
Secure and Energy Efficient Prefetching Design for
Smartphones

GAO Shang∗, PENG Zhe∗, XIAO Bin∗, SONG Yubo∗†,1
∗Department of Computing, The Hong Kong Polytechnic University
†School of Information Science and Engineering, Southeast University

{cssgao, cszpeng, csbxiao}@comp.polyu.edu.hk, {songyubo}@seu.edu.cn

Abstract—Energy efficient prefetching systems for smart-
phones can greatly reduce energy consumption and data trans-
mission, and maintain the timely response when information
is prefetched. However, the proxy structure of the system can
cause security problem to reveal private information to the
third party. The end-to-end encryption (SSL) in traditional
prefetching systems cannot solve the security problem in this
new, complex energy efficient prefetching system. In this paper,
we propose Secure and Energy Efficient Prefetching (SEEP) to
meet the security requirement of HTTPS connections and to save
smartphone’s energy consumption and data transmission. The
new design of SEEP includes two parts: the local proxy on the
smartphone to verify the validity of prefetched responses, and the
remote proxy (e.g. on the cloudlet) to store encrypted prefetched
responses. SEEP is transparent to both smartphones and web
servers, which does not need to change today’s Browser/Server
framework. Security analysis shows that SEEP protects the
confidentiality of requests and responses, and is able to resist
replay attack from malicious proxy. Experimental results show
that the proposed system consumes 25% less energy and 95% less
data when prefetching 10 outbound webpages than the traditional
prefetching system in Wi-Fi networks.

I. INTRODUCTION

The prefetching technique used on smartphones can reduce
the delay of responses and provide good user experience [1].
For instance, web browser or online reader prefetches and
stores subsequent webpages, and presents them immediately to
users when requested. However, the prefetched responses can
drain a smartphone’s battery quickly and cause much wasted
data transmission since the smartphone needs to receive and
store all prefetched responses, as depicted in Fig. 1-a.

Prefetching technique can exploit a proxy-based architecture
[2] to greatly reduce the energy consumption and delay. In
HTTP connections, the proxy-based prefetching system is
energy efficient by storing the prefetched responses on the
proxy to reduce the energy and data cost, as depicted in
Fig. 1-b. Therefore, the smartphone only needs to receive the
prefetched responses when users request for them.

Such proxy-based energy efficient prefetching system will
cause security problems in HTTPS (SSL) connections. HTTPS
connection uses sequence numbers to resist replay attack-
s. However, in energy efficient prefetching system, the se-
quence number of prefetched responses are based on previous
prefetching requests rather than the current user’s requests.

1This paper is partially supported by HK PolyU G-YBAD and G-YBJV.

App 1 (Prefetching

& decrypting)

App 2

Smartphone

Internet

Server 2

Server 1

(a) Traditional prefetching system.
Prefetched responses are stored and
decrypted on the smartphone.

App 1

App 2

Proxy

(Prefetching

& decrypting)

Server 2
Smartphone

Server 1

Cloudlet

Internet

(b) Energy efficient prefetching system.
Prefetched responses are stored and de-
crypted on the proxy.

Fig. 1. Security problems in energy efficient prefetching system.

Therefore, all prefetched responses will be regarded as re-
played packets and dropped automatically. One simple solution
is to build the proxy as a man-in-the-middle proxy (mitmprox-
y) [3]. Mitmproxy will decrypt the message from server/ap-
plication, and send to application/server after encrypting, as
depicted in Fig. 1-b. However, mitmproxy brings another
security problem: the plaintext of the requests and responses
will be revealed to the third party. This implementation offers
no level of security when the proxy is untrusted. To the best of
our knowledge, no previous work has addressed these security
problems in energy efficient prefetching system.

We introduce SEEP system, a proxy-based framework to
reduce energy consumption and data transmission, and meet
the security requirements of HTTPS connections. The pro-
posed framework involves two parts: the local proxy on the
smartphone and the remote proxy (e.g. on the cloudlet). For
instance, a user can set up the remote proxy in the Intranet of
his company for all company users without any changes on
today’s Browser/Server framework. Originally, a smartphone
needs to establish multiple connections to servers and receive
multiple prefetched responses, or needs to reveal their private
information to the proxy. In contrast, the local proxy in SEEP
establishes only one connection with the remote proxy, and
receives only one response. All requests and responses are
protected by end-to-end encryption between the smartphone
and servers in the SEEP system. The remote proxy is unable
to decrypt them without the shared key. The two-proxy design
in SEEP can efficiently reduce the energy and data cost, and
meet the security requirements of HTTPS connections.

