithm as
its operations are data parallel (i.e., independent of each other),
however partial bitonic sort has a number of issues. Firstly, it
scales poorly with k — it is only competitive at small values of
k compared to other partial sorting algorithms. Secondly, the
sort is not parallel efficient on GPUs — as the sorted sublists
are merged, half are discarded, shrinking the number of active
threads and not utilizing the GPU computing performance and
bandwidth fully.

In our proposed algorithm, rather than interleaving the GPU
efficient distance computation with GPU inefficient sorting,
we use the GPU for primarily distance computation and the
host CPU for sorting. The ‘freed’ GPU cycles are used for
additional distance computation on a small sample of the
dataset in order to prune and compress the main dataset to
speed up sorting. On a CPU, it is feasible to maintain parallel
efficiency and also use an algorithm that can scale with a much
larger range of k. Our main contributions in this work can be
summarized as follows:

• a fast sampling based pruning method to compress
distance matrices

• a parallel implementation of partial minmax heapsort
with query batching

In our testing on publicly available image datasets, our pro-
posed TH-heap algorithm outperforms the competing bitonic
sort-based kNN algorithm by a factor of 10 or more. Table II
lists the symbols that are used in this paper.

II. RELATED WORK

Although the straightforward solution to kNN search is
obvious (i.e., the brute force method of measuring all distances
and sorting them into order), it is computationally expensive
and inefficient with large, high dimensional datasets. In the
literature, many approaches were proposed to improve the
efficiency of brute force searching, such as VA-file [4] and
iDistance [5], which use an index based approach. However, a
key issue with index based methods is that their efficiency
degrades to brute force with high dimensionality, and that
indexes have to be rebuilt if the data changes [3], meaning
that with high dimensionality any advantage of index-based
methods are lost.

Many data mining applications are good candidates for
parallelization [12] as they are typically data parallel tasks.
This also makes data mining a suitable problem for GPUs
[13], as GPUs are massively parallel processors typically with
high bandwidth dedicated RAM. A subroutine, called a kernel
in GPU programming, can be executed in multiple instances,
called threads. For GPUs, threads are arranged in blocks also
known as workgroups, which is assigned to ‘Compute Units’
as shown in Fig. 2. Since each GPU processor is simple, it
shares resources such as cache and scheduling in these units.

Fig. 2: GPU block diagram

Compared to a multi-core CPU that may run tens of threads
simultaneously, a GPU may run hundreds or thousands of
threads simultaneously. This is advantageous in data parallel
problems where a long loop over the entire dataset can instead
of divided up into many threads with shorter loops. Fig. 3
demonstrates a simple operation on six data elements. Fig.
3(a) shows the serial loop given in Algorithm 1 and Fig. 3(b)
shows the same task executed in parallel (Algorithm 2). Since
each iteration is independent of each other, it can be unrolled
completely.

Algorithm 1 Serial loop

for i := 1 to 6 do
out[i] := i

Algorithm 2 Parallel execution

parfor each i do
out[i] := i

end parfor

In this paper, the parfor keyword to describe the parallel
nature of kernels in pseudo-code. A parfor block represents
a for-loop where all iterations are executed by corresponding
threads in parallel. To represent the thread-workgroup hierar-
chy, a nested parfor block is used (see Algorithm 3), with
the outer parfor indicating workgroup creation and the inner
parfor indicating thread creation.

In GPU programming, memory has a hierarchy and is
logically divided up by thread and workgroup as well. A single
thread has access to private memory for storing variables,
which are typically very high speed registers on a GPU.
To share data between threads, there is local (a.k.a. shared)



(a) Serial loop

(b) Parallel execution

Fig. 3: Examples of execution on 6 data elements

memory and global memory. Local memory is a high speed
cached memory that is accessible between threads in the same
workgroup. However there is only limited amount of local
memory available, usually 32 to 48kB, making it useful for
frequently accessed data. Global memory is the slowest and
largest amount of memory available, accessible by all threads
in all workgroups. Efficient memory access to global memory
is key in achieving good parallel performance.

