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Abstract—Polling is a widely used anti-collision protocol
that interrogates RFID tags in a request-response way. In
conventional polling, the reader needs to broadcast 96-bit
tag IDs to separate each tag from others, leading to long
interrogation delay. This paper takes the first step to design
fast polling protocols by shortening the polling vector. We first
propose an efficient Hash Polling Protocol (HPP) that uses hash
indices rather than tag IDs as the polling vector to query each
tag. The length of the polling vector is dropped from 96 bits to
no more than ⌈log(n)⌉ bits (n is the number of tags). We then
enhance HPP (EHPP) to make it not only more efficient but
also more steady with respect to the number of tags. To avoid
redundant transmissions in both HPP and EHPP, we finally
propose a Tree-based Polling Protocol (TPP) that reserves the
invariant portion of the polling vector while updates only
the discrepancy by constructing and broadcasting a polling
tree. Theoretical analysis shows that the average length of the
polling vector in TPP levels off at only 3.44, 28 times less
than 96-bit tag IDs. We also apply our protocols to collect
tag information and simulation results demonstrate that our
best protocol TPP outperforms the state-of-the-art information
collection protocol.
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I. INTRODUCTION

Radio Frequency IDentification (RFID) is a popular non-
contact technology that exploits radio-frequency electromag-
netic fields to transfer data. With the rock-bottom price
and rapid development of manufactural technologies, RFID
has been widely employed in various areas, such as object
tracking [1], [2], [3], supply chain management [4], [5],
[6], warehouse inventory [7], [8], [9], [10]. Considering
the proliferation of RFID tags, time-efficient anti-collision
protocols are essential to successfully collect information
from tagged objects.

Polling, as a common anti-collision protocol, allows us to
interrogate RFID tags in a request-response way. It serves
a broad range of purposes. For example, polling can be
used to detect or identify missing tags [11], [12], [13], [14]
with 1-bit response from a tag showing its presence against
theft. Polling can be applied to collect tag information
for monitoring the status of tags and products in sensor-
augmented RFID networks [15], [16], such as the energy
level of batteries, the temperature of chilled food, or product
information stored in the tag’s memory.

The remarkable advantage of polling is that the interrogat-
ing request and response are a one-to-one mapping, such that
only one tag is interrogated at a time, completely avoiding
tag-to-tag collisions in the open wireless channel. This fea-
ture makes polling contain only useful singleton slots (exact
one tag replies each time), instead of useless empty slots
(none of tags replies) and collision slots (two or more tags
reply concurrently) that happen in ALOHA-based protocols
[12], [8], [17], [18]. In the Conventional Polling Protocol
(CPP), however, the reader needs to transmit tedious tag
IDs to separate each tag from others, leading to long polling
delay. We refer to the broadcasting bits (from a reader) used
for exclusively polling a tag as polling vector in the sequel.
Clearly, the polling vector of CPP is the 96-bit tag ID.

The existing work of polling design is to reduce the
number of polling phases [12], [19], each of which, however,
still adopts inefficient CPP. With the proliferation of RFID
tags, this design is likely to take a long time to finish the
polling task even for a medium-size RFID system. The most
related work is the Coded Polling (CP) protocol that shortens
the length of the polling vector by half through validating
the cyclic redundancy code [19]. However, CP is far away
from a time-efficient polling protocol as the 48-bit polling
vector is still too long to quickly interrogate tags.

This paper takes the first attempt to exploit fast polling
protocols from the view of shortening the polling vector. Our
major contribution is that we make a fundamental improve-
ment on the polling performance by taking a different design
path. A series of protocols are proposed to progressively
achieve this goal. The key idea behind our protocols is to
minimize the polling vector as well as to totally avoid slot
waste. We first present an efficient Hash Polling Protocol
(HPP) that uses a new, short hashed index rather than the
tedious tag ID as the polling vector to exclusively query each
tag. Theoretical analysis shows that the polling vector of
HPP yields the upper bound of ⌈ log2 n⌉ bits, where n is the
number of tags. Although HPP greatly decreases the polling
overhead compared with CPP (96 bits), the length of the
polling vector increases with n. We thus design an Enhanced
HPP (EHPP) that divides a large tag set into several small
subsets and respectively interrogates tags in each of them.
EHPP not only improves the polling efficiency but also
keeps the length of the polling vector steady, regardless
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of the number of tags. To avoid redundant information
transmissions in HPP and EHPP, we finally propose a Tree-
based Polling Protocol (TPP) that constructs and broadcasts
a polling tree to further improve the polling performance.
With such a polling tree, TPP transmits only differential
bits between the current polling vector and the previous one,
lessening information redundant. Theoretical analysis shows
that the upper bound of TPP’s polling vector levels off at
only 3.44 bits, 28 times less than 96-bit IDs.

We conduct extensive simulations to evaluate the perfor-
mance gain of our protocols, in terms of the length of the
polling vector and time efficiency. Simulation results demon-
strate that our best protocol TPP shortens the polling vector
from 96 bits to only about 3 bits, which yields 31 times less
bits than CPP. Besides, compared with the state-of-the-art
ALOHA-based information collection protocol MIC [15],
TPP not only reduces the inventory time by 14.8% when
collecting 1-bit tag information (showing a tag’s presence),
but also requires less storage space at the tag side due to
less hash functions required by tags.