We formalize data exchange procedures in the SEEP system
for security analysis, and build a model to evaluate the energy
and data cost of a smartphone. The result of security analysis

The following publication G. Shang, P. Zhe, X. Bin and S. Yubo, "Secure and energy efficient prefetching design for smartphones," 2016 IEEE
International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016, pp. 1-6 is available at https://doi.org/10.1109/ICC.2016.7511423.

This is the Pre-Published Version.

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

shows that our SEEP system satisfies the confidentiality and
robustness requirements of HTTPS connections at the same
time. The energy and data cost model shows that SEEP system
saves energy and data in two ways: reducing the cost of
establishing connections and eliminating the cost of receiving
prefetched responses.

We implement a prototype of the SEEP system, including an
application on a smartphone as the local proxy, and a remote
proxy on the cloudlet. We also evaluate the performance of
the SEEP system in real-world experiments. The experimental
results show that the SEEP system is much more energy saving
and data reducing than the traditional prefetching system.

The rest of the paper is organized as follows. Section
II introduces traditional prefetching model, energy efficient
prefetching model and its security problems. In Section III,
we present the detailed designs of the SEEP system, includ-
ing its architecture, and security designs in the local and
remote proxies. Section IV analyzes security requirements in
the SEEP system and Section V analyzes its performance
theoretically. The experimental evaluation is shown in Section
VI. We summarize the related work in Section VII. Finally,
we conclude this paper in Section VIII.

II. PROBLEM STATEMENT

A. Traditional Prefetching Model

In the traditional prefetching model, the browser applica-
tion first establishes multiple connections with servers when
browsing webpages. Second, the application generates and
sends user’s requests to the servers. Third, after receiving
the responses from the servers, the application reconstructs
the webpage, generates and sends prefetching requests for the
outbound links to the servers. Forth, the application receives
the prefetched responses and reconstructs the prefetched web-
pages. Finally, when a user requests for an outbound link, the
application presents the according prefetched webpage to the
user immediately.

B. Energy Efficient Prefetching Model

In the energy efficient prefetching model, when a user
browses webpages, the browser application first establish-
es one connection with the proxy. Second, the application
generates and sends user’s requests to the proxy. Third, the
proxy forwards these requests to the servers, and forwards
the responses from the servers to the application. Forth,
after receiving the responses, the application reconstructs
the webpage, generates and sends prefetching requests for
the outbound links to the proxy. Fifth, the proxy forwards
these requests to the servers, receives and stores prefetched
responses from the servers. Finally, when the user requests
for an outbound link, the application fetches the according
prefetched webpage from the proxy and presents it to the user
immediately.

C. Security Problems in Energy Efficient Prefetching Model

Energy efficient prefetching model introduces two security
problems. First, if we use this model in HTTPS connections,

App 1

App 2

App 3

Local

Proxy

Remote

Proxy

Server 2Server 2
Smartphone

Server 1Server 1

SEEP System

Fig. 2. The architecture of SEEP, including the local proxy on the smartphone
and the remote proxy on the cloudlet.

all prefetched responses will be regarded as replayed packets
and dropped automatically, since the sequence numbers of
them are based on previous prefetching request rather than
current user’s request. Second, if we apply mitmproxy [3] to
solve the mentioned problem, the plaintext of the requests and
responses will be revealed to the proxy. Since the proxy can
be owned by untrusted third party, user’s private information
will be leaked.

Our goal is to enhance the security in the energy efficient
prefetching model. This design should not only support HTTP-
S connections (distinguishing replayed packets from legal
packets), but also maintain the confidentiality of the requests
and responses (not reveling the plaintext of them to the proxy).

