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Abstract—Wireless sensor networks (WSNs) are generally utilized to monitor, in an area, certain events or targets that users are
interested. To extend system lifetime, a widely used technique is ‘Energy-Efficient Coverage-Preserving Scheduling (EECPS)’, in
which sensor nodes are divided into multiple cover sets and activated in turn to complete the designated task. Although many EECPS
schemes have been proposed, an intrinsic assumption in existing EECPS schemes is that each node has a fixed coverage area. This
assumption, however, does not hold for some ‘domain-specific’ applications of WSNs such as structural health monitoring (SHM) and
volcano tomography. In these applications, to complete the designated task always requires low level collaboration of multiple sensors.
The coverage area for an individual sensor node cannot be defined explicitly since a single sensor is not able to fulfill the function
alone, even it is close to the event or target to be monitored. In this paper, using an example of SHM, we extend the EECPS to broader
applications of WSNs. We re-define the ‘coverage’ and propose two methods to partition deployed sensor nodes into qualified cover
sets such that system lifetime can be maximized. The performance of the methods is demonstrated through both extensive simulations
and real experiments.
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1 INTRODUCTION

Wireless sensor networks (WSNs) are widely used to
detect some events or targets in a given area [1]. To
extend system lifetime, a widely used technique is to
activate only part of the deployed sensor nodes each
time and put the others into sleep. Since active sensors
should still be able to cover the whole monitoring area,
this technique is generally called as ‘energy-efficient
coverage-preserving scheduling (EECPS)’.

The problem of EECPS in WSNs has been studied
extensively in the last decade. Many EECPS schemes
have been proposed and they are generally based
on some concepts like ‘coverage’ and ‘cover set’, etc.
Based on the coverage areas of deployed sensor nodes,
the EECPS schemes can either divide the nodes into
mutually exclusive or overlapping cover sets as in [2] [3]
[4], or determine in a distributed way a node’s activity
according to whether its coverage area has already been
covered by its active neighbors [5] [6].

From the above discussion, we can see one basic
assumption of using EECPS is that each sensor node has
a specific coverage area. The coverage area of a sensor
node is intrinsically its sensing area for which the
node can reliably detect any event/target occurring
in it. This assumption is valid for most traditional
applications of WSNs such as forest fire monitoring
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and intruder detection, etc. However, we found that it
does not hold for some newly emerged domain-specific
applications of WSNs. Typical examples are structural
health monitoring (SHM) and volcano tomography.

Case 1: WSN-based SHM systems
Let us first take SHM as an example. Fig. 1 illustrates

how the status of a bridge can be monitored by a
typical WSN-based SHM system. An array of wireless
sensors are deployed on different locations on the bridge.
Every certain period of time, these sensors collect the
structure’s responses for a while and transmit the data
to a sink node where a SHM algorithm is implemented.
The SHM algorithm usually performs the following
steps: Firstly, data collected from part or all of the
deployed nodes are put into a matrix; then from this
data matrix, some vibration features of the structure
are extracted, generally through various of matrix
computations such as singular value decomposition [7].
The damage information is then identified by examining
the changes in these vibration features [8].

Accurately identifying vibration features, however,
does not require data from all the deployed sensor
nodes. Data from some properly selected sensor nodes
can also obtain accurate feature vectors. Therefore, in
each round of monitoring period, we can select part
of the deployed sensor nodes that are able to estimate
features accurately to monitor structural condition. This
matches the objective of the EECPS very well.

However, we can see from Fig. 1 that, SHM utilizes
a different way to detect events (i.e. structural damage)
from traditional applications of WSNs. To detect events
in SHM, features are identified from matrices containing
data from multiple sensor nodes. An individual node, no
matter how close it is to damage location, is not able to
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Fig. 1: The procedures of event detection in SHM. The
procedures of SHM involves complicated computation on
a data matrix including measurement from multiple sensor
nodes.

detect the damage by itself. This indicates that we cannot
define a specific coverage area for each sensor node. Someone
may argue that as an analogy for coverage area, we can
define a ‘contribution factor’ for each sensor node which
reflects the contribution of the node in feature extraction.
This is however not possible since the contribution of
a certain node is different if it is involved in different
sensor sets. Since we cannot define a specific coverage
area or the equivalent contribution factor for individual
sensor nodes, existing EECPS cannot be applied in SHM.

Case 2: Volcano Seismic Tomography using WSNs
The objective of volcano seismic tomography is

to reveal deep structure beneath volcanic areas.
Earthquakes generate seismic waves that propagating
through the earth and accumulating the information on
the inner structure of the Earth. Seismic tomography
method, shown in Fig. 2, is to decipher this information
and to provide the 3D distributions of velocities of
seismic waves. The velocity information can give clue
about the temperature, rheology and composition of
deep rocks and fluid inside a volcano.

WSNs have been recently utilized for Volcano Seismic
Tomography [9]. In a WSN-based system, a large-scale
sensor network of low-cost geophysical stations sense
seismic signals and implement seismic tomography in
a collaborative manner. Establishing a 3D tomographic
model can be formulated as a large, sparse matrix
inversion: A∗s = t, where s is the velocity model and is
the parameter vectors to be estimated; A and t are the
matrices containing direct and undirect measurements
from deployed sensor nodes.

We can see that in volcano seismic tomography,
deployed sensor nodes must collaborate with each other
to identify the 3D tomographic model. Individual nodes
do not have the capability to obtain even part of
parameters s. In addition, in the least square estimation,
the contribution of individual nodes cannot be evaluated
separately. This again indicates that there is no specific
coverage area, or similar ‘contribution factor’ that can be
defined for each sensor node. Without this information,
existing EECPS methods cannot be applied.

Fig. 2: Volcano seismic tomography. The problem of seismic
tomography can be formulated as a large, sparse matrix
inversion in which the matrix containing measurement from
multiple deployed sensor nodes.

To summarize, different from most traditional
applications of WSNs where the sensing region of a
sensor is modeled as a circle (in 2D space) [3], a sphere
(in a 3D space), or a convex function [10], there do exist
some WSN applications in which individual nodes do
not have specific coverage area. It is therefore necessary
to re-define the coverage such that EECPS technique
can be applied in these applications.

In this paper, taking SHM as an example, we
illustrate how the EECPS can be extended to these
WSN applications. We first define a generalized coverage
model. Different from conventional coverage model
which is a geographic area defined for individual
sensors, this generalized coverage model only needs a
function to determine whether a set of sensor nodes
is able to complete the required task. Based on this
generalized coverage model, we then propose two
methods to partition the deployed nodes into qualified
cover sets that can work in turn to maximize system
lifetime. The performance of the proposed methods is
demonstrated through both extensive simulations and
real experiments.

Our contribution in this paper is as follows:
• We found that in some domain-specific WSN

applications, individual nodes do not have specific
coverage area and as a result, the EECPS cannot be
directly applied.

• Taking an example of SHM, we re-define the
‘coverage’ and based on this generalized coverage
model, two methods are proposed to partition the
sensor nodes into qualified ‘cover sets’ such that
each cover set is able to complete the designated
task.

• The proposed methods can be generalized to other
application areas besides SHM such as volcano
tomography in which coverage area of individual
nodes cannot be defined explicitly.