The rest of this paper is organized as follows. Section II
defines the problem. Section III presents the hash polling
protocol and its enhanced version. Section IV proposes
the tree-based polling protocol. Section V evaluates our
protocols. Section VI presents related work. Finally, Section
VII concludes this paper.

II. PROBLEM DEFINITION

A. System Model

An RFID system generally consists of a backend server,
multiple readers, and a large number of tags. Each tag with
a unique tag ID can communicate with a reader direct-
ly, but the tags cannot communicate amongst themselves.
All readers are connected to the backend server that can
provide high computing power and large data storage. We
can logically treat these readers as one if they are well
synchronized and scheduled. To simplify the description,
our protocols are presented for a single reader, but they can
be easily modified for multiple readers when the collision-
free transmission schedule among the readers is established.
We assume that the reader has the knowledge of all tag
IDs in advance. It is a fundamental assumption for many
system-level applications, such as missing-tag identification
[11], [12], [20], information collection [15], [19], [16]. In
this paper, the communication between the reader and tags
follows the Reader Talks First mode according to the C1G2
standard [21]. Namely, every tag waits for the reader’s
command before responding.

B. Conventional Polling Protocol

The Conventional Polling Protocol (CPP) is an intuitive
polling solution that serves as our baseline protocol for
comparisons. In CPP, the reader first broadcasts a tag ID
and then waits for its reply. All tags in the interrogation
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Figure 1. Execution time with respect to the length of the polling vector.

zone keep listening and only the tag whose ID exactly
matches the broadcast one replies to the reader. In this way,
only one tag is interrogated at a time, effectively avoiding
tag-to-tag collisions in the open wireless channel. CPP,
however, cannot meet real-time RFID-enabled applications
since transmitting 96-bit tag IDs is time-consuming. Fig. 1
depicts the execution time with respect to the length of the
polling vector when collecting 1-bit information from a tag
(the parameter setting follows the C1G2 standard [21], see
Section V-A). Clearly, the execution time is proportional to
the length of the polling vector. Our objective in this paper is
to shorten the polling vector and thereby reduce the polling
time.

In some practical cases, tags may share a common prefix
of their IDs. For example, tags affixed to the same class of
items have the identical category ID. The reader herein can
achieve better polling performance in a more sophisticated
way: 1) broadcast the category ID to mask a tag subset; 2)
truncate and transmit the left, differential bits to poll each
tag in this subset. Such enhanced CPP improves the polling
performance but relies on the specific distribution of tag IDs.
Additionally, even when all tags share the same prefix, e.g.,
32-bit category ID, it still needs above 64-bit polling vectors
to poll each tag, far away from efficient polling. In this paper,
we consider a more general case without any assumption on
the distribution of tag IDs.

C. Problem Definition

Consider a large RFID system with a tag set T = {t1, t2,
t3, ..., tn} representing all n RFID tags in the interrogation
zone. The fast polling problem studied in this paper is to
collect m-bit information from each tag ti in a request-
response way as quickly as possible, where m≥1 and
1≤i≤n. CPP provides an intuitive polling scheme but suffers
from dreary long-ID transmission. In this paper, we therefore
target at time-efficient polling protocols that not only take
full use of every time slot but also minimize the length of
the polling vector.

III. HASH POLLING PROTOCOL

In this section, we first propose the Hash Polling Proto-
col (HPP) that avoids transmitting long tag IDs. We then



enhance HPP (EHPP) to ensure stable polling performance
regardless of the number of tags.

A. HPP Overview

The key idea behind HPP is to exclusively poll tags
by assigning each of them a new, short hashed index that
replaces long tag IDs. To take full advantage of every time
slot, HPP uses only the index picked by a single tag to poll
such a tag. HPP generally consists of multiple inventory
rounds, in each of which about 36.8%∼60.7% of tags are
read. Other unread tags will participate and be interrogated
in following query rounds. Details are given below.

B. HPP Description

Consider an arbitrary inventory round. Assume that there
are n′ unread tags before this round. Clearly, n′ = n in
the first round. The reader first initiates this query round by
broadcasting a specific request with the parameters ⟨h,r⟩,
where h is the index length satisfying 2h−1 < n′≤2h and
r is a random seed. Upon receiving the request, each tag
picks an index H(r, id) mod 2h, where id is the tag ID
and H(·) is a hash function. If the index is less than h bits,
pad zeros in front of it. We refer to the indices picked by no
tag, exactly one tag, and more than one tag as empty index,
singleton index, and collision index, respectively.

Since the reader has access to all tag IDs, it can pre-
compute which index each tag picks. The reader then sifts
out all singleton indices in this round and broadcasts them
in sequence. All tags keep listening and only the tag that
picks the broadcast index replies to the reader. Once a
tag is interrogated, it will go to sleep in the following
protocol execution. The current round terminates after the
reader transmits all singleton indices. All left tags picking
the collision indices keep active and will participate in the
next round query. The inventory procedure repeats round by
round until all tags are interrogated.

Note that only singleton indices can be used to poll tags.
That is because each of them is picked by exactly one
tag, which ensures an exclusive response each time, instead
of the useless no responses or collision responses due to
transmitting empty indices or collision indices.