III. SYSTEM DESIGN

A. SEEP Architecture

The framework of SEEP system consists of a local proxy
and a remote proxy as depicted in Fig. 2. The local proxy
is an application that runs on a smartphone, and the remote
proxy is a proxy server that works on the cloudlet. The local
proxy is in charge of interpreting contexts and generating
prefetching requests, and the remote proxy is responsible for
storing prefetched responses from servers.

The local proxy first establishes a connection with the
remote proxy, and redirects the smartphone’s network con-
nections to it. When the application sends the request, the
local proxy forwards this request to the remote proxy, and the
remote proxy searches its response cache for the corresponding
response. If there is no response for this request, the remote
proxy forwards the request to the server. After the servers send
responses to the application through the remote proxy and
local proxy, the local proxy interprets the responses, generates
and sends prefetching requests to the remote proxy. After
receiving server’s responses to these prefetching requests, the
remote proxy stores these prefetched responses in its response
cache, and forwards the corresponding responses to the local
proxy when the user requests for them. SEEP is transparent
to both applications and servers, which does not need any
changes on today’s Browser/Server framework.

B. Security Design in Local Proxy

The major functions of the local proxy are generating
prefetching requests and verifying the validity of responses.
To achieve these goals, the local proxy includes four major
components, i.e. connection redirector, context interpreter,
request generator, and message forwarding. Their relationships
are depicted in Fig. 3.

Message forwarding

Application

Context interpreter

Local Proxy

Connection redirector

Request generator

Remote Proxy

: Normal request

: Prefetching request

: Response

Fig. 3. Four major components in the local proxy.

URL length URL Request length Request

4 bytes Request length bytesURL length bytes4 bytes

Encrypted

Sender

1 byte

Fig. 4. The structure of encrypted prefetching request message.

1) Connection redirector: Since some applications may not
provide interfaces to use proxy, it is challenging to make
applications send messages to the local proxy first. Building
the local proxy as a transparent proxy is impractical in this s-
cenario, since no message can be sent out once the smartphone
sets its gateway to 127.0.0.1. Therefore, the local proxy should
not only be transparent to applications and servers, but also
be able to set bypass IP addresses.

We fulfill the redirection function based on iptables. It redi-
rects all connections to the local proxy except the connection
with the remote proxy. Meanwhile, it also allows users to set
up bypass IP address which they do not wish to use SEEP.

2) Context interpreter: In order to identify the information
which needs to be prefetched, the local proxy should be able to
interpret the context of responses and get all outbound links
of the current webpage. One challenge is that the response
messages are all encrypted under HTTPS connection. The
local proxy is unable to get the plaintext without the session
key. To solve this problem, we refer the code of mitmproxy
[3] and build the local proxy as a man-in-the-middle proxy.
The basic idea is pretending to be the server to the client, and
pretending the client to the server [3]. Therefore, we are able
to obtain the session keys with the application and servers,
and decrypt response messages.

Man-in-the-middle proxy brings another challenge. Appli-
cations can reject SSL handshake when the local proxy fails to
provide trusted certificates. The solution is to make the local
proxy a trusted CA that generates interception certificates [3].
We register the local proxy as a trusted CA on the smartphone
manually.

Another challenge is to resist replay attack from malicious
remote proxy. Since the sequence numbers of the prefetched
responses are based on the previous requests, we cannot dis-
tinguish replayed packets based on the current normal request.
Context interpreter will preserve the sequence numbers of
prefetching requests, and identify replay packets based on
previous sequence numbers.

3) Request generator: Since the plaintext of the prefetching
request should not be revealed to the remote proxy, the local

App

Local Proxy Remote Proxy

example.com

Smartphone

Redirection

Source IP: Smartphone

Destination IP: example.com

Request: Encrypted{data}

Source IP: Smartphone

Destination IP: Remote Proxy

URL: example.com/...

Request: Encrypted{data}

Source IP: remote proxy

Destination IP: example.com

Request: Encrypted{data}

Fig. 5. SEEP forwards a request.

Local Proxy

Response storage

Remote Proxy

Request analyzer

Message forwarding

Server

: Normal request

: Prefetching request

: Response

Fig. 6. Three major components in the remote proxy.

proxy is in charge of generating prefetching requests. One
challenge is that the remote proxy is unable to tell which
response is to the corresponding request because the request
and response are all encrypted. Therefore, we use a one-
byte sender field to tell whether this request is sent by the
application or the remote proxy, and add the URL of the
requested webpage in front of the prefetching request. The
structure is depicted in Fig. 4. In this way the remote proxy
is able to identify the response to each request.