TABLE I: Overview of exact kNN algorithms using GPU
acceleration

Algorithm Sort Distance Data structure
1NN [14] N/A L1 norm r 2D textures

insertion [9] Partial L2, KLD r-dim. array
BF-reduce [11] Full L2 norm r-dim. array

BF-radix [11] Full L2 norm r-dim. array
CU-heap [8] Partial L2 norm r-dim. array

CU-bitonic [8] Partial L2 norm r-dim. array

Table I shows several GPU accelerated kNN algorithms,
noting their data structures and distance measures. GPU algo-
rithms often tend to focus on exact brute force methods [9],
[14], [15]. The primary reason for this is that the large number
of simple processors in a GPU are well suited to the large
number of simple calculations used in brute force algorithms.
On the other hand, algorithms leveraging data structures such
as trees and hash tables or complex heuristics limit the parallel
potential on GPUs.

Two popular programming frameworks for general purpose
computing on GPUs (GPGPU) are (i) CUDA, a proprietary
solution developed by NVIDIA [16], and (ii) OpenCL, an
open standard managed by The Khronos Group [17] and
backed by multiple companies including Intel, AMD, NVIDIA
and Apple. The work in [14] predates the introduction of
the CUDA framework for GPGPU, and thus uses graphical
operations for processing. In [14] data is mapped to a 2D
texture, with each texture mapping to a single dimension
and several fragment programs (also known as a shader) to
calculate distance, eventually reducing the answer to a single
nearest neighbor. The authors in [9] implement their brute
force kNN algorithm using CUDA, with a parallel insertion

sort. An improved version of this brute force algorithm is
presented in [18], however in both cases the implementation
is restricted in the number of objects it can process due to use
of limited shared memory.

The sort algorithm is the key point of difference between
these methods. Many GPU algorithms utilize a full sort such
as radix sorting. A partial sorting approach has some key
advantages however, as only a short list of sorted elements
has to be maintained so it can be stored in fast cache.

While parallel heapsort algorithms have been proposed
previously [19], [20], a GPU implementation of these algo-
rithms is problematic due to the highly branching nature of
the algorithm. The authors in [3] propose partitioning the
data and running multiple partial sorts, with the result being
gathered from the partitions at the end. In their evaluation,
they demonstrate that this heapsort method is as fast or faster
than a competing full sort on a GPU where k < 100. Another
state-of-the-art method discussed earlier is a partial version of
the bitonic sort [8]. We compare our proposed algorithm to the
work in [8], using the source code provided by the authors.

In contrast to exact methods, approximate distance methods
such as Locality Sensitive Hashing (LSH) [6] reduce the k-
nearest neighbor problem into an approximate nearest neighbor
search with a reduced search space.

The advantage of LSH is that the number of distance
calculations necessary to obtain the k nearest neighbors is
reduced significantly, as all similar objects should already be
in the same hash bucket. The authors in [6] also provide a
theoretical bound on the error created by the approximation,
something that is not available for heuristic approximation
methods such as clustering. There are several implementations
of LSH, including a GPU variant in [11].

The primary drawbacks of this LSH implementation are
that it is memory intensive, complicated to implement effi-
ciently on GPUs, and depending on the size and distribution
of the dataset, the performance can degrade to linear scan in
the worst case [21]. On the other hand, exhaustive methods
are predictable, have no approximation factor, and are com-
petitive with approximate methods in terms of performance in
some circumstances. In this paper, we utilize a fast sampling
and threshold compression that maintains exact results while
reducing the distance sorting workload significantly.