Fig. 2 illustrates the polling process of HPP. The reader
initiates a new round with parameter h = 2 and the tags
A, B, C, and D randomly pick an index. Clearly, ‘10’ is
an empty index, ‘01’ is a collision index, ‘00’ and ‘11’ are
singleton indices. The reader first broadcasts ‘00’; C picking
this index replies to the reader. The reader then transmits the
other singleton index ‘11’; B responds to the reader. Because
there are no singleton indices any more, the current round
terminates. The tags B and C now keep silent, whereas A
and D stay alert for participating in the following inventory
rounds.

Be aware of the difference between HPP and ALOHA-
based approaches. In the ALOHA-based protocols, each tag
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Figure 2. The polling process of HPP. The index length h = 2. Four tags
A, B, C, and D randomly pick an index that is in [0, 3]. Only the singleton
indices, i.e., ‘00’ and ‘11’, can be used to poll C and B, respectively.

individually chooses a slot and the reader has to in turn
traverse every slot (from the first one to the last); the use-
less empty slots and collision slots thus bring unnecessary
communication overhead. HPP, instead, directly broadcasts
singleton indices and skips over empty indices and collision
indices to poll tags. Therefore, the number of polling is
exactly equal to the number of singleton indices in a round.
From a global view of HPP, the total number of polling is
the same with the number of tags, completely avoiding slot
waste.

C. HPP’s Polling Vector

To clarify the polling overhead, we analyze the expected
length of the polling vector in HPP. Take the ith, i≥1,
round into account. Suppose there are ni unread tags be-
fore this round and the index length is hi that satisfies
2hi−1 < ni≤2hi . The probability that an index is a singleton
index is

pi =

(
ni

1

)
(
1

fi
)(1− 1

fi
)ni−1≈ni

fi
×e

−ni−1

fi , (1)

where fi = 2hi . Since a singleton index corresponds to a
single tag to be interrogated, 36.8%∼60.7% of unread tags
will participate in replying according to (1). Let nsi be the
number of singleton indices in the ith round, we have

nsi = fi×pi = ni×e
−ni−1

fi . (2)

After the ith query round, the number of remaining unread
tags before the (i+ 1)th round is

ni+1 = ni − nsi = ni×(1− e−
ni−1

f ), (3)

where i≥1 and n1 = n (n is the total number of tags). We
then have the average length w of the polling vector:

w =

∑k
i=1hi×nsi

n
=

∑k
i=1hi×ni×e

−ni−1

fi

n
, (4)

where k≥1 satisfying nk ̸=0 and nk+1 = 0. Once given n,
we can derive the w according to (4). Here, we give a rough
upper bound w+ of w:

w+ = ⌈ log2 n⌉. (5)

Consider the ith inventory round. The length of the polling
vector is actually equal to the index length hi, which satisfies
2hi−1 < ni≤2hi . Since ni≤n1 = n, we have hi≤⌈ log2 n⌉,
i≥1. Fig. 3 shows the average length w of the polling
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Figure 3. The average length w of the polling vector with respect to the
number n of tags.

vector with respect to the number n of tags according to
(4). We observe that all polling vectors are under 16 bits,
which are much less than 96-bit IDs in CPP. However, w
almost monotonously increases with n. For example, when
n = 1000, w approximates 10, whereas w is around 16 when
n = 105. This gives us huge room for further improvement,
motivating us to design a more scalable protocol that is
insensitive to the number of tags.

D. Enhanced HPP

To shorten the polling vector under large tag population,
EHPP divides the entire tag set into many small subsets
and interrogates each of them respectively using HPP. The
period for querying a tag subset is defined as a circle. EHPP
is thus likely to consist of multiple circles for polling the
entire tag set. With optimal parameter settings, EHPP can
not only improve HPP’s polling efficiency but also keep the
polling vector steady regardless of the number of tags.

One key challenge of EHPP is how to separate a tag
subset with the expected number of tags from all tags as
required. There are generally two ways: 1) Bit mask: In
the C1G2 standard, a Select command limits the number of
participated tags using a bit mask, and only the tags whose
IDs (or some bits of the ID) exactly match this mask will
be active in the current circle [22]. Although a bit mask
gives a fine-grained tag filtering, it is unavailable to sift
out the specified number of tags under an arbitrary tag ID
distribution. We thus resort to the other way 2) Probability: If
a reader covering n tags broadcasts a query command and
each tag responds with probability p, we can expect p×n
tag responses [23]. However, the reader is unable to know
which tags are chosen since each tag randomly participates
in the interrogation. In light of this, we propose a variant of
this probability strategy: Before the polling process, a reader
first broadcasts a query command to initiate a circle with
parameters ⟨f ,F ,r⟩ and each tag individually chooses an
index ranging from 0 to F by calculating H(r, ID) mod F .
Only the tags picking the index no more than f will join the
query in the current circle. To this point, f

F ×n tags will be
active. By dynamically adjusting f and F , we can get the
expected number of active tags as required.
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Figure 4. The optimal subset size n′ with respect to the length lc of the
circle command.

The other challenge of EHPP is how to set the number
of tags in each subset to minimize overall polling overhead.
Considering a large tag set, we evenly split it into several
small subsets. Since each tag subset has the same number of
tags, the polling efficiency in each circle is identical. Assume
the number (which is also called the subset size) of tags
in each subset is n′. The problem is thereby reduced to
minimize the length w′ of the polling vector in a circle by
optimizing n′.