2 PRELIMINARIES

In this section, we first introduce how structural
damage is identified in SHM. Two important vibrational
features, namely, natural frequency and mode shape, are
introduced. Based on these two features, a multi-tired
damage identification strategy is described.Table 1
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fk,Ψk The kth modal parameter of a structure
G = (V,E) a WSN deployed on a structure

m the number of nodes in V

N the amount of data sampled at each sensor node in
one round of damage detection

eS , eR, eT Energy consumed for sampling/rece./trans. one data

cost(vi, Sj)
energy consumed by node vi in one round of
damage detection using sensor set Sj

eri the initial energy stored in node vi
cond(Sj) the condition number of sensor set Sj

rj number of rounds assigned to Sj

Svi
a sensor set includes vi and all its one-hop
neighbors in G = (V,E)

Svi a group of sensor sets satisfying constraints in Eq. 15
CV a collection of Cvis for all vi in G(V,E)
M the total number of sensor sets in CV

C̄V
{Sv1 , Sv2 , · · · , Svm}, the group of all the sensor sets
Svi established using nodes in V

C̄str
V

a group of sensor sets by mapping a binary string
str to C̄V

TABLE 1: Important mathematical notations

(a) 1st mode shape
1st natural frequency =0.9 Hz,

(b) 2nd mode shape
2nd natural frequency =5.7 Hz

(c) 3rd mode shape
3rd natural frequency =15 Hz

Fig. 3: The first 3 modal parameters of a cantilever beam.

summarizes important mathematical notations used in
this paper.

2.1 Vibration features utilized in SHM

Every structure has tendency to oscillate with much
larger amplitude at some frequencies than others. These
frequencies are called natural frequencies. When a
structure is vibrating under one natural frequency, the
corresponding vibration pattern it exhibits is called the
mode shape of this natural frequency. For a structure
with n-degrees of freedom (DOFs), its natural frequency
set and mode shapes are denoted as:

f = [f1, f2, ..fn]′ (1)

Φ = [Ψ1,Ψ2, · · · ,Ψn] =


φ1

1 φ2
1 · · · φn1

φ1
2 φ2

2 · · · φn2
...

...
. . .

...
φ1
n φ2

n · · · φnn

 (2)

where fk (k = 1..., n) is the kth natural frequency,
Ψk(k = 1, ..., n) is the mode shape corresponding to
fk. φki (i = 1, 2, ..., n) is the value of Ψk at the ith

DOF. For convenience, fk and Ψk are also called modal
parameters corresponding to the kth mode of a structure.
As an example, Fig. 3 shows the first few natural
frequencies and mode shapes of a typical cantilevered
beam.

Modal parameters are internal properties of a structure
and by examining the changes in the modal parameters,
damage on a structure can be identified [11]. However,
natural frequencies f and mode shapes Φ play different
roles in damage identification. It can be seen from Eq. 1
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Fig. 4: The multi-tired strategy in SHM

that f do not contain any spatial information. This means
that by examining the changes of natural frequencies,
only the information about the existence of damage
can be obtained. On the other hand, mode shape Φ
in Eq. 2 has an element corresponding to each DOF
and thus contains spatial information. Mode shapes and
their derivatives have been proven to be very effective
features to locate structural damage [11].

2.2 A multi-tired strategy in SHM
In this paper, a multi-tired strategy shown in Fig. 4 is
adopted to detect and localize structural damage. In this
approach, every period of time, deployed nodes collect a
number of data and transmit them to the sink where the
natural frequencies f are identified to detect the existence
of damage. Once damage is detected, mode shapes Φ are
identified to give damage locations.

We can see that in this multi-tired strategy, the first
stage (i.e. natural frequency-based damage detection) is
of the most importance since most of the time, the system
will be iteratively running at this stage. Therefore, how
to identify natural frequencies in an energy-efficient
manner becomes critical for a WSN.

In this paper, we utilize the classic eigen-system
realization algorithm (ERA) to identify both natural
frequencies and mode shapes [12]. The details of the
ERA, along with the associated energy cost, will be
described in the next section. Interestingly, we will
show that the identification of natural frequencies does not
requires data from all the sensor nodes. Some properly
selected sensor nodes are able to give accurate estimation
of natural frequencies. Therefore, we can divide the
deployed sensor nodes into a number of sets with
each set can provide accurate natural frequencies. Once
structural damage is identified, all the deployed sensor
nodes are initiated to identify mode shapes to find out
the damage location.

2.3 The quality model and energy consumption
model using the ERA
In this section, we briefly introduce how natural
frequencies are identified in a WSN and the associated
cost. We then give the quality model which is used
to evaluate whether a given set of sensors is able to
generate accurate estimation of natural frequencies.
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In every monitoring period, each sensor node,
including the sink node, will collect N samples. Then
the shortest path tree will be established in the network
and along which each node will transmit its data to
the sink node. Having collected the data from all the
sensor nodes, the sink node implements the ERA as
follows. First, data from all the sensor nodes are formed
into two Hankel matrices. Then a series of matrix
computations including singular value decomposition
(SVD) and eigen decomposition will be applied on the
matrices to produce the estimate of natural frequencies
[12]. Note that to detect structural damage, only the
first few frequencies needs to be identified. The number
of frequencies to be identified, denoted as pmod, is
determined by civil analysts. Using a large pmod is more
likely to reveal minor structural damage occurred on a
structure.

Energy consumption model
We estimate the energy consumption of a WSN in

one monitoring period. Assume the WSN is denoted
as G = (V,E) where V being the sensor nodes and E
being the wireless links among V . For a sensor node
vi ∈ V , its total energy consumption in one round of
damage detection, denoted as cost(vi, G), can be mainly
decomposed into the following three parts:

cost(vi, G) = Ers(vi) + Erc(vi, G) + Era(vi, G) (3)

where Ers(vi), Erc(vi, G) and Era(vi, G) are
the energy consumed in data sampling, wireless
communication and computation, respectively. Note
that the last two terms are dependent on whole network
G.

For each sensor node in V , the sampling cost Ers(vi)
is the same:

Ers(vi) = N · eS (4)

where eS is the energy for sampling one data.
However, Erc(vi, G) and Era(vi, G) will be different

for different nodes in V . Assume in the network, the
energy consumption for transmitting and receiving one
data unit are denoted as eR and eT , respectively. If vi is
the sink node, which needs to collect the data from all the
other nodes, the wireless communication cost Erc(vi, G)
will be:

Erc(vi, G) = (|V | − 1)N · eR (5)

where |V | is the number of nodes in V .
While for a non-sink node vi, we let the shortest path

from a node in V to the sink node be pa = h0h1, · · · , hk.
Define pa[i] = hi as the ith hop sensor on path pa.
Erc(vi, G) can then be computed as:

Erc(vi, G)=
∑

∀pa,∃j>0,pa[j]=vi

N · eR+
∑

∀pa,∃j,pa[j]=vi

N · eT (6)

In terms of computation cost Era(vi, G), for a sink
node, its Era(vi, G) is formulated as:

Era(vi, G) = eERA(|V |) (7)

where eERA is the energy used in the sink when it
carries out the ERA for natural frequency identification.
eERA is dependent on |V | and it is generally not a
linear function of |V | since the ERA contains many
computations such as the SVD whose complexity
dramatically increases with |V |.