III. TH-HEAP ALGORITHM

Fig. 4: Flowchart of TH-heap

There are four main stages of TH-heap: sampling, distance
computation, pruning and sorting. The overall algorithm for
the proposed threshold-heap (TH-heap) algorithm is shown in
Fig. 4, with the key operations numbered in order. Distance



TABLE II: Definition of symbols

Notation Meaning
D Dataset
Q Set of queries
M Set of distances between points in D and Q
H Heap used for sorting
I Set of sorted distances
S Set of samples from dataset D
T Set of threshold values
nD Number of data points in D
nQ Number of query points in Q
nS Number of samples
r Number of dimensions of points in D and Q
k Number of nearest neighbors

sizeqbatch Size of each query batch used in compression

computation is discussed on in Section IV, and while there
are two distance operations numbered sequentially, they can
be run concurrently. Pruning to compress the distance matrix
is discussed in Section V-A and our parallel sorting strategy
is discussed in Section V-C.

Initially, nS samples are chosen at random from the dataset
D. On a small sample, initial distance computation with Q can
be done quickly, with the k-th nearest neighbor dT extracted
as the threshold value. This threshold value is used to prune
the distance array — objects that have a distance from the
query greater than the threshold can be discarded without
compromising the k-nearest neighbors in the full dataset. To
balance parallelism and compression, queries are arranged into
smaller batches of size sizeqbatch.

IV. BACKGROUND: PARALLEL DISTANCE COMPUTATION

As discussed previously, distance computation using GPUs
has been well explored in the literature. In this work we use
a standard matrix based approach to compute Euclidean (L2)
distance between the data points and the query points. This
follows from the definition of L2 distance:

distanceL2(q, o) =

√
r∑

(qi − oi)2

=

√
r∑

(q2i + o2i − 2qioi)

As such, it is possible to leverage highly hardware opti-
mized routines for matrix operations and summation. Reduc-
tion is a common GPU operation that is designed to maximize
throughput on mathematical operations such as summation
[22]. High performance implementations of the Basic Linear
Algebra Subprograms (BLAS) [23] has also been created for
GPUs (e.g., cuBLAS2, clBLAS3).

The distance computation algorithm is given in Algorithm
3. Note that as part of the BLAS specification, the general
matrix-matrix function (GEMM) takes the following form,
where α and β are scalar factors, and A B and C are matrices.

2https://developer.nvidia.com/cuBLAS
3https://github.com/clMathLibraries/clBLAS

C = αAB + βC (1)

However in Algorithm 3, α is always left as 1 and β is
always left as 0. Equation 1 can then be treated as a simple
function with two parameters as in Equation 2.

C = AB (2)

Algorithm 3 DISTANCES (Dataset D, Queries Q, Distances
M)

1: Let Dv[1, nD] be a 1D array (global memory)
2: Let Qv[1, nQ] be a 1D array (global memory)
3: Let squared[1, r] be a 1D array (local memory)
4: parfor each query qi do . Compute Qv
5: parfor each dimension rk do
6: squared[rk] := Q[qi][rk]2
7: end parfor
8: Reduce squared into sum
9: Qv[qi] := sum

10: end parfor
11: parfor each data point oj do . Compute Dv
12: parfor each dimension rk do
13: squared[rk] := D[oj ][rk]2
14: end parfor
15: Reduce squared into sum
16: Dv[oj ] := sum
17: end parfor
18: M := GEMM(D, QT )
19: parfor each query qi do . Compute distances M
20: parfor each data point oj do
21: M[qi][oj ] := SQRT(Dv[oj ] − 2 × M[qi][oj ] +

Qv[qi])
22: end parfor
23: end parfor

Example 1: Consider a simple example with nD = 8, r =
2, nQ = 2, k = 3, nS = 4, sizeqbatch = 2. Let the dataset D
and query set Q be defined as follows.

D =



0.4 0.0
0.7 0.1
1.0 0.6
0.2 0.7
0.8 0.5
0.3 0.2
0.0 1.0
0.9 0.5


Q =

(
0.7 0.4
0.1 0.5

)

From D we take a set of four samples.

S =

 0.4 0.0
0.2 0.7
0.8 0.5
0.3 0.2


To compute the distance matrix as in Algorithm 3, we

first compute vectors Dv′ and Qv. Note that when using the
sample set S instead of data set D, the vectors are marked as
prime (′).