Theorem 1. Given the length lc of the circle command, the
optimal subset size n′ must be the interval [lc ln 2, elc ln 2],
where e is the natural constant.

Proof: Given lc and n′, we have the length w′ of the
polling vector in this circle:

w′ =
h(n′) + lc

n′ =
h(n′)

n′ +
lc
n′ ,

where h(n′) is the number of bits used to poll n′ tags and
h(n′)
n′ is the average length of the polling vector in HPP. As

aforementioned, HPP consists of several execution rounds.
If we just consider the first round, there are more than n′

e
tags are polled by (log2 n

′)-bit polling vectors. For another,
all polling vectors in this circle are less than log2 n

′ bits.
Therefore, we have:

1

e
log2 n

′ ≤ h(n′)

n′ ≤ log2n
′.

Leth(n
′)

n′ = µ× log2n
′, where 1

e ≤ µ ≤ 1. We have:

w′ = µ× log2n
′ +

lc
n′ .

By deriving dw′

dn′ = 0, we get the minimal w′ when n′ =
lc ln 2

µ , 1
e ≤ µ ≤ 1. Therefore, we have the interval in which

the optimal n′ lies.
According Theorem 1, we can numerically search the

optimal n′ for an arbitrary given lc to maximize the polling
efficiency. Fig. 4 depicts the optimal subset size n′ with
respect to the length lc of the circle command. Clearly, the
bigger lc is, the bigger n′ is. That is because the longer
circle command causes more communication overhead in
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Figure 5. The average length w of the polling vector with respect to the
number n of tags in EHPP.

each circle, promoting EHPP to reducing the number of
circles by increasing the subset size. Besides, the optimal
n′ is sandwiched between the upper bound and the lower
bound, which well validates Theorem 1. Note that, as HPP
will be invoked many times during the execution of EHPP,
the communication overhead to initiate each round of HPP
may not be ignored. We count this overhead in the simulation
of EHPP (see Section V).

Fig. 5 illustrates the polling efficiency with respect to
the number of tags. In this figure, we consider three kinds
of circle commands with the lengths 100, 200, and 400,
respectively. Given the length lc, we look up the corre-
sponding subset size according to Fig. 4. We observe that
EHPP dramatically reduces the length of the polling vector
compared with HPP. For instance, to query a set of 105

tags, EHPP needs only about 7.94 bits to poll each tag when
lc = 200, whereas HPP consumes about 15 bits. Addition-
ally, when lc is fixed, the average length w of the polling
vector almost remains stable, regardless of the number of
tags. Although with these advantages, we note that EHPP’s
polling vector increases with lc due to more communication
overhead caused by broadcasting longer circle commands.
To break through this limitation, we are supposed to explore
a more stable and efficient polling protocol.

IV. TREE-BASED POLLING PROTOCOL

In this section, we propose a Tree-based Polling Protocol
(TPP) that further improves the polling efficiency by avoid-
ing redundant transmissions of polling vectors in HPP and
EHPP.

A. Motivation of TPP

In both HPP and EHPP, the common prefixes of singleton
indices are repeatedly broadcast. For example, consider
two singleton indices ‘000’ and ‘001’ picked by tags A
and B. The reader has to broadcast ‘000’ and ‘001’ to
poll A and B, respectively. The common prefix ‘00’ is
thus broadcast twice, causing unnecessary communication
overhead. Hence, once upon removing this redundant, we
can further shorten the length of the polling vector and
improve the polling efficiency.

B. TPP Overview

Similar to HPP, TPP also consists of multiple query
rounds. The reader in TPP, however, does not directly
broadcast the singleton indices in each round. Instead, TPP
first constructs a binary polling tree based on all singleton
indices and then polls the corresponding tags using such a
tree. Thanks to the polling tree, all common prefixes are
transmitted only once, saving the communication overhead.
Details are given below.

C. TPP Description

Consider an arbitrary inventory round. TPP consists of
three phases. 1) Picking index: the reader initializes this
round and each tag randomly picks an index. 2) Building
polling tree: the reader constructs a binary polling tree based
on all singleton indices instead of directly broadcasting
them. 3) Tree-based polling: the reader interrogates corre-
sponding tags by broadcasting the binary polling tree.

1) Picking Index: In TPP, the reader initiates a new query
round by sending an interrogation request with parameters
⟨h,r⟩, where h is the index length determined by the number
of unread tags, r is a random seed. Upon receipt of the query,
each tag individually picks an index H(r, id) mod 2h. If
the index is less than h bits, pad zeros in front of it.
Meanwhile, the reader pre-computes all picked indices and
sifts out only singleton indices. In this phase, be aware of
the difference of h between TPP and HPP. We will analyze
the optimal setting of h in Section IV-D.