4) Message forwarding: One challenge is the server’s infor-
mation may be lost because the IP address of the destination is
changed to the remote proxy’s after forwarding. The remote
proxy is unable to get the server’s IP address based on the
destination IP address. Therefore, the remote proxy uses the
URL field to get the server’s IP address, as depicted in Fig. 5.

C. Security Design in Remote Proxy

To support HTTPS connections, the major function of the
remote proxy is to identify the according prefetched responses
to the user’s request. The remote proxy includes three major
components, e.g. request analyzer, response storage, and mes-
sage forwarding, as depicted in Fig. 6. Since the procedures of
message forwarding on the remote proxy are similar to those
on the local proxy, we skip this part due to space constraints.

1) Request analyzer: When the request arrives, the remote
proxy first identifies the sender of request based on the sender
field. If the request is sent by applications, the response should
be forwarded to the local proxy immediately. Otherwise the
response would be stored in the response storage to save
the energy and data of the smartphone. Second, the request
analyzer splits the URL and the request of each message and
forwards them to the response storage for further processing.

2) Response storage: The main job for response storage is
to identify the corresponding response to each request. We

cannot only use URL to match up the responses to each
request, since some applications may request for the same
URL. Therefore, we maintain a cache table to identify the
corresponding response to each request in response storage.
The key of this table is the combination of sender ID and
URL, and the value is the encrypted response.

IV. SECURITY ANALYSIS

A. Data Exchange

The data exchange in SEEP system involves four parties,
i.e. the application, the local proxy, the remote proxy and the
server. The SEEP system should not reveal the plaintext of
the requests and responses to the remote proxy, and be able
to resist replay attack since the remote proxy can be owned
by untrusted third party. The notations used in data exchange
in depicted in Table I

TABLE I. Notations used in SEEP system

Symbol Description
APP Application
LP Local proxy
RP Remote proxy

SER Server
reqi ith request
resi Response to ith request
IDA Identity of A
KA-B Symmetric session key shared between A and B

KA-B(m) Encrypting message m with key KA-B
SeqA-B(m) Sequence number of message m under A-B connection

After establishing an HTTPS connection, the secret session
keys, KAPP-LP between the application and the local proxy and
KLP-SER between the local proxy and server, will be generated
and processed by both sides. The procedures of key exchange
are protected by SSL protocol. Since we are not focus on
the security analysis of SSL, we skip the procedures of key
exchange and regard nobody is able to obtain the session keys
except the key possessors.

We analyze data exchange procedures in the SEEP system.
Here we ignore some information, e.g. URL, since we focus
on the security of requests and responses. First, the application
generates the request to get the webpage from server. After the
local and remote proxies forward this request, the server sends
the response to the remote proxy, and the remote proxy stores
this response in its cache table:

Step 1 APP → LP : KAPP-LP(SeqAPP-LP(req1), req1)

Step 2 LP → RP : IDAPP,KLP-SER(SeqLP-SER(req1), req1)

Step 3 RP → SER : KLP-SER(SeqLP-SER(req1), req1)

Step 4 SER → RP : KLP-SER(SeqLP-SER(res1), res1)

The remote proxy forwards this response to the local proxy
immediately. The local proxy verifies the sequence number of
this response and forwards it to the application.

Step 5 RP → LP : KLP-SER(SeqLP-SER(res1), res1)

Step 6 LP → APP : KAPP-LP(SeqAPP-LP(res1), res1)

After step 5 and 6, the application is able to get the corre-
sponding response to its request. Meanwhile, the local proxy
interprets the response and generates prefetching requests.

Step 7 LP → RP : IDLP,KLP-SER(SeqLP-SER(req2), req2)

Step 8 RP → SER : KLP-SER(SeqLP-SER(req2), req2)

Step 9 SER → RP : KLP-SER(SeqLP-SER(res2), res2)

We repeat step 7 to 9 to send multiple prefetching requests.
Since the prefetching requests are not generated by the appli-
cation, the remote proxy stores these responses and forwards
to the local proxy when the application requests for them.