To summarize, the energy consumption in one
monitoring period for a sink node and a common node
are denoted as

cost(vi, G) = N · eS + (|V | − 1)N · eR + eERA(|V |) (8)

and

cost(vi, G) = N · eS +
∑

∀pa,∃j>0,
pa[j]=vi

N · eR +
∑
∀pa∃j,
pa[j]=vi

N · eT (9)

respectively.
Quality model
Traditionally, to identify natural frequencies, data from

all the deployed sensor nodes are used in the ERA
[12]. However, in the ERA, data from some properly
selected sensor nodes can also obtain accurate natural
frequencies. Briefly speaking, the accuracy of identified
natural frequencies from a sensor set S is dependent by
measurement noise, the finite element model (FEM) of
the structure, and the number as well as the locations
of nodes in S. Furthermore, according to [13], under
the assumptions that (1) all the sensor nodes in S have
the same measurement noise, and (2) |S| ≥ pmod where
|S| is the number of sensor nodes in S, the accuracy
of identified natural frequencies is determined by the
condition number of S:

cond(S) = ‖ΦS‖ ·
∥∥Φ−1

S

∥∥ (10)

where ‖.‖ is the Euclidean norm, and ΦS is the
structure’s mode shape matrix Φ in Eq. 2 retaining only
the rows corresponding to the DOFs of S. The larger the
cond(S), the less accurate of identified natural frequencies
from S. ΦS can be obtained by the FEM of the structure.
In this paper, we assume that the measurement noise is
the same for all the sensor nodes and pmod is a value
pre-determined by civil analysts. Under this assumption,
a sensor set S ⊆ V is able to produce accurate natural
frequencies if the following two conditions are satisfied:

Condition 1: |S| ≥ pmod

Condition 2: cond(S) ≤ γ
(11)

where γ is the threshold for cond(S). Some examples
of how to choose γ will be given in Section 5.

3 DEFINITION AND PROBLEM FORMULATION

Following the same idea of the EECPS, if we can
find a number of sensor sets in V which satisfy the
requirements in Eq. 11 and let them work successively,
system lifetime can be extended. In addition, with the
help of the energy consumption model shown in Eq. 8
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and Eq. 9, it is possible to find out the optimal sets to
maximize the overall system lifetime.

The discussions above imply that although we cannot
define a ‘coverage area’ for an individual sensor node
in SHM, Eq.11 does provide information whether a set
of sensor nodes is able to provide accurate vibration
features to monitor the structural condition. This, in some
respects, is analogous to the concept of ‘coverage’. In the
following sections, we first re-define the coverage in
SHM and then give problem formulation in which the
deployed sensor nodes are divided into optimal ‘cover
sets’ such that system lifetime can be maximized.

3.1 Re-define the Coverage in SHM: SHM coverage

In this section, we give two definitions of coverage in
SHM.

Definition 1 (α-SHM coverage). A sensor set S is called to
be able to α-SHM cover a structure iff using S, the vibration
features can be identified with no less than a pre-defined
accuracy α.

The argument for this definition is as follows.
Detecting events in SHM relies on identified vibration
features (which is natural frequencies f in this paper).
Given a certain level of damage to be detected and
measurement noise, we can always find a threshold α
such that as long as the accuracy of identified vibration
features is higher than α, the pre-defined damage can
be detected. An example of finding α given a certain
level of damage to be detected will be given in Section
5.2. Obviously, detecting small damage under high
measurement noise usually needs a large α.
α-SHM coverage can be transformed to a more

convenient form. Considering the accuracy of identified
vibration features is directly associated with cond(S)
shown in Eq.10, we utilize γ, the threshold for cond(S),
to define SHM coverage as follows:

Definition 2 (γ-SHM coverage). A sensor set S is able to
γ-SHM cover a structure iff |S| ≥ pmod and cond(S) ≤ γ.

In these two definitions, we use coverage models that
are different from traditional one. Traditional coverage
model is a geographic area defined for individual
sensors, while these two coverage models do not define
the coverage area of individual nodes, but rely on
some functions to specify whether a set of sensor nodes
can monitor the whole area with a certain capability
(specified by α or γ). In the remaining of the paper, only
γ-SHM coverage is utilized, and for simplicity, we simple
use SHM coverage for γ-SHM coverage.

Obviously, γ is dependent on α. Generally speaking,
given α, the corresponding γ can be obtained using the
trail-and-error method as follows. Initially, we set γ to be
a relatively large value and find out, under the given
noise level, the estimation error of natural frequencies
from the SHM-cover sets. Then we can keep decreasing
γ until the estimation error meets the requirement of α.

For a SHM cover set S ⊆ V , the energy consumption
of the sensor nodes in S when identifying natural
frequencies can be easily obtained as in Eq. 8 and Eq.
9 by replacing G with GS , which is the graph of S.
Furthermore, in this paper, considering relaying large
amount of sampled data through multiple hops can be
energy consuming, we simply require that each SHM
cover set S is a single-hop cluster. This means that
there is a cluster head (CH) in GS which can directly
communicate with all its members. A CH needs to
collect data from its members and implement the ERA
to identify natural frequencies. Therefore, CHs in SHM
cover sets now take the function of the sink node in the
original WSN. Under this constraint, the cost of a CH
and a cluster member in GS is

cost(vi, GS) = N · eS + (|S| − 1)N · eR + eERA(|S|) (12)

and
cost(vi, GS) = N · eS +N · eT , (13)

, respectively.

3.2 Problem formulation
Having defined SHM coverage, the objective becomes to
divide the deployed sensor nodes into multiple SHM cover
sets and when they are activated in turn, the total number
of rounds they work is maximized. We give the formal
problem definition below:

Maximum SHM Cover Set Problem (MSCSP):
Given:
• a WSN G = (V,E).
• pmod, γ, and ΦS which determines whether a set
S ⊆ V is a SHM cover set.

• cost(vi, GS), which is the energy consumption of
each node vi when a sensor set S ⊆ V is chosen to
implement one round of damage detection. If vi ∈ S,
cost(vi, GS) is taking in the form of Eq. 12 or Eq.
13 according to the role it plays in S. If vi /∈ S,
cost(vi, GS) = 0.

• eri, the remaining energy of each sensor node vi.
The problem is to find a family of sensor sets

S1, · · · , Sp (Sj ⊆ V, j = 1, · · · , p) with the corresponding
number of rounds r1, · · · , rp allocated for these sets such
that
• r1 + r2 + · · ·+ rp is maximized, while
subject to the following constraints:
• ∀j = 1, · · · , p, |Sj | ≥ pmod and cond(Sj) ≤ γ.
• ∀j = 1, · · · , p, ∃v ∈ Sj , such that ∀u ∈ Sj(u 6= v)

there is an edge between v and u.
• ∀vi ∈ V ,

∑p
j=1 cost(vi, GSj

)rj ≤ eri.
Remarks:
• Inspired by [4], instead of dividing V into disjoint

sets, we allow every node to be part of more than
one set, and allow the sets to work for different
number of rounds.

• The first constraint guarantees each set is a SHM
cover set. The second constraint is to ensure only
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single-hop SHM cover sets are generated. The
last constraint guarantees that the total energy
consumed for each node vi across all SHM cover
sets is no larger than eri.

We prove that the MSCSP is NP-hard by proving
that the decision version of the problem is NP complete
which is defined as: given a threshold k , does there exist
a collection of sensor sets C = {S1, S2, · · · , Sp} and the
corresponding r1, · · · rp, which satisfy all the constraints
above and r1 + r2 + · · ·+ rp is equal or larger than k?