2) Building Polling Tree: In this phase, the reader in
TPP builds a binary tree based on singleton indices rather
than directly broadcasting them. This binary tree will be
leveraged to poll corresponding tags in the next phase; we
refer to it as binary polling tree (polling tree for short). To
build the polling tree, we create a virtual node as the root,
traverse all singleton indices one after another, and insert
new node into the tree based on these singleton indices.
Consider an arbitrary h-bit singleton index S. We scan each
bit of S in sequence and simultaneously use a pointer to
record the current position in the tree. Initially, the pointer
stays at the root node and S is scanned from the first bit. If
the current bit is 0, we create a left child of the node pointed
by the pointer. Otherwise, a right child will be created. After
that, we move the pointer to the new created node and check
S’s next bit. The above steps repeat. After all h bits are
inserted into the tree, we reset the pointer to the root and
insert the next singleton index. Note that if there has been a
left/right child, we do nothing but update the position of the
pointer. Fig. 6 illustrates the construction of a polling tree
when inserting five singleton indices (h=3) picked by tags
A, B, C, D, and E. As we can see, the root of the tree is a
virtual node; the left child denotes the bit ‘0’ and the right
child denotes the bit ‘1’.



0 1

0

0 0

1 1

11

0

1 1 1 1

0 0 0

0 1 0

0 1 1

1 0 1

A

B

C

D

E

a g

b d h j

c e f i k

Figure 6. The construction of the binary polling tree. The root is a virtual
node. The left child denotes the bit 0 and the right child denotes the bit 1.

3) Tree-based Polling: In this phase, we show how to
poll the corresponding tags with only the polling tree. A leaf
node in the polling tree corresponds to a singleton index, as
the consecutive bits from the root to the leaf node make up
a singleton index. For example, a→b→c indicates ‘000’ in
Fig. 6. The leaf nodes with common ancestor nodes have the
common prefix, e.g., e and f have the common prefix ‘01’
since they share common ancestor nodes a and d. This phase
aims to broadcast all singleton indices stored in the polling
tree without repeatedly transmitting common prefixes.

Given a polling tree with n′ leaf nodes. We first execute
the pre-order traversal (one kind of depth-first traversal) of
this tree and record the trace of the traversal, denoted by
Seq = {b0, a1, a2, ..., ah−1, b1, ah, ..., b2, ..., bn′}, where b0
is the root node, bj (1≤j≤n′) is the leaf node, and ai (i≥1)
is the non-leaf node except the root. Let Seq[j] be the nodes
between bj−1 and bj , including bj but excluding bj−1. For
example, Seq[1] is {a1, a2, ..., ah−1, b1}. The reader then
broadcasts Seq[j] in turn and waits for a tag’s reply. Every
tag hears the RF channel and holds an h-bit array at the same
time, denoted by A. Assume that the length of Seq[j] is k,
1≤k≤h. Upon receipt of Seq[j], each tag updates the last k
bits of its A with Seq[j]. Clearly, both the first (h−k) bits in
A and Seq[j] constitute the jth singleton index; the unique
tag picking this slot is supposed to respond to the reader.
The above process repeats until all n′ singleton indices are
broadcast.

Fig. 7 shows an example of the polling process based
on the polling tree in Fig. 6. The trace of the pre-order
traversal of this polling tree is Seq = {abcdefghijk} (the
bold nodes are leaf nodes). There are five singleton indices
selected by five tags A, B, C, D, and E. The index length
h is equal to 3. (a) The reader first broadcasts the singleton
index ‘000’ represented by Seq[1] = {abc}. Upon receiving
this bit array, the tags A, B, C, D, and E update their As
with ‘000’. Because A’s index is equal to its A, A replies
to the reader. (b) Seq[2] is {de}, the reader thus broadcasts
‘10’. The remaining unread tags B, C, D, and E update the
last two bits of As with ‘10’. B’s index matches the current
A and it replies to the reader. (c) Seq[3] is {f}; the reader
broadcasts ‘1’. C, D, and E update the last bit of As with
‘1’. C is polled. (d) Seq[4] = {ghi}; the reader broadcasts

‘101’. D and E update their As with it. D is polled. (e)
Seq[5] is {jk}; the reader broadcasts ‘11’. E updates the
last two bits of its A and E is polled. Instead of sending
h× 5 = 15 bits, the reader in this round transmits only 11
bits in total, greatly reducing communication overhead.

Although the reader broadcasts the polling tree only
once, it is equivalent to broadcasting all singleton indices
to poll corresponding tags in a single round. The main
reason behind this is that every tag holds a bit array A
and updates only different bits between the current singleton
index and the previous one each time. The common prefix
information is thus reserved. Whit the proliferation of tags,
more common prefixes will be generated, producing more
performance gain.

D. TPP’s Polling Vector
In this subsection, we analyze the average length of the

polling vector in TPP. Consider the polling tree in the ith
query round. Assume that the height of the tree is hi (the
length of the single index) and the number of leaf nodes
(equal to the number of singleton indices) in the tree is
mi, where 1≤mi≤2hi . For example, in Fig. 6, the height
of the tree is 3 and there are 5 leaf nodes. To compute
the total number of bits broadcast by the reader in this
round is equivalent to finding out the number Li of nodes
in the polling tree (except the virtual root node), since each
node corresponds to 1-bit information sent by the reader. By
adding up the communication overhead in each round, we
get the average length w of the polling vector in TPP:

w =
1

n

∑M

i=1
Li, (6)

where M is the number of rounds needed to interrogate
all tags. Clearly, the bigger the value of

∑M
i=1Li is, the

longer the polling vector is required for picking each tag.
Our objective is thus to minimize w to achieve high polling
efficiency. However, directly deriving the minimal w faces
two challenges. First, even given mi and hi in the ith query
round, Li cannot be determined as it varies with the tree
structure that depends on uncertain distribution of singleton
indices. Second, the number of unread tags in each inventory
round relies on the previous round, i.e., ni+1 = ni − mi

(1≤i≤k), which makes it challenging to get an algebraic
expression in closed form.