Step 10 APP → LP : KAPP-LP(SeqAPP-LP(req2′), req2′)

Step 11 LP → RP : IDAPP,KLP-SER(SeqLP-SER(req2′), req2′)

Step 12 RP → LP : KLP-SER(SeqLP-SER(res2), res2)

Step 13 LP → APP : KAPP-LP(SeqAPP-LP(res2), res2)

When the local proxy receives the response in step 12, it
should verify SeqLP-SER(res2). Notice that SeqLP-SER(req2′)
is different from SeqLP-SER(req2), and the local proxy
should verify SeqLP-SER(res2) based on SeqLP-SER(req2) since
SeqLP-SER(res2) is generated by SeqLP-SER(req2). After step
10 to 13, the local proxy is able to interpret the new response
(res2) and generate new prefetching requests (repeating step
7 to 9).

B. Security Analysis

Our proposed SEEP system should satisfy two security re-
quirements: the plaintext of requests and responses should not
be revealed to the remote proxy (confidentiality requirement),
and the local proxy should be able to distinguish replayed
responses from legal responses (robustness requirement).

1) Confidentiality: We first analyze the confidentiality
requirement. During the procedures of data exchange
in the SEEP system, the remote proxy is able to
obtain IDAPP, IDLP, KLP-SER(SeqLP-SER(reqi),reqi),
KLP-SER(SeqLP-SER(resi),resi),KLP-SER(SeqLP-SER(reqj),reqj),
KLP-SER(SeqLP-SER(resj),resj), and
KLP-SER(SeqLP-SER(reqj′),reqj′). Since reqi, resi, reqj ,
reqj′ , resj are protected by end-to-end encryption, the local
proxy can only get the plaintext of IDAPP and IDLP. The
remote proxy cannot decrypt requests and responses without
KLP-SER.

2) Robustness: We analyze the robustness of SEEP system
against replay attack. The remote proxy is able to replay
previous request messages to the server, and replay previous
response messages to the local proxy. However, by verifying
the sequence number field in SSL protocol, the server can
easily identify replayed requests and reject them because all
requests are real-time. Meanwhile, on smartphone side, the
local proxy verifies SeqLP-SER(resi) based on SeqLP-SER(reqi).
Messages which fail in this verification will be regarded as
replayed packets and dropped automatically. In this way, our
SEEP system meet the robustness requirement.

V. ENERGY AND DATA COST ANALYSIS

We consider a set of servers S = {s1, s2, ..., sm} that
the browser needs to connect to, a set of request messages
MS = {ms1,ms2, ...,msn} sent by the smartphone, and
a set of response messages MR = {mr1,mr2, ...,mrn}
received from servers or the remote proxy during webpage
browsing. We denote the energy cost of establishing a connec-
tion with server si by Econn(si), the energy cost of sending
a request message msj by Ereq(msj), and the energy cost of
receiving a response message mrk by Eres(mrk). The data
cost is similar to the energy cost. We denote the data cost
of establishing connections with server si by Dconn(si), the
data cost of a request message msj by Dreq(msj), and the
data cost of a response message mrk by Dres(mrk). When
browsing a webpage, the application sends p requests and
receives q responses.

We first calculate the energy consumption and data transmis-
sion under the traditional prefetching system. A smartphone
will establish multiple connections and receive all prefetched
responses from servers. The total energy consumption ETP of
during webpage browsing is the sum of three parts energy cost:
establishing m connections, sending p requests, and receives
q responses.

ETP =

m∑
i=1

Econn(si) +

p∑
i=1

Ereq(msi) +

q∑
i=1

Eres(mri) (1)

The calculation of the data transmission DTP under tra-
ditional prefetching system is similar to that of the energy
consumption.