Proof: It is easy to prove this problem is NP. We show
it is NP-complete by reducing the set packing problem
[14] to it. The set packing problem is defined as:

Given: A universe U = {s̄1, s̄2, · · · , s̄m}, a collection
of subsets: C̄ = {S̄1, S̄2, · · · , S̄p} with S̄j ⊆ U for j =
1, · · · , p, and a number k.

Find: if there exist k subsets in C̄ which are pairwise
disjoint (in other words, no two of them intersect).

To reduce the set packing problem to the MSCSP, we
construct a network G = (V,E), mode shape matrix Φ,
the number of natural frequencies to be identified pmod,
cost function cost(vi, S), threshold γ, and remaining
energy eri from the inputs of set packing problem in
the following way:

1. For each S̄j ∈ C̄, establish a local network
Ḡj = (V̄j , Ēj) with a hub-spoke architecture. V̄j
includes one CH, denoted as v̄j0 and m cluster members
{v̄j1, v̄

j
2, · · · , v̄jm}. Each v̄ji , i = 1, · · · ,m corresponds to an

element s̄i ∈ U . The mode shape vector corresponding
to the CH v̄j0 is a 1-by-m row vector with only the first
element to be ’1’: [1, 0, · · · , 0], and the mode shape vector
for the cluster member v̄ji is [0, · · · , 1, 0, · · · ], with the ith

element to be ’1’. This setting applies for all the S̄j ∈ C̄.
It can be seen that after this stage, a total of p equivalent
local star networks are generated.

2. For each s̄k ∈ S̄i ∩ S̄j (S̄i, S̄j ∈ C̄ and S̄i ∩ S̄j 6= ∅),
the corresponding sensor nodes v̄jk and v̄ik in the local
networks Ḡi and Ḡj will be merged. After this stage, we
obtained a WSN G = (V,E) which includes m single-hop
clusters. Each cluster has exactly m+1 sensor nodes and
some clusters may overlap with each other.

3. By adjusting eT and eR in Eq. 12 and Eq. 13, we
make that given a single-hop network Ḡj = (V̄j , Ēj) with
|V̄j | = m+1, the cost(v, Ḡj) (v ∈ V̄j) is the same no matter
whether v is a CH or not. Also, the remaining energy
of each node in Ḡj is set to be er = cost(v, Ḡj). This
setting imposes that every sensor node can only make
one round of damage detection and hence the SHM
cover sets established using this approach are disjoint.
pmod = m and the threshold γ is set to be 1.

With this transformation, it can be easily proved that
1. Assume, without loss of generality, {S̄1, S̄2, · · · S̄k}

is a solution to the set packing problem, then the local
networks {Ḡ1, Ḡ2, · · · Ḡk} are SHM cover sets which
satisfy the constraints in the MSCSP, and the number
of rounds of damage detection assigned are r1 = r2 =
· · · = rk = 1. Therefore, the total number of rounds of
damage detection is k.

2. Assume a G = (V,E) is constructed from the
set packing problem and we have SHM cover sets
{Ḡ1, Ḡ2, · · · } with

∑
j=1 rj = k to the MSCSP problem,

then the subsets {S̄1, S̄2, ...S̄k} is a solution to the set
packing problem, where S̄j (j = 1, · · · k) is the subset
from which the local network Ḡj is established. The
detailed proof is omitted for brevity.

4 PROPOSED METHODS

In this section, we describe two methods to solve the
MSCSP, one is based on bounded multi-dimensional
knapsack problem (BMKP) and the other is based on
the genetic algorithm.

4.1 A BMKP based algorithm for the MSCSP
In this section, we propose a method based on the
BMKP. This method is largely divided into two stages.
First, a set of candidate single-hop SHM sets are
enumerated. Then the problem is reduced to the
bounded multi-dimensional knapsack problem.

Given G = (V,E) and a node vi ∈ V , we find out
a sensor set Svi which includes vi and all its one-hop
neighbors. Furthermore, based on Svi , a group of sensor
sets, denoted as Svi , is established:

Svi = {S1
vi , S

2
vi , ...} (14)

Sk
vi (k = 1, ...) are constructed from nodes in Svi and

must satisfy the following constraints:

1: ∀Sk
vi ∈ Svi , vi ∈ Sk

vi and Sk
vi ⊆ Svi

2: ∀Sk
vi ∈ Svi , cond(Sk

vi) ≤ γ and |Sk
vi | ≥ pmod

3: ∀Sk1
vi , S

k2
vi ∈ Svi(k1 6= k2), Sk1

vi 6⊆ S
k2
vi

(15)

Briefly speaking, the first constraint requires that for
each Sk

vi ∈ Svi , it must contain vi and the rest nodes in
Sk
vi are chosen from vi’s one-hop neighbors. vi will be

functioning as the CH in Sk
vi if Sk

vi is selected to detect
damage. The second constraint is to ensure that each
Sk
vi is a SHM cover set. The third constraint is to remove

some redundant candidates when solving the knapsack
problem. For two sets Sk1

vi , Sk2
vi , both satisfying the first

two constraints above and Sk1
vi
⊆ Sk2

vi , it can be easily
proved that when a solution of the MSCSP contains Sk2

vi ,
a better or at least equally good solution can be obtained
by replacing Sk2

vi with Sk1
vi .

For each node vi ∈ V , we wish to enumerate
all possible sensor sets that satisfy the constraints
above. Theoretically, the number of possible sets in
Svi could grow exponentially with respect to |Svi |.
However, different from many applications of WSNs
where thousands or tens of thousands cheap wireless
motes can be deployed, the number of sensor nodes
deployed on a civil structure are generally less than one
hundred considering the cost of attached sensors and
the application requirement. |Svi | is thus further limited.
Therefore, we can assume that Svi for any sensor node
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vi ∈ V can be enumerated in relatively short time. For a
WSN G = (V,E) where |V | = m, a collection of sensor
sets which satisfy the constraints above is denoted as:

CV = {Sv1
,Sv2

, · · · Svm} = {S1, S2, · · · , SM} (16)

where Si is the ith set in CV and M is the total number
of sets in CV . Note that when determining the sensor sets
for each Svi , the energy constraint in the MSCSP is not
considered.

After all the possible SHM cover sets have been
enumerated, the MSCSP can be written in the form of
the BMKP as follows:

max.
M∑
j=1

rj , rj = {0, · · · lj}

s.t.
M∑
j=1

cost(vi, GSj
)rj ≤ eri, i = 1, · · · ,m

(17)

where lj = min
vi∈Sj

b eri
cost(vi,GSj

)c. It can be seen that

when the MSCSP is expressed in the form of BMKP,
each sensor set Sj ∈ CV represents a certain type of
item in the BMKP. All sensor sets in CV have the same
benefit. We wish to maximize the total profit of the
selected sensor sets (i.e.

∑M
j=1 rj) under the constraint

that the energy of each sensor node across all the selected
sensor sets will not exceed its remaining energy (i.e.∑M

j=1 cost(vi, Sj)rj ≤ eri). For a SHM cover set Sj , the
maximum number of time it can be selected is bounded
by the node in Sj whose energy will be depleted first
when implementing the ERA (i.e. node vi which satisfies
min
vi∈Sj

b eri
cost(vi,GSj

)c, where b·c is the floor function which

maps a real number to the largest previous integer).
After this transformation, we are able to employ

existing algorithms originally designed for the BMKP to
tackle our problem. In particular, we first transform the
BMKP into 01MKP based on [15], and then adopt the
cross-entropy optimization [16] to solve the 01MKP.