Therefore, we derive an upper bound of w instead.
Consider an arbitrary polling round, such as the ith round,
1≤i≤k. Let wi be the length of the polling vector in this
round. Clearly, the maximum of wi is an upper bound of w.
Given mi, wi is proportional to Li, as wi =

Li

mi
. Let L+

i be
the maximal Li when mi and hi are fixed. We can get L+

i

when the tree tries to bifurcate as early as possible:

L+
i =

k∑
i=1

2i + (hi − k)×mi

= 2k+1 − 2 + (hi − k)×mi, (7)
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Figure 7. Tree-based polling. (a) The reader broadcasts ‘000’; A is polled. (b) The reader broadcasts ‘10’; B is polled. (c) The reader broadcasts ‘1’; C
is polled. (d) The reader broadcasts ‘101’; D is polled. (e) The reader broadcasts ‘11’; E is polled.

where k satisfies 2k < mi≤2k+1. Hence, we get the
maximum w+

i of wi:

w+
i =

L+
i

mi
=

2k+1 − 2

mi
+ (hi − k), (8)

where k satisfies 2k < mi≤2k+1. Our goal is reduced to
minimize w+

i by optimizing hi. Assume that the probability
that an index (singleton index) is picked by only one tag
is µ, 0≤µ≤1. We have mi = µ×2hi . Replacing mi in (8)
with this expression, we have

w+
i =

2k+1 − 2

µ×2hi
+ (hi − k), (9)

where k satisfies 2k < µ×2hi≤2k+1.

Theorem 2. Given the index length hi, the maximal length
w+

i of the polling vector increases as µ decreases.

Proof: Consider two probabilities µ1 and µ2, µ1 < µ2.
We have

w+
i (µ2)−w+

i (µ1) =
(2k2+1 − 2

µ2×2hi
− 2k1+1 − 2

µ1×2hi

)
+(k1−k2),

(10)
where k1≤k2 and{

2k1 < µ1×2hi≤2k1+1

2k2 < µ2×2hi≤2k2+1.

According to (10), it is easy to prove that w+
i (µ1) >

w+
i (µ2). Hence,w+

i decreases as µ increases.
According to Theorem 2, we can get the minimal w+

i

by maximizing the probability µ. Given the number ni of
unread tags, we have the number mi of singleton indices in
this round according to (2):

mi = ni×e
−ni−1

2hi ≈ni×e
− ni

2hi . (11)

Hence, the probability µ of a singleton index is

µ =
mi

2hi
=

ni

2hi
×e

− ni

2hi . (12)

Let λ = ni

2hi
; we have µ = λe−λ. Deriving the first-order

derivative of λe−λ and letting it be 0, we obtain the maximal
µ when λ = ni/2

hi = 1. Fig. 8 depicts the probability
µ with respect to ni/2

hi . As we can see, µ peaks at the

maximum 1/e when ni = 2hi . In most cases, however, ni

cannot be exactly equal to 2hi . We thus need to find the
optimal integer hi that maximizes µ.

Since the probability µ monotonically increases when
λ≤1, we can gradually adjust hi to make λ = λ1 ∈ (0.5, 1].
The corresponding µ is denoted as µ(λ1) that is greater
than any µ(λ) where λ≤0.5. We then decrease hi by one
and obtain 2λ1 together with µ(2λ1). Obviously, µ(2λ1)
is greater than any µ(λ) where λ > 2λ1. Therefore,
max(µ)=max{µ(λ1), µ(2λ1)}. The max(µ) attains the min-
imum when µ(λ1) = µ(2λ1). That is

λ1×eλ1 = 2λ1×e2λ1 . (13)

According to (13), we have λ1 = ln 2. Therefore, given ni,
µ attains the maximum when hi satisfies:

ln 2≤ ni

2hi
< 2 ln 2. (14)

According to (14), we have the optimal index length hi

meeting:

log2(
ni

2 ln 2
) < hi≤ log2(

ni

ln 2
). (15)

Hence, given the number ni of unread tags, we can
derive the upper bound w+

i according to (8), (11), and (15).
Although wi is determined by ni, a rough upper bound of
wi can be derived by minimizing max(µ), regardless of ni.
According to (13), min(max(µ)) = ln 2×e− ln 2 ≈ 0.3466,
when λ = ni

2hi
= ln 2. Substituting 0.3466 for µ in (9), we

have k = hi − 2 and the upper bound of wi:

wi≤w+
i ≤

2hi−1 − 2

0.3466× 2hi
+2 <

1

0.3466× 2
+2≈3.44. (16)

This is an upper bound of the length of the polling vector
in an arbitrary inventory round, regardless of the number
ni of unread tags. It therefore can be treated as the upper
bound of the polling vector in TPP. Fig. 9 shows the average
length w of the polling vector with respect to the number
n of tags in TPP according to (6), (8), (11), and (15). The
value of n varies from 1000 to 100,000. We observe that
w remains stable at about 3.38 regardless of the number of
tags, shortening the polling vector by a factor of 28 over
CPP.
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V. SIMULATION

In this section, we evaluate the polling performance of
HPP, EHPP, and TPP. We first compare the length of the
polling vector of our protocols with that of CPP. We then
apply these protocols to collect tag information and compare
their execution time with the state-of-the-art information
collection protocol.