DTP =

m∑
i=1

Dconn(si) +

p∑
i=1

Dreq(msi) +

q∑
i=1

Dres(mri) (2)

Moreover, we evaluate the energy and data cost of the
smartphone under the SEEP system when performing prefetch-
ing operation. In the SEEP system, a smartphone will es-
tablish only one connection with the remote proxy, and re-
ceive only one response (the response to the user’s request).
The

∑p
i=1 Ereq(msi) part is almost the same as tradition-

al prefetching system, since the volume of the sender and
URL fields is pretty small comparing to the whole request.
Therefore, the energy cost under SEEP system ESEEP can be
calculated as follows:

ESEEP = Econn(s1) +

p∑
i=1

Ereq(msi) + Eres(mr1) (3)

The data transmission under the SEEP system DSEEP can
be calculated as follows:

DSEEP = Dconn(s1) +

p∑
i=1

Dreq(msi) +Dres(mr1) (4)

Generally speaking, the SEEP system saves energy con-
sumption and data transmission in two ways: reducing the cost
of establishing multiple connections to servers by maintaining
one connection with the remote proxy, and reducing the wasted

data transmission by prefetching and storing responses on the
remote proxy.

VI. EXPERIMENT

A. Implementation

We implement a prototype of our proposed SEEP system,
including both the local proxy on the smartphone device and
the remote proxy on the cloudlet.

The local proxy is implemented on Android OS 4.2 based
on JAVA. Since modifying iptables requires root permission,
we give root permission to the local proxy before using
the SEEP system. The local proxy first responds with “200
Connection Established” once it receives “Connect” request.
After the application initiates SSL handshake with server
name indication (SNI), the local proxy establishes an SSL
connection with the server using the SNI hostname, and the
server responds with the original certificate. Finally, the local
proxy generates the interception certificate with CN field and
SAN field and establishes SSL connection with the application.

The remote proxy is implemented on Windows 7 based
on C++. We use a dynamic-sized hashtable to ensure the
efficiency of the cache table, and keep its load factor under
0.75. The key is the combination of “Sender ID” and “URL”.
When a new request from the application arrives, the remote
proxy deletes all records with the same sender to save space.

B. Setup

We evaluate the performance of the SEEP under WLAN
on a smartphone equipped with Android OS 4.2, and place
the remote proxy under the same AP with the smartphone. To
get a fine-grained measurement of energy consumption on the
smartphone device, we use a power meter to measure the real-
time current of the smartphone. For the data consumption, we
use the Data Usage function of the smartphone to get the size
of data consumed by each application.

We first evaluate the energy saving performance of the
SEEP. We compare the energy cost of prefetching 1 to 10
outbound webpages in 40 seconds between the SEEP and
traditional prefetching system. Here we connect Google News
2 with the Browser, and uses the ten outbound webpages in
Top Stories and World sections to measure their performances.
The size of the news webpage is 0.83MB, and the sizes of ten
outbound webpages are 3.22MB, 3.54MB, 1.37MB, 1.62MB,
3.32MB, 1.39MB, 1.03MB, 1.19MB, 0.66MB, and 1.19MB.

Moreover, we evaluate the data saving performance of
the SEEP. Similar to the experiment of energy comparison,
we also use 1 to 10 outbound webpages of Google News
to compare the data consumption between the SEEP and
traditional prefetching system.

C. Experimental Result

Energy cost. Fig. 7 shows that energy comparison of the
SEEP does not increase dramatically with the number of
prefetching webpages. It is because in the SEEP system, the

2https://news.google.com/news/

0 2 4 6 8 10
26

28

30

32

34

36

38

Number of prefetched webpages

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

Traditional prefetching
SEEP

Fig. 7. The energy cost comparison between SEEP and the traditional
prefetching system in 40 seconds.

0 2 4 6 8 10
0

5

10

15

20

Number of prefetched webpages

D
at

a
co

ns
um

pt
io

n
(M

B
)

Traditional prefetching
SEEP

Fig. 8. The data cost comparison between SEEP and the traditional prefetching
system.

local proxy only establishes one connection (Econn(s1) part)
and receives one response (Eres(mr1)). The energy cost of
sending requests is trivial to the total energy cost. Generally
speaking, the SEEP system can reduce 25% energy when
prefetching 10 outbound webpages.

Data cost. Fig. 8 shows that the data cost of SEEP almost
remains the same when the number of prefetching webpages
increases. It is because the local proxy only send multiple
requests (

∑p
i=1 Dreq(msi) part in Equation (4)), and these

requests are trivial to the total data cost (about 2.34 KB
pre request). Generally speaking, SEEP only consumes the
data of the first webpage, and reduces 95% data usage when
prefetching 10 outbound webpages.