4.2 The GA Method for the MSCSP

In this section, we propose a Genetic Algorithm (GA)
to solve the MSCSP. We will show later that in some
conditions, the GA method can achieve satisfactory
results comparable with the BMKP-based method but
using less computation time.

A basic GA includes: [17]:
Generate an initial population;
repeat

Select parents from the population to produce
offspring;
Evaluate fitness of the children and replace some
or all of the population by the offspring with good
fitness;

until a satisfactory solution has been found.
The first step in designing a GA for the MSCSP is

to devise a suitable representation scheme to represent

1 0 1

Sv1

1

3

4

2

Sv1= {v1,v2,v3}

Sv2= {v2,v1,v3,v4}

Sv3= {v3,v1,v2}

Sv4= {v4,v2}

v1 v2 v3

1 0 1

Sv2

v1v2 v3

1

v4

0 0 1

Sv3

v1 v2v3

1

Sv4

v4

1

v2

{v1,v3} {v2,v3,v4} {v4,v2}{   }

Fig. 5: GA example. Left: the topology of a WSN; Middle: The
Svi of each node; Right: the encoding of Sv1 ∼ Sv4

solution of MSCSP. As before, we first find out Svi for
each vi which includes vi and all its one-hop neighbors
in G = (V,E). Then we have a group of sensor sets:

C̄V = {Sv1
, Sv2

, · · · , Svm} (18)

It should be noted that C̄V only includes m sensor sets
and is different from CV defined in Eq. 16. All the sensor
sets in C̄V are aligned together as an array and we use
a
∑m

i=1 ni-bit binary string str to encode it, where m
is the number of nodes in V and ni is the number of
nodes in Svi . In this representation, a value of 1 or 0 at
the jth bit of str implies that whether the jth node in
C̄V is selected or not. Therefore, from each Svi , at most
one sensor set is generated by selecting the nodes in Svi

whose values in str are encoded as ′1′. Furthermore,
we require that in Svi , if vi is not selected, no sensor set
will be generated from Svi , even if some other nodes in
Svi are selected according to the str. After we apply a
str on C̄V , we obtain a collection of sensor sets:

C̄str
V = {Sstr

1 , Sstr
2 , · · · , Sstr

p } (19)

where p ≤ m since at most m sets can be obtained. The
sensor sets in C̄str

V will be a candidate solution for the
MSCSP.

We use an example shown in Fig. 5 to demonstrate the
procedures above. According to the network topology
shown in the left figure of Fig. 5, four Svis are obtained.
When they are aligned as an array, we have:

C̄V = {v1, v2, v3}︸ ︷︷ ︸
Sv1

{v2, v1, v3, v4}︸ ︷︷ ︸
Sv2

{v3, v1, v2}︸ ︷︷ ︸
Sv3

{v4, v2}︸ ︷︷ ︸
Sv4

(20)

Assume a binary string str on the C̄V is
′101101100111′. According to this str, three sets
{v1, v3}, {v2, v3, v4}, and {v4, v2} are respectively
generated from Sv1

, Sv2
, and Sv4

and are shown in the
right figure of Fig. 5. No sensor set came from Sv3

since
its CH v3 is 0 in str. Therefore, we have:

C̄str
V = {{v1, v3}, {v2, v3, v4}, {v4, v2}} (21)

So far, the encoding method described above only
indicates which sensor sets will be chosen to work but
does not provide the number of rounds assigned to
them. To solve this problem, we modify the C̄V in Eq.
18 and allow the repeated Svi :

C̄V = { Sv1 , · · · , Sv1︸ ︷︷ ︸
repeated rep1 times

, · · · , Svm , · · · , Svm︸ ︷︷ ︸
repm times

} (22)
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where repi (i = 1, · · · ,m) is the number of Svi

repeated in C̄V . Theoretically, repi should be no less than
the maximum number of rounds that any sensor sets
generated from Svi (by applying str on C̄V ) can work
to implement the ERA:

repi ≥ max
∀S̄vi

⊆Svi

min
∀vk∈S̄vi

b ervk
cost(vk, GS̄vi

)
c (23)

where ervk is the remaining energy of vk, S̄vi is a
subset of Svi but still using vi as the CH. Given S̄vi ,
min
∀vk∈S̄vi

b ervk
cost(vk,GS̄vi

)c is the number of rounds that S̄vi is

able to work. Since vi is always included in Svi and the
cost(vi, GS̄vi

) is a non-decreasing function with |S̄vi |, a
safe choice of repi is that

repi = b ervi
cost(vi, S̄vi = vi)

c (24)

Note that S̄vi in Eq. 24 only includes vi, and obviously,
b ervi
cost(vi,vi)

c ≥ max
∀S̄vi

⊆Svi

min
∀vk∈S̄vi

b ervk
cost(vk,GS̄vi

)c.

When encoding C̄V in Eq. 22, smaller repi is always
more favorable from computational point of view. The
repi shown in Eq. 24 can be further decreased by
considering the fact that S̄vi should be a SHM cover
set (we will show soon that by introducing an repair
operator, any str that generates a non-SHM cover set
will be fixed). Obviously, by considering the constraint,
the S̄vi in Eq. 24 should include more nodes and the
corresponding repi will be further decreased. Here, we
use a greedy method to find out the S̄vi in Eq. 24.
Initially, S̄vi = vi. Then the vi’s neighbors are added one
by one, each time the one which is able to minimize
cond(S̄vi) is added. The procedure iterates until S̄vi is a
SHM cover set. The corresponding repi is then used in
Eq. 22.

We note that the encoding method described above
might represent an infeasible solution to the MSCSP. A
solution is infeasible when one or both of the following
conditions occur:

1: ∃Sstr
k ∈ C̄str

V , |Sstr
k | < pmod or cond(Sstr

k ) > γ

2: ∃vi ∈ V,
p∑

j=1

cost(vi, S
str
j ) > eri

(25)

There are a number of standard ways of dealing with
infeasible solutions in GAs. For example, to apply a
penalty function to penalize the fitness of any infeasible
solution [18], to separate the evaluation of fitness and
infeasibility [19], or to design a repair operator [20]. In
this paper, the last approach is adopted and we designed
a repair operator to convert an infeasible solution into a
feasible MSCSP solution.

The repair operator proposed here is very simple. This
operator includes two stages and in each stage, one
condition shown in Eq. 25 is considered. Given
• C̄V = {Sv1

, · · · , Sv1
, Sv2

, · · · , Sv2
, Svm , · · · , Svm},

• a binary string str, and

• the corresponding group of sensor sets C̄str
V =

{Sstr
1 , Sstr

2 , · · · Sstr
q },

the repair operator first evaluates, one by one, all
sensor sets in C̄str

V to see whether they can SHM-cover
the structure. For any sensor set Sstr

i which fails, the
operator finds out the sensor set in C̄V , denoted as
Svl , from which the Sstr

i is extracted. Then it randomly
selects a ′0′ from the segment of str corresponding to
Svl and sets it to ′1′. This procedure above corresponds
to adding one neighbor of vi which was not selected into
Sstr
i . Sstr

i is then updated and evaluated. This procedure
re-iterates until one of the two conditions is valid:

1: the updated |Sstr
i | ≥ pmod and cond(Sstr

i ) ≤ γ
2: Sstr

i = Svl

(26)

The occurrence of the second condition in Eq. 26
indicates that even when all the one-hop neighbors
of vl have been used, the sensor set Sstr

i still cannot
SHM-cover the structure. If this is the case, the segment
of str corresponding to Svl will be cleared and Sstr

i will
be deleted from C̄str

V .
After the repair operator goes through all the sensor

sets in C̄str
V , the remaining sensor sets in C̄str

V are able
to meet the SHM-coverage requirements. The repair
operator then seeks the most energy consuming node
across the sensor sets in C̄str

V and see whether its energy
consumption exceeds the energy threshold. If it is true,
the operator will delete, from C̄str

V , one sensor set in
which the energy consumption of this node is highest
in C̄str

V . This procedure re-iterates until the energy
consumption constraint is satisfied for all the sensor
nodes.