Dv′ =

 0.16
0.53
0.89
0.13

 Qv =

(
0.65
0.26

)

S ×QT is also required for computing M:

S ×QT =

 0.28 0.04
0.42 0.37
0.76 0.33
0.23 0.13


Finally, each element in the distance matrix can be deter-

mined, for e.g. d
′0
0 =

√
0.16− (2× 0.28) + 0.65 = 0.50

The completed distance matrix is as follows:

M′ =

 0.50 0.58
0.58 0.22
0.14 0.70
0.45 0.36


After sorting, we can see the k-th largest distance for

each query is the threshold value. Sorting is demonstrated in
Example 3.

T = ( 0.50 0.58 )

V. PARALLEL PARTIAL SORT

Our work employs a heapsort with a fixed size minmax
heap data structure, primarily targeting the multi-core CPU
in a CPU-GPU system for sorting. The reason for this is
that although written in OpenCL and capable of running on
GPUs, partial sorting has not been established to be an optimal
problem for current GPU architectures. Traditionally, GPU
sort implementations have used full sorts complexity of O(n)
(radix sort [11]) or O(n2) (insertion sort [9], [11]). Although
the full sort can be parallelized readily, n is the major factor
particularly as k � n. We compare our approach to the state-
of-the-art GPU partial bitonic sort, and find that our method
can outperform it significantly, even with modest CPU power.

A. Compression

By sampling the dataset and saving the k-th distance for
each query, it is possible to discard any distance values above
that threshold without compromising the set of exact k nearest
neighbors. By changing the number of samples, it is possible
to balance the time taken for calculating the threshold vs. how
close the threshold is to the actual k-th distance of the whole
dataset. The closer the threshold to the actual k-distance, the
smaller the dataset being sorted is. We measure the ratio of
the threshold value to the actual k-distance as:

threshold ratio =

∑nQ dik/d
i
T

nQ
(3)

In Section VI-A we explore the effect of sample size
on performance. Another metric for measuring compression
efficiency is compression ratio. While the exact compression
ratio will depend on the dataset and query set, it can be
estimated as:

nD
expected rank of k-th best sample

=
nD

knD/nS
=
nS
k

Thus setting the sample size as a multiple of k gives a
stable compression ratio. Empirically, even a small sample with
negligible sampling time will reduce sort time significantly.
Based on this, we find a value between nS = 8k and nS = 32k
to be appropriate.

Since queries are batched for parallelism and to manage
buffer sizes, the actual compression ratio for each query batch
as shown in Equation 4 is bounded by the maximum size of
each row of the distance matrix Mq after pruning with the
threshold value dqT .

compression ratio =
nD

max{count(dqi < dqT ), i = [1, nD],Mq}
(4)

Example 2: Continuing from the previous Example 1, the
distance matrix M is as follows:

M =



0.50 0.58
0.30 0.72
0.36 0.91
0.58 0.22
0.14 0.70
0.45 0.36
0.92 0.51
0.22 0.80


Deleting distance values that are above the threshold gives

the following sparse matrix.

M′ =



0.50 0.58
0.30
0.36

0.22
0.14
0.45 0.36

0.51
0.22


It is apparent that the first query has a compressed size

of 6, while the second query has a compressed size of 4.
However, since sizeqbatch = 2 in this example, the larger
of the compressed sizes is used. Empty spaces are padded
with the max float value. In addition, prior to compressing
the sparse matrix the original indices should be stored so they
can be referenced correctly after sorting. The final compressed
matrix is thus as follows.

M′ =


0.50 0.58
0.30 0.22
0.36 0.36
0.14 0.51
0.45
0.22

 M′
indices =


1 1
2 4
3 6
5 7
6
8


By Equation 4, the compression ratio in this example is

thus 8/6 = 1.33.