A. Simulation Setting

Our simulation settings follow the specification of the
C1G2 standard [21]. Any two consecutive communications,
from the reader to tags or vice versa, are separated by differ-
ent time intervals. After the reader transmits any commands,
all tags need to wait the transmit-to-receive turn-around time
T1 before replying to the reader. By contrast, after receiving
the reply from tags, the reader has to wait the receive-to-
transmit turn-around time T2 before talking to tags. In the
specification, T1 is max(RTcal, 20Tpri) and T2 ranges from
3Tpri to 20Tpri, where RTcal is the reader-to-tag calibration
symbol that equals the length of a data-0 symbol plus the
length of a data-1 symbol, and Tpri is the backscatter-link
pulse-repetition interval. In our simulation, we set T1 = 100
µs and T2 = 50 µs, which comply with the parameter
configuration in the C1G2 standard.

The tag-to-reader transmission rate and the reader-to-
tag data rate are not necessarily symmetric relying on the
physical implementation and the practical environment. The
transmission rate from tags to the reader depends on the data
coding, 40 kbps to 640 kbps for FM0 and 5 kbps to 320 kbps
for Miller-modulated subcarrier. We extract the intersection
set 40 kbps to 320 kbps and adopt the lower bound 40 kbps
as the data rate. In other words, it takes a tag 25 µs to
transmit one bit. The data rate from the reader to tags is
from 26.7 kbps to 128 kbps. Similarly, we set the data rate to
the lower bound 26.7 kbps, which takes the reader 37.45 µs
to transmit one bit. Note that other parameter settings may
change the absolute metric, but the simulation conclusions
can be drawn in a similar way.

Assume that w is the length of the polling vector for
sifting out a tag. The reader needs (37.45×(4 +w) + T1 +
25×ℓ+ T2) µs to collect ℓ-bit information from a tag with
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Figure 9. The average length w of the polling vector with respect to the
number n of tags according to (6).

our protocols, where 37.45×(4+w) is the time for the reader
to transmit a 4-bit QueryRep command together with w-bit
polling vector, T1 is the waiting time before a tag replies,
25×ℓ is the period that a tag transmits ℓ-bit information, and
T2 is the waiting time before the next polling. All results
are the average outcome of 100 simulation runs in Java.

B. Polling Vector

In Fig. 10, we compare the polling vector of HPP, EHPP,
and TPP under various numbers of tags. For EHPP, the
length of the circle command is set to 128 bits and the
communication overhead to initiate each round of HPP is
set to 32 bits. As shown in the figure, the polling vector of
HPP almost sees a logarithmic growth over n. For instance,
w is closed to 9.5 when n = 1000, whereas w is about 16
when n = 105. The main reason for this is that the bigger
n is, the longer the index is, leading to a longer polling
vector. By contrast, EHPP remains stable at about 9.0 bits,
without increasing with n. It not only shortens the polling
vector but also keeps them steady compared with HPP. TPP
further improves the polling efficiency, which levels off at
only about 3.06 regardless of the number of tags. That is
because TPP always can balance the ratio of the number of
leaf nodes to the number of all nodes in the polling tree
by dynamically adjusting the index length h. The bigger h
is, the more common prefixes tags share, ensuring that w
in each round is stable. Compared with the 96-bit polling
vector in CPP, HPP takes about one fifth of the polling
vector when n≤105, EHPP and TPP respectively shorten
the polling vector by a factor of 10 and 31, regardless of
the number of tags.

C. Execution Time Comparison

In this subsection, we apply HPP, EHPP, and TPP to
collect tag information from all tags and compare their
execution time with the state-of-the-art information col-
lection protocol MIC [15]. In each simulation run, we
collect three types of information: 1 bit, 16 bits, and 32
bits. Let ℓ be the length of tag information and n be the
number of tags. The lower bound of execution time for any
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Figure 10. The average length w of the polling vector with respect to the
number n of tags in HPP, EHPP, and TPP.

information collection protocol under the C1G2 standard is
(37.45×4 + T1 + 25×ℓ+ T2)×n = (299.8 + 25×ℓ)×n µs.

Table I compares the execution time of above five proto-
cols when collecting 1-bit tag information which can be used
to detect or identify missing tags against theft. The execution
time of the protocols almost increases linearly with n except
for HPP. That is because HPP’s polling vector increases with
n, resulting in more polling overhead per tag for bigger
n. We examine an arbitrary column in the table, such as
the third column when n=10,000. CPP takes the longest
time 37.70s that is about 10.64 times of the lower bound.
HPP decreases the execution time to 8.12s as it avoids
broadcasting 96-bit IDs. On top of HPP, EHPP reduces
the execution time to 6.63s with multiple circles. Our best
protocol TPP further improves the polling performance and
its execution time drops to 4.39s which is only 1.35 times
over the lower bound and decreases by 14.8% compared
with 5.15s of MIC. Similar conclusions can be drawn in
other columns: TPP performs the best, MIC follows, then
EHPP and HPP, and finally CPP.