The detail procedure of this two-stage repair operator
is illustrated in Algorithm 1. Algorithm 1 is guaranteed
to produce a feasible solution for the MSCSP, irrespective
of the initial binary string str.

We now need to define the fitness function for str.
Given a str and the corresponding C̄str

V , the fitness
function of the str is the number of sensor sets in C̄str

V .
Note that since we allow repeated SHM cover sets in
C̄str

V , the number of sets in C̄str
V directly corresponds

to the number of rounds of damage detection can
implemented. The larger the number of sensor sets in
C̄str

V , the higher the fitness of the corresponding str.
Having determined the repair operator and the fitness

function, now we can start the evolution process.
We first generate, at random, a population of strs
(i.e. the genes), and then feed this population into
the repair operator. From the output of the repair
operator, each updated gene is evaluated by the fitness
function. The the fitter genes will be used for mating
and crossover to create the next generation of genes.
A gene having the maximum fitness value among a
population is called elite and carried through unchanged
to the next generation. The iteration stops if there is
no improvement in the maximum fitness value for ten
consecutive generations.
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Algorithm 1 The designed repair operator for MSCSP
Input: C̄V , str, and C̄str

V = {Sstr
1 , Sstr

2 , · · · , Sstr
q }

1: for i = 1 to q do
2: Find out the sensor set in C̄V from which Sstr

i is
extracted. This set is denoted as Svl

3: while (|Sstr
i | < pmod or cond(Sstr

i ) > γ) and Sstr
I ⊂ Svl

do
4: Randomly select a ′0′ from the segment of str

corresponding to Svl and set it to ′1′

5: Update Sstr
i , str and C̄str

V

6: end while
7: if |Sstr

i | < pmod or cond(Sstr
i ) > γ then

8: Delete Sstr
i from C̄str

V

9: Clear the segment of str corresponding to Svl

10: end if
11: end for
12: Find out the node with the highest energy consumption

across all sets in C̄str
V . This node is denoted as vmax.

13: while
∑

Sstr
i ∈C̄str

V
cost(vmax, GSstr

i
) > ervmax do

14: Delete the sensor set in which the energy consumption
of vmax is highest among all the sensor set in C̄str

V

15: Update C̄str
V and str

16: Find out the vmax in the updated C̄str
V .

17: end while
Output: The updated str and C̄str

V
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Fig. 6: The simulated bridge (a) The dimensions of the
suspension bridge (3D), (b) the sensor locations (X-Y plane)
(c) The first four theoretical modes of the bridge

5 PERFORMANCE EVALUATION

5.1 Results on a simulated bridge

To test the effectiveness of the proposed methods,
a simulated suspension bridge shown in Fig. 6(a) is
generated by SAP2000 [21].

A total of 60 wireless sensor nodes are generated
to measure the vibration at the transverse direction (z
direction in Fig.6 (a)) of the deck of the bridge. The
locations of these nodes are shown in Fig. 6 (b). These
60 locations are selected using some domain knowledge
from civil engineering [22]. We set the communication
range of each node to be Cr = 15m.

The theoretical first 4 modes of the structure are
illustrated in Fig. 6 (c). The mode shapes will be used to

TABLE 2: Parameters used in the simulation.

N
er eS eR eT eERA

(mAh) (mAh) (mAh) (mAh) (mAh)
0.0417(0.4|V |2

20480 700 1.1e-4 5e-4 5e-4 +1.2|V | − 3.6)

calculate the condition number of selected sensor sets. In
addition, the natural frequencies shown in Fig. 6 (c) are
utilized as the ground truth for validating the accuracy
of estimated frequencies using selected SHM cover sets.
The parameters used in the simulation are listed in Table
2. Some of the parameters, such as eS , eR, eT and eERA,
are obtained by some real tests on our own designed
SenetSHM motes that are described in detail in [23]. In
this simulation, it is assumed that all the sensor nodes
use the same battery with er = 700 mAh (the voltage
of the battery is 3.3v). To make it comparable, we also
utilize mAh as an alternative unit for J (joule) when we
calculate the energy consumption of sensor nodes. We
require that the first 4 natural frequencies need to be
identified (i.e. pmod = 4) and the condition number of
each SHM cover set should be less than γ = 1000 so
that the identified natural frequencies can be accurate
enough to detect a certain level of damage on this bridge.
Choosing γ = 1000 is determined via the trail-and-error
method described in Section 3.1 and its validity will be
shown at the end of this section.

Fig. 7 illustrates the results of using the BMKP-based
method proposed in Section 4.1. From Fig. 7 (a), it
can be seen that 19 sensor sets are generated, and the
number of working rounds assigned to each sensor set
ranges from 1 to 20. The total system lifetime (i.e. the
number of rounds of damage detection) becomes 190.
Also, although not shown in the figure, the number of
sensor nodes in each sensor set ranges from 4 to 5.
From Fig. 7 (b) and (c), we can see that all the sensor
sets are SHM cover sets (cond(S) ≤ 1000), and the
energy consumed of each node is below 700 mAh. We
can also see from Fig. 7 (c) that some nodes are not
selected by any SHM cover sets and hence seem to be
‘redundant’. Note that these nodes are only ‘redundant’
when estimating natural frequencies but will still be
useful when estimating mode shapes after damage is
detected.

The redundant nodes are partially caused by the
sparsity of the network. Intuitively, in a dense network
where each node has a large number of neighbors, the
number of redundant nodes should be smaller since
each node has a higher probability to be involved in
one or more SHM cover sets. Correspondingly, the total
number of rounds that the system can work should be
larger. To validate this, we fix the parameters shown in
Table 2 but change the network density by adjusting the
communication range of each node Cr. As an illustration,
Fig. 8 shows the results when Cr = 19m. In this condition,
246 SHM cover sets are generated and the system
lifetime is 393. Also can be seen from Fig. 8 (c) is that
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Fig. 7: Results from the BMKP-based method when Cr = 15m
(a) The SHM cover sets and the number of rounds assigned (b)
The condition number of each SHM cover set (c) The energy
consumed of each sensor node across all SHM cover sets.
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Fig. 8: Results from the BMKP-based method when Cr = 19m

there are no un-selected sensor nodes. A dense WSN
obviously can increase the utility of individual nodes
when they form into sensor sets to detect structural
damage.

We wish to find out system lifetime under different
network densities. First, we notice that compared to
communication range Cr , the total number of links
in the network may be a better measure to present
network density since it is more robust to various sensor
deployments. Fig. 9 (a) illustrates system lifetime when
the number of links in the network is increasing from
142 → 175 → 238 → 260 (the corresponding Cr are 12,
14, 16 and 19m, respectively).