B. Background: Parallel minmax heap

Initial heap creation time from an initial unsorted array is
O(k). A minmax heap is flexible in that both minimum and
maximum elements can be accessed in O(1) time, similar to
a sorted array and faster on average than a standard min or
max heap. For maintaining a k nearest neighbor structure, this



means that insertion of new objects onto the heap is on the
same order as for a max heap, while generating the kNN list
in order is like that of a min heap. Also importantly for a
fixed size heap (of size k), insertion has a time complexity of
O(log k) as opposed to O(k) (sorted array) or O(k + log k)
(min or max heap).

There are two key operations for minmax heapsort [24],
trickle and bubble. These operations involve moving values
either down or up the heap, and varies depending on whether
the operation is on a min level or a max level. They are used
for updating the heap after every insertion or deletion.

For this implementation there are several changes made
from the original algorithm. The heap is a fixed size and
starts fully populated, thus the bubble operation is not used
as elements are never appended to the bottom of the heap.
Instead the heap is initialized from the first k items in the
dataset, and subsequent additions always either substitute the
root (min) or one of the root node’s children (max). Since
the heap is not done in-place, it can benefit from locality of
reference (CPU) or being stored in local memory (GPU).

Note that to work around some limitations in OpenCL,
recursive functions have been re-written to be iterative. In
addition, arbitrary loop termination in an inner loop is not
well supported, so some loops have been flattened.

Algorithm 4 PTRICKLEMINONCE (Heap H, current root
node root)

1: if root has child nodes then
2: Let mchild be the smaller of root’s child nodes
3: if root has grandchild nodes then
4: Let mgchild be the smaller of itself and root’s

grandchild nodes
5: if mchild ≤ mgchild and mchild < root then
6: Swap mchild and root in H
7: else if mgchild < root then
8: Swap mingchild and root in H
9: if mgchild > parent of mgchild then

10: Swap mgchild and parent of mgchild in H
11: return mgchild

12: return none

Algorithm 4 shows the operation trickle min, adapted
from [24]. The companion operation trickle max
(PTRICKLEMAXONCE) is identical with the inequality
signs reversed. The trickle operations maintain the minmax
structure by swapping nodes in the heap and is used when
initializing the heap, inserting new values and extracting
values.

Algorithm 5 PINSERT (Heap H, new node new)

1: if heapmax > new then
2: Replace heapmax with new
3: if new < heapmin then
4: Swap new and heapmin in H
5: return PTRICKLEMINONCE(H, heapmax)
6: else
7: return none

Algorithm 5 differs from the original insertion method in
two ways. Firstly, as the heap is initially already populated,
there are two checks – one against the smallest object in the
heap (always the root) one against the largest object in the heap
(one of the root’s children). Once inserted, the heap must be
updated from the point where the new object was inserted.

The operation for heap delete is similar to heap insert, but
for delete the root node is overwritten with the last node in
the heap, and the heap is then updated again.

Algorithm 6 PHEAPIFYMINMAX (Heap H)

1: Let level and update be temporary variables
2: level := bsize(H) −2/2c
3: update := level . Stores the current node being updated
4: while level ≥ 0 do
5: if update is a min level then
6: update := PTRICKLEMINONCE(H, update)
7: else
8: update := PTRICKLEMAXONCE(H, update)
9: if update is none then

10: Decrement level
11: update := level

Algorithm 6 shows the initialization process of the heap,
given an initial array. This approach is faster than the original
repeated insertion into an empty heap given in [24].

Example 3: Following from Example 2, the two initial
heaps are constructed as follows:

0.14

0.58 0.50

0.22

0.58 0.70

Then, the fourth sample is compared to the max value of
the heap, which in a minmax heap is always one of the child
nodes of the root node. If the new value is smaller than the
max value in the heap, the new value replaces it.

0.14

0.58

0.45

0.50

0.22

0.58 0.70

0.36

The tree is then updated to ensure the root node is still the
smallest value and one of its children the largest value.

0.14

0.45 0.50

0.22

0.58 0.36

For computing threshold, the max value can be found
immediately, which as shown in Example 2 is 0.50 and 0.58.