VII. RELATED WORK

Prefetching techniques have been used in many areas of
computer system. Here we focus on previous approaches in
network prefetching [4], [5], [6], [7].

Informed Mobile Prefetching (IMP) [4] is a system where
developers use an API to specify a method to fetch a network
object, or cancel the prefetching operation. The IMP system
can optimize for data, power, and performance based on a hint
of the network object and the later action for this object.

Besides reducing network consumption, previous approach-
es improve web caching in applications [8], [9]. Recent study
[8] investigates caching efficiencies from the perspective of
individual handsets, and another study [9] investigates the
potential for caching video content in cellular networks. They

indicate that the redundant traffic during data transferring can
be saved.

There are also previous approaches to reduce both energy
consumption and delay of mobile browser [2], [10]. PARCEL
[2] introduces a proxy to reduce the cost of establishing
connections while saving the time of loading webpages.
Though PARCEL does not use prefetching techniques, it splits
functionality between the mobile device and the proxy on their
respective strengths.

VIII. CONCLUSION

Prefetching techniques require large amounts of date in-
teracting to get outbound webpages, which can drain a s-
martphone’s battery quickly and consume great data usage.
Meanwhile, some private information can be revealed to the
third party when a proxy is involved in the energy efficient
prefetching system. We propose the SEEP system to reduce
the energy and data cost on a smartphone, and meet the
security requirements. The SEEP can successfully reduce the
energy and data cost of establishing connections and receiving
responses. Moreover, it can ensure the confidentiality of infor-
mation and resist replay attack. We analyze the confidentiality
and robustness requirements of the SEEP and build models for
energy consumption and data transmission. We also evaluate
the performance of the SEEP under today’s network servers.
The experimental results show that the SEEP reduces great
energy and data than the traditional prefetching system.

REFERENCES

[1] “prefetching.” https://en.wikipedia.org/wiki/Instruction prefetch.
[2] A. Sivakumar, S. Puzhavakath Narayanan, V. Gopalakrishnan, S. Lee,

S. Rao, and S. Sen, “PARCEL: Proxy assisted browsing in cellular
networks for energy and latency reduction,” in Proc. of the ACM
10th international conference on emerging networking experiments and
technologies 2014 (CoNEXT), pp. 325–336, 2014.

[3] A. Cortesi, “mitmproxy.” https://mitmproxy.org/.
[4] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson,

“Informed mobile prefetching,” in Proc. of the ACM 10th international
conference on Mobile systems, applications, and services 2012 (Mo-
biSys), pp. 155–168, 2012.

[5] L. Ravindranath, S. Agarwal, J. Padhye, and C. Riederer, “Procrastinator:
pacing mobile apps’ usage of the network,” in Proc. of the ACM 12th
international conference on Mobile systems, applications, and services
2014 (MobiSys), pp. 232–244, 2014.

[6] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M. Marlin, “Practical
prediction and prefetch for faster access to applications on mobile
phones,” in Proc. of the ACM international joint conference on Pervasive
and ubiquitous computing 2013 (UbiComp), pp. 275–284, 2013.

[7] S. Sundaresan, N. Magharei, N. Feamster, and R. Teixeira, “Accelerating
last-mile web performance with popularity-based prefetching,” pp. 303–
304, 2012.

[8] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao, S. Sen,
and O. Spatscheck, “Web caching on smartphones: ideal vs. reality,”
in Proc. of the ACM 10th international conference on Mobile systems,
applications, and services 2012 (MobiSys), pp. 127–140, 2012.

[9] J. Erman, A. Gerber, K. Ramadrishnan, S. Sen, and O. Spatscheck,
“Over the top video: the gorilla in cellular networks,” in Proc. of the
ACM SIGCOMM conference on Internet measurement conference 2011
(IMC), pp. 127–136, 2011.

[10] J. Li, Z. Peng, B. Xiao, and Y. Hua, “Make smartphones last a day:
Pre-processing based computer vision application offloading,” in Proc.
of the IEEE SECON 2015 conference, pp. 462–470, 2015.