For comparison, Fig. 9 (a) also shows the system
lifetime of using the GA method. It can be seen that
compared with the BMKP-based method, the system
lifetime of the GA method is slightly lower. However, the
advantage of the GA over the BMKP-based method lies
in the computation time. For the BMKP-based method,
the computation time increases significantly with the
increase of network density. This is illustrated in Fig.
9 (b), where it shows the computation time on a laptop
computer (Lenovo Thinkpad W500, with 2.80 GHz CPU
and 4G RAM).

The reason can be attributed to the fact that in
the worst case, the number of candidate sensor sets
in Svi of Eq. 14 is with the level of O(n!) where
n is the number of nodes in Svi . Consequently,
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Fig. 9: Compare the results from the BMKP-based method and
the GA method in terms of (a) lifetime, and (b) the computation
time
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Fig. 10: (a) The deployed 60 sensors are divided into 12 disjoint
sensor sets (b) the condition number of each sensor set.

when using the cross-entropy optimization to solve
the transformed Knapsack problem, the computational
complexity increases dramatically with the increase of
the network density. However for the GA method, the
length of the binary string str, which highly affects the
complexity of the GA algorithm, is only O(m2) where
m is the number of the nodes in the network. Hence
the advantage of the GA over the BMKP-based method
in terms of computation time is more obvious in a
dense WSN with large number of nodes. This is also
demonstrated in Fig. 9 (b), where the computation time
of the two methods are compared in different network
density. Fig. 9 (b) shows that the computation time of the
GA becomes lower than the BMKP-based method when
the number of links exceeds 350, and this gap becomes
more obvious with the increase of network density.

In the following of this section, we discuss the
importance of controlling the condition number of each
SHM cover set. For comparison, we divide the deployed
60 sensors quite arbitrarily into 12 disjoint sensor sets
(see Fig. 10 (a)). Each set contains exact 5 nodes, which
is the maximum number of nodes in the SHM cover sets
identified in Fig. 7. The corresponding condition number
of each set is shown in Fig. 10 (b). We can see that the
condition number of an arbitrarily selected sensor set
can easily go wildly large. As an example, only set #2
has a condition number below 1000 and the condition
numbers #1,#3,#11 even exceed 1015.

Then we demonstrate how the condition number will
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Fig. 11: The identified natural frequency error using the sensor
sets in (a) Fig. 7 and in (b) Fig. 10

affect the accuracy of identified natural frequencies.
We apply an impulse force along the z-direction in
the middle span of the bridge and collect the impulse
responses of the deployed 60 sensor nodes. The response
time series are sampled at 200 Hz. Noise is added
to the sensor data at each sample as a zero-mean
Gaussian sequence with variance σ2. In this simulation,
σ2 is chosen such that the ratio of the σ to the
root-mean-square sensor output averaged over all the
60 sensors is 15%.

The error of the ith identified natural frequencies,
denoted as ∆f i, is calculated as

∆f i =
∣∣∣f̂ i − f i∣∣∣ /f i (27)

where f̂ i is the identified ith natural frequency and
the f i is the true one.

Fig. 11 (a) illustrates the identified natural frequency
error using the SHM cover sets obtained from the
BMKP-based method. The natural frequency error of
all the SHM cover sets in all of the four modes are
below 0.5%. It can be seen that if we set γ = 1000 for
all the SHM cover sets, then even with the relatively
high noise-to-signal ratio (15% in this case), the natural
frequencies of the bridge are very accurately identified
(with error < 0.5%). In other words, damage which
causes the deviation of natural frequencies larger than
0.5% is possibly to be detected by these SHM cover sets.

For comparison, the natural frequency error using the
sensor sets in Fig. 10 are shown in Fig. 11 (b). It can be
seen that the natural frequencies identified from sensor
sets without controlling condition number are far from
accurate. The maximum identification error can even
reach over 300%. With such a large error, it is not possible
to use the estimated natural frequencies for damage
detection.

5.2 Experiment on a lab structure

The effectiveness of the proposed approaches is tested
on a lab structure. To address the generally high
requirements of SHM application, we designed a

particular type of wireless sensor nodes called SenetSHM
mote [23]. A SenetSHM mote mainly includes an Imote2
and a specially designed sensor board (see Fig.12 (a)).
Imote2 is chosen as the central unit because it has a
good balance between low power consumption and rich
resources. The sensor board contains: (1) an on-board
3-Axis accelerometer and an interface for connecting
external sensors, (2) a 2G-Byte µSD that is utilized for
storing measured data, and (3) a radio triggered-wakeup
unit that can wake up the mote when it receives wakeup
messages from others. In particular, the radio-triggered
wakeup unit provides a convenient way to implement
the EECPS based on the obtained SHM cover sets.

The structure under test is shown in Fig. 12
(b). It has 12 floors, and 12 SenetSHM motes are
deployed on different floors to monitor the structure’s
horizontal accelerations under the excitation from a
hammer. Since it is a relatively small lab structure,
the deployed SenetSHM motes can form a complete
network. However, to test the effectiveness of the
proposed methods in a multi-hop wireless network,
we let each mote only directly communicate with four
nearest neighbors. As an example, the neighbors of
the SenetSHM mote deployed on the 12th floor are
shown in Fig. 12 (c). We use a gateway node which is
connected to a laptop computer to collect data wirelessly.
The SenetSHM motes run modified TinyOS and are
configured to sample the accelerometers at frequency of
1024 Hz for 20 seconds.

At the same time, vibration data are also recorded
by a wired system for reference. Using data sampled
from the wired-system, we can estimate the first four
mode shapes and natural frequencies based on FEM
updating techniques [24]. The mode shapes will be used
to calculate the condition number, while the natural
frequencies will be utilized as ground truth to test the
accuracy of using SHM cover sets.

Damage on this lab structure is generated by releasing
a support ring on the third floor (see Fig. 12 (b)).
To determine the required accuracy for the identified
natural frequencies to detect such damage, we compare
the natural frequencies before and after damage using
data from the wired system. Table 3 lists the first 4
natural frequencies before and after damage. It can be
seen that this damage generates 2% ∼ 6% change on
these natural frequencies. Therefore, we require that
identified natural frequencies error should be at least
lower than 2%.

Then we implement the trail-and-error method
mentioned in Section 3 to obtain γ that can achieve the
accuracy above. We found that for this test structure, γ
should be smaller than 200. Under this requirement, we
utilize the proposed methods to partition the deployed
12 SenetSHM motes into different SHM cover sets.
Fig. 13 (a) and (b) illustrate the SHM cover sets and
the corresponding number of rounds assigned using
the BMKP method and the GA method, respectively.
The expected system lifetime calculated from these two
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12th floor.

methods are 100 and 82, respectively.
As an example, we utilize the results from the

BMKP-based method to implement the EECPS on this
small WSN. Initially, all the deployed SenetSHM motes
are put into sleep mode. The gateway first wakes up
all the deployed motes wirelessly and then broadcasts
a message containing the IDs of the motes in the first
SHM cover set. Motes that find their IDs in the message
will notify the gateway accordingly. If the gateway
receives responses from all the motes in the cover set, it
sends a beacon to trigger a round of damage detection.
Otherwise, the gateway will directly jump to the next
SHM cover sets. After a set of natural frequencies f is
identified from a SHM cover set, all nodes in the set
will go back to sleep and the gateway starts to initiate
the next round of damage detection. Note that to test
the performance of the EECPS, we did not implement
damage localization as in Fig. 4, even it can be carried
out straightforwardly.