C. Sorting

Algorithm 7 shows the overall sort algorithm. Example 4
illustrates its operation.

Example 4: In contrast to Example 3, for the sort on the
compressed distance matrix both the values and the indices
are used, represented as a {key, value} pair. The initial heap
is constructed as follows.



Algorithm 7 MINMAXPARTIALHEAPSORT (Heap H, Com-
pressed distances M, Sorted index I, number of neighbors
k)

1: Let current and update be temporary variables
2: parfor each query q ∈ qbatch do
3: Copy first k distances into H
4: Call PHEAPIFYMINMAX(H)
5: for each distance d ∈M do
6: current := k
7: update := none
8: while current < |M| do
9: if update = none then

10: update := PINSERT(H, current)
11: if update 6= none then
12: update := PTRICKLEMAXONCE(H,

current)
13: if update = none then
14: Increment current
15: Call PHEAPIFYMINMAX(Full heap H)
16: current := 0
17: update := none
18: while current < k do
19: if update = none then
20: Add the root of H to I
21: update := PDELETE(H)
22: if update 6= none then
23: update := PTRICKLEMINONCE(H, k −

current)
24: if update = none then
25: Increment current
26: end parfor

{2, 0.30}

{1, 0.50} {3, 0.36}

{2, 0.22}

{1, 0.58} {3, 0.36}

Following the same procedure as in Example 3, the final
heap is:

{4, 0.14}

{2, 0.30} {6, 0.22}

{2, 0.22}

{4, 0.51} {3, 0.36}

To retrieve the k-nearest neighbors in order, the root node
is deleted and replaced with the largest node. The heap is then
updated.

{6, 0.22}

{2, 0.30}

{3, 0.36}

{4, 0.51}

Using the indices in Example 2, we can determine that the
k nearest neighbors for each query are, in order: 5, 8, 2 and
4, 6, 7 respectively.

VI. EXPERIMENTAL EVALUATION

This section is broken down into two parts. Section VI-A
examines the per-query performance of the threshold based
compression with varying parameters. Section VI-B compares
the per-query performance of our proposed TH-heap algorithm
with competitor methods CU-bitonic and CU-radix [8]. For

fair comparison, we obtained and compiled the code for CU-
bitonic4 and CU-heap4 on for same platform as TH-heap. Since
the difference between the algorithms lies in the sort operation,
we focus on sort performance.

Table III describes the hardware used in this paper, running
Microsoft Windows 8.1 and Visual Studio 2013 Update 4.
Note that SP GFLOPS refers to the number of single pre-
cision floating point operations per second. The AMD A10-
7850K processor has an integrated GPU, however it is not
used in these tests as competing methods require the use of
the NVIDIA GPU. Also for fair comparison, tasks are not
distributed to multiple processors simultaneously.

TABLE III: Platforms used in testing

CPU GPU

Name AMD
A10-7850K

NVIDIA
GTX 780Ti

Cores/Processors 4 2880

Theoretical performance
(SP GFLOPS) 118.4 5040

Threads
per workgroup 1024 1024

Simultaneous
workgroups 4 15

Physical memory
(GB) 16 3

Theoretical
bandwidth (GB/s) 30.7 336

Two well known public image datasets, NUS-WIDE [25]
and ImageNet [26], along with a sampled ImageNet are used
to evaluate performance. The parameters of the datasets are as
shown in Table IV. The datasets are normalized to the range
[0.0, 1.0], and query points are generated synthetically in that
range. Table V gives the range of parameters used in testing,
with the default value in bold.

TABLE IV: Parameters of real datasets used

Dataset nD r
NUS-WIDE 269648 500

ImageNet 2213937 150
Sampled ImageNet [250000, 2213937] 150

A. Compression

There are three parameters to sample based threshold
compression, with the primary parameter being the number
of samples nS . The number of neighbors k and the size of the
query batch also affect compression. We measure compression
efficiency using two metrics: 1) compression ratio, which is the
ratio of the uncompressed distance matrix to the compressed
distance matrix (Equation 4) and 2) threshold to k-distance
ratio (Equation 3), which measures how close the threshold
value was to the actual k-th distance. In addition, the execution
times of the sampling and sorting kernels are measured.