Table II and Table III show the execution time when tag
information is 16 bits long and 32 bits long, respectively. The
conclusion in Table I almost can be drawn. For example, to
collect 16-bit information from 10,000 tags, the execution
time of TPP is 85.7% of MIC, 78.3% of EHPP, 68.6% of
HPP, and 19.6% of CPP. In Table III, when n = 10, 000
and the information is 32 bits long, TPP needs 1.10 times
of the lower bound, MIC requires 1.28 times of the lower
bound, EHPP consumes 1.31 times of the lower bound, HPP
is equal to 1.45 times of the lower bound, and CPP takes
4.14 times of the lower bound. Note that EHPP takes the
same overhead as HPP does when the number of tags is
100, because EHPP in this small tag scale just executes HPP
as-is. HPP works better than MIC when collecting 32-bit
information from 100 tags, since the length of the polling
vector is short when n is small and the slot waste can also
be totally avoided in HPP.

VI. RELATED WORK

Most existing protocols in RFID systems are ALOHA-
based [12], [11], [15], [16], [24]. Tan et al. [11] design

Table I
EXECUTION TIME COMPARISON (IN SECONDS) TO COLLECT

1-BIT INFORMATION

n=102 103 104 105 106

CPP 0.377 3.770 37.70 377.02 3770.2
HPP 0.054 0.677 8.12 92.29 1051.5

EHPP 0.054 0.664 6.63 66.39 663.8
MIC, k=7 0.049 0.514 5.15 51.48 515.3

TPP 0.043 0.440 4.39 44.03 439.8
LowerBound 0.032 0.324 3.24 32.48 324.8

Table II
EXECUTION TIME COMPARISON (IN SECONDS) TO COLLECT

16-BIT INFORMATION

n=102 103 104 105 106

CPP 0.414 4.145 41.45 414.52 4145.2
HPP 0.092 1.053 11.87 129.79 1426.7

EHPP 0.092 1.039 10.39 103.92 1038.8
MIC, k=7 0.090 0.953 9.50 95.25 950.9

TPP 0.080 0.815 8.14 81.55 814.6
LowerBound 0.069 0.699 6.99 69.98 699.8

Table III
EXECUTION TIME COMPARISON (IN SECONDS) TO COLLECT

32-BIT INFORMATION

n=102 103 104 105 106

CPP 0.454 4.545 45.45 454.52 4545.2
HPP 0.132 1.451 15.89 169.79 1826.5

EHPP 0.132 1.440 14.39 143.89 1438.9
MIC, k=7 0.141 1.398 14.15 141.53 1415.4

TPP 0.121 1.213 12.14 121.52 1214.8
LowerBound 0.109 1.099 10.99 109.98 1099.8

the Trust Reader Protocol (TRP) and the Untrusted Reader
Protocol (UTRP) to detect the missing-tag event with the
probability α by checking the 0-1 status of tags’ reply
slots, without collecting tag IDs. Li et al. [12] propose a
series of efficient protocols that not only detect the missing-
tag event with certainty but also tell exactly which tags
are missing. Although they achieve high performance by
eliminating potential collisions in advance, the useless empty
slots cannot be avoided in their protocol design. To alleviate
this waste, Chen et al. [15] propose an efficient Multi-
hash Information Collection Protocol (MIC) by mapping
multiple hash functions. Compared with basic ALOHA-
based protocols, MIC decreases the wasted slots (empty
slots and collision slots) from 63.2% to 13.9% in a query
round when 7 hash functions are used, greatly improving
the performance of information collection. Increasing the
number of hash functions will further reduce the slot waste.
However, this is not free; the large number of hashes
increases the size of the indicator vector sent by the reader
and puts more storage burden on the tags. This dilemma is
essentially due to the choice of ALOHA-based approaches.

Polling, as a classic anti-collision protocol, provides an
intuitive request-response way to interrogate RFID tags.
Because the reader’s request and the tag’s reply are a



one-to-one mapping, polling can totally remove slot waste.
However, broadcasting 96-bit tag IDs for isolating each
tag causes high communication overhead. To improve the
query efficiency, Li et al. [12] and Qiao et al. [19] both
propose advanced polling-assisted protocols for missing tag
identification and tag information collection, respectively. By
polling a part of tags in collision slots, they can convert the
useless collision slots into useful singleton slots, thereby sav-
ing the communication overhead. However, these protocols
target at reducing the number of polling; the polling vector
during each polling still adopts tedious tag IDs. The most
related work to improve the polling efficiency is the Coded
Polling protocol (CP) that reduces the length of the polling
vector by half through validating cyclic redundancy code
[19]. Even so, CP is far from a time-efficient polling protocol
as the 48-bit polling vector is still too long for picking a tag.

VII. CONCLUSION

Polling, as a widely-used anti-collision protocol, plays
an important role in interrogating RFID tags. Conventional
polling, however, needs to separate each tag from others by
transmitting tedious tag IDs, which is time-consuming in
large RFID systems. In this paper, we make fundamental
improvements on the polling protocol design by shortening
the polling vector. Both theoretical analysis and simulation
results show that our best protocol can dramatically de-
crease the polling vector from 96 bits to only about 3 bits,
regardless of the number of tags. Besides, we apply our
protocols to collect tag information. The simulation results
demonstrate our best protocol is faster than the state-of-the-
art protocol under the specification of the C1G2 standard.
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