To find out the actual system lifetime that can be
achieved, we simply iterates the procedures above until
no SHM cover sets are available. In this experiment,
the voltage of each mote is monitored via an onboard
voltage sensor. According to the discharge characteristics
of lithium battery, a SenetSHM mote will shut itself
down if its voltage falls down below 3.3v. Obviously,
once a mote is shut down, any cover sets that containing
this mote will not be implemented for damage detection.

In this test, we found that the actual number of
rounds that the system can work is 79, which is smaller
than the expected 100. The reason for the gap can
be mainly attributed to the error of the parameters
utilized in the BMKP method. In addition, the energy
consumption model utilized in BMKP method does
not include the energy consumed for control messages,
retransmissions, idle listening and other overhead.
Nevertheless, considering the number of rounds that
the system can work is less than 7 if all the deployed
SenetSHM motes are activated (which can be easily
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Fig. 13: Test results on the lab structure (a) The number of
rounds assigned to each SHM cover set using the BMKP-based
method, and (b) using the GA method. (c) The error of
identified natural frequencies in each round of damage
detection.

TABLE 3: The natural frequencies before/after damage and the
differences.

1st 2nd 3rd 4th

f (Healthy) 64.7 161.2 224.5 312.1
f (Damaged) 63.2 155.3 218.1 292.5
∆f 2.32% 3.66% 2.81% 6.28%

calculated by applying parameters in Table 2 to Eq. 8),
using the EECPS can significantly improve the system
lifetime.

In terms of accuracy, Fig. 13 (c) shows the error of
identified natural frequencies in each round of damage
detecting. It shows that using γ = 200, the error of
identified natural frequencies is less than 2% in most
rounds of damage detection, while a few large values
(up to 6%) can be attributed to the abrupt noise in the
measurements.

5.3 Experiment on a large civil infrastructure
We have tested our proposed scheme on a large civil
infrastructure. We deployed a number of SenetSHM
motes in the LSK Building to measure its vibration
under ambient environment (see Fig. 14 (a)). The
numbering of the measured locations is shown in Fig
14 (b). The system setup on measurement location
17 is illustrated in Fig. 15 (a). At each measurement
location, we use three high-sensitive external sensor
named KD1300 to record the vibration (see Fig.15 (a))
in three orthogonal directions. Signals recorded at each
KD1300 are amplified and then fed into a SHM mote. For
convenience, we call the SHM motes connecting to the
KD1300 the sampling motes. In this experiment, wireless
communication cannot be directly established among the
sampling motes at different locations since the locations
shown in Fig. 14 (b) belong to different rooms. To solve
this problem, we deploy a particular SenetSHM mote
acting as local data collector deployed near the window
of each location (see the top figure of Fig. 15 (b)).
Vibrational data sampled at the three sampling motes are
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Fig. 15: Experiment setup (a) Sampling motes and sensors at
a certain location(b)Top: a collector node deployed near the
window; Bottom: a gateway node connected to a laptop.

first transmitted to this collector node. These 20 collector
nodes can be regarded as independent wireless sensor
nodes in this WSN. In this paper, we assume the collector
nodes already have the local vibration data and only
consider the wireless communication among them.

During the test, we first find the network topology
of the collector nodes by running the collection tree
protocol (CTP) [25] on the collector nodes. The network
topology of these 20 collector nodes is illustrated in
Fig. 16 (a). The topology information is transmitted to
a gateway node that is connected to a laptop computer
(see the bottom figure of Fig. 15 (b)). In addition,
considering each SenetSHM mote has a large onboard
µSD card, we collect the data from all the collector nodes
after the experiment is finished. These data are utilized
to obtained mode shapes and natural frequencies. As
before, the former will be utilized when calculating the
condition number and latter will serve as the reference
when estimating error of SHM cover sets.

Since we cannot generate damage on the structure,
we simply set the threshold γ = 200. Based on the
network topology, mode shapes and γ, we implement
the BMKP-based method at the laptop computer and it
generates a total of 52 SHM cover sets. The number of
rounds assigned to each set is illustrated in Fig. 16 (b).
The expected number of rounds that these SHM cover
sets can work is thus 150. The information of SHM cover
sets is broadcast to all the collector nodes. Each collector
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Fig. 16: (a) The topology of the collector nodes (b) The SHM
cover sets obtained using the BMKP method and (c) the
corresponding natural frequency error

node is then aware of the SHM cover sets it belongs and
its status (CH or cluster member) in these sets.

Then we implement the EECPS on this WSN. The
basic procedure is similar to that described in Section
5.2. The only difference is that in each round of
damage detection, all the sampling motes corresponding
to the collector nodes in a cover set will wake up
and synchronize using the modified flooding time
synchronization protocol (FTSP) [26].

The actual number of working rounds that the system
can work is 49. Obviously, the difference between the
expected and actual system lifetime is mainly caused by
the fact that the energy consumed when the collectors
were receiving data from sampling motes is not taken
into consideration. Fig. 16 (c) shows the error of the
identified natural frequencies in each SHM cover sets.
It can be seen that all the SHM cover sets are able to
identify the natural frequencies accurately.

6 RELATED WORKS

According to how the full coverage is achieved,
existing EECPS protocols can be largely categorized into
centralized and distributed. In [2] and [3], centralized
protocols based on the set cover problem are proposed
which allocate sensor nodes into the maximum number
of mutually exclusive sets, where each set completely
covers the area. A improved version was proposed in
[4], where sensors are allowed to participate in multiple
sets.

When designing distributed protocols, the basic idea is
that each active sensor node first exchanges information
with the active neighbors to see whether or not
its sensing region has already been covered by the
neighbors and then activates or goes to sleep accordingly.
In [5], a distributed coverage configuration protocol
(CCP) is proposed which can configure a sensor network
to any coverage degree. In [6], a distributed algorithm
is proposed that ensures complete coverage using the
concept of ’sponsored area’. Similar approach can be
found in [27], where an Optimal Geographical Density
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Control (OGDC) algorithm is proposed to achieve energy
efficient monitoring by controlling the density of the
active nodes.

However, both centralized and distributed methods
mentioned above would fail in some applications
of WSNs where detection events or targets requires
collaboration from multiple sensor nodes. Since
individual sensor node is not able to fulfill the task
alone, a definite coverage area for individual sensor
node does not exist.

7 DISCUSSION AND CONCLUSION
In most existing WSN applications, a task can be fulfilled
by ‘sensor nodes comparing their measurements to a
threshold’. While in some domain-specific applications,
to accomplish a task relies on low-level collaboration
of multiple sensors, which is usually characterized
by matrix computations. Different from existing
applications, we cannot define coverage area or
analogous contribution factor for individual nodes.
Thus existing works which partition sensor nodes into
multiple cover sets will fail.

In this paper, using an example of SHM, we extend the
EECPS to more ‘domain-specific’ applications of WSNs.
In particular, we re-define the ‘coverage’ and propose
two methods to partition the deployed sensor nodes
into qualified cover sets such that system lifetime can
be maximized.

Besides SHM, volcano tomography shown in Fig. 2 is
another example in which data from deployed sensor
nodes must collaborate to solve a large matrix inversion
problem. The way how coverage is re-defined, how
problem is formulated and the methods proposed in
this paper can give good guidance of selecting the
optimal subsets of deployed nodes to obtain accurate
tomography results in an energy-efficient manner.
In addition, we believe that with the advancement
of MEMS technology, WSNs will penetrate into
more and more domain specific applications which
feature collaborative and complicated signal processing
algorithms.
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