4http://autogpu.ee.auth.gr/lib/exe/fetch.php?id=cuknns\%3Agpu_
accelerated_k-nearest_neighbor_library&cache=cache&media=cuknns:
cuknn-toolbox-v2.1.0.tar
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Fig. 5: nS affecting compression of NUS-WIDE

TABLE V: Parameter ranges used in testing

Parameter Description Range

k
No. of nearest
neighbors [32. . . 64. . . 512]

nQ
No. of simultaneous
queries [512, 8192]

nS No. of samples [64. . . 512. . . 8192]

sizeqbatch
Size of each
query batch [1. . . 4. . . 16]

Fig. 5(a) shows the number of samples to have a strong
impact on the compression ratio. At nS = k compression is
minimal, and at nS = nD compression is maximal, as it scans
the whole dataset. Threshold-k-distance, as shown in Fig. 5(b),
shows the threshold value computed from only k samples to
be off from the actual k-distance by approximately 25%.
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Fig. 6: nS affecting execution time of sampling and sorting of
NUS-WIDE

However it can be observed from Fig. 6 that a relatively
small number of samples (less than 1% of nD) can reduce
sort time significantly, at minimal sampling cost. Note that for
Figs. 5 and 6 the axes are log scaled for clarity.
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Fig. 8: k affecting execution time of sampling and sorting of
ImageNet

Figs. 7 and 8 shows the inverse scenario of Figs. 5 and
6, with a larger k causing a decline in compression efficiency
and a decrease in performance. However, since the ratio of k
and nS affects sort time more than sampling time, we can set
nS as a multiple of k to stabilize sort time. For the rest of this
work we set nS = 8k.

As described previously, queries are batched when sorting
in order to take advantage of parallelism. However, as shown
in Fig. 9 since the size of the buffers is bounded by the
query with the largest compressed size, batching more queries
together reduces the compression ratio somewhat. Note that
the threshold-k-distance ratio is not affected by query batching.
The performance gain from batching is significant up to the
available number of processor cores. Launching more threads
than the number of cores available has negligible performance
change, so the query batch size should set according to the
processor.

B. Performance comparison

This section compares the proposed TH-heap algorithm,
with the state-of-the-art partial bitonic sorting algorithm (CU-
bitonic), as well as a competing heapsort CU-heap using the
code provided by the authors [8].
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Fig. 10 shows the proposed TH-heap algorithm outper-
forming the competing algorithms by a significant margin.
Unfortunately due to programming issues, CU-heap failed to
complete most tests. As a result, CU-heap is excluded from
the remaining tests.
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Fig. 11: Varying k with CU-bitonic and TH-heap on ImageNet

Compared to the earlier Fig. 7, by using a variable sample
size, Fig. 11 shows TH-heap is unaffected by changes in k
compared to CU-bitonic.
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Fig. 12 shows that even with a relatively large number
of simultaneous queries, TH-heap can maintain a significant
performance lead over CU-bitonic, despite the latter running
with many more threads on the GPU.

In summary, our proposed TH-heap algorithm offers signif-
icantly improved performance over the existing state-of-the-art
CU-bitonic algorithm.

VII. CONCLUSION

In this paper we proposed the TH-heap algorithm for sim-
ilarity search designed for heterogeneous processing, applying
the strengths of both CPU and GPU architectures. We have
shown that our proposed TH-heap algorithm offers 10× or
more per-query sorting performance for kNN over existing
state-of-the-art partial sorting algorithms for GPUs. This is
achieved with a minimal overhead threshold and compression
approach.

In future work, we would like to leverage the portability
of the OpenCL framework to load balance the work across
multiple parallel processors, which would allow for more work
to be overlapped during transfer and other overhead. This
could also be expanded to distributed systems where there are
multiple CPU-GPU nodes.
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