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Abstract—Traffic lights in urban area can significantly influ-
ence the efficiency and effectiveness of transportation. The real-
time scheduling information of traffic lights is fundamentally
important for many intelligent transportation applications, such
as shortest-time navigation and green driving advisory. However,
existing traffic light scheduling identification systems either entail
dedicated infrastructures or depend on specialized traffic traces,
which hinders the popularity and real world deployment. Dif-
ferently, we propose to identify real-time traffic light scheduling
by analyzing taxi traces that are widely accessible from taxi
companies. The key idea is to exploit the periodicity in traffic
patterns, which is directly affected by traffic lights. We also
develop advanced algorithms to identify red/green lights duration
and signal change time. We evaluate our solution using over one
billion taxi records from Shenzhen, China. The evaluation results
validate the effectiveness of our system.

Index Terms—data analysis; intelligent traffic; traffic light;
signal processing;

I. INTRODUCTION

Public traffic has become an essential problem for many
urban cities around the world. A huge amount of time and
money has been wasted by traffic congestions. According
to the US urban mobility report, a total financial cost of
$121 billion are wasted by bad traffic in 2012 and it is keep
increasing [1]. Meanwhile, vehicle emissions also constitute
the majority of the air pollution [2]. Therefore, providing better
traffic control is of great importance for both economic and
environmental concerns.

Currently, the primary approach to control the traffic flow
is through traffic lights, which allows vehicles pass the road
intersections alternatively. Therefore, the scheduling of traffic
light significantly influences the efficiency and effectiveness
of public traffic.

To improve the traffic light scheduling, adaptive traffic light
control systems [3] have been proposed. However, upgrading
current traffic lights requires huge amount of cost and effort.

We argue that rather than controlling the traffic lights, just
knowing the real-time scheduling of them can potentially
bring lots of benefits for both individuals and communities.
For individuals, current navigation systems can utilize the
information to bypass red light ahead. Optimal suggestions can
also be provided to drivers to pass the intersections smoothly
[4] [5]. For communities, the transportation researchers can
investigate the correlation between traffic light scheduling
and traffic flow, and then make optimization accordingly.
The promising autonomous driving technique like Google
driverless car can also be enhanced by knowing the real-time
traffic light scheduling [6].

The key technical hurdle of realizing those systems is
how to obtain the real-time traffic light scheduling infor-
mation. The real-time status of the traffic lights can not be
directly accessible in US and other countries [7]. Alternatively,
researchers have proposed to utilize vehicular networks to
communicate between vehicles and traffic lights to obtain such
information [8] [9] [10]. However, the heavy infrastructures
costs including network adapter installation and software up-
grade hinder the practicability of the approach. In addition,
vision based approaches utilize the car-mounted cameras or
smartphone cameras and image processing technique to obtain
current traffic light status [6] [11]. But this approach is
limited to line-of-sight range and may get interfered by the
environment like weather and light. Recently, crowdsourcing
based approaches have attracted much attentions due to the
low data collection cost. Sensory data such as acceleration
and GPS trajectories from car-borne sensors or in-vehicle
smartphones can effectively be utilized to estimate traffic light
scheduling. Unfortunately, existing approaches either rely on
high frequency sampling (e.g., 1HZ), which may raise user
privacy and network overhead concerns [5] [12] [13], or
depend on statically routed buses [14], which may be restricted
by the temporal and spatial coverage of the trajectories.
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In this work, we propose to identify the real-time traffic light
scheduling information by analyzing crowdsourced taxi GPS
traces. The advantages of using taxi traces include the widely
data availability without installing extra devices, and the broad
coverage of the taxi trajectories. However, the analysis of
taxi traces entails several challenges. First of all, the taxi
traces are usually updated at a low sampling rate (e.g., once
per 30 seconds). It is impossible to identify events such as
acceleration or deceleration for a specific vehicle. Hence,
existing approaches designed for high frequency sampling data
can not be directly employed. Next, due to the urban driving
scenarios, the GPS data inevitably incur localization errors
for up to 100 meters [15], which prevents us from identifying
the sequence of vehicles in a waiting queue. In addition, the
movement of a taxi is also affected by other context. E.g.,
the stochastic on and off of passengers, ambient vehicles, etc.
These interferences also need to be carefully handled. Besides,
not all traffic lights have fixed scheduling, some of them are
adaptively adjusted according to busy/free hour. It is essential
to identify the traffic light scheduling changes. Finally, taxi
traces are not uniformly distributed for all city regions at all
time. The unbalanced data further increase the difficulty of
data analysis.

To tackle these challenges, we propose a data analytic
approach for real-time traffic light scheduling identification.
The key idea is to exploit the periodicity of traffic patterns
and reveal its correlation with traffic lights. To the best of our
knowledge, this is the first traffic light scheduling identification
solution for low-frequency, irregular, and unbalanced traffic
traces. We are also the first to investigate the scheduling
change of traffic lights. Our key contributions can be sum-
marized as follows:

• We perform data analysis to the taxi traces, and figure
out several fundamental statistical characteristics and pat-
terns. These characteristics not only inspire our solutions,
but also can be potentially used by other similar traffic
analysis applications.

• We design novel algorithms to identify the scheduling of a
single traffic light in real-time, including the identification
of cycle length and signal change.

• We also develop a system to identify the scheduling
change of a traffic light by continuously monitoring the
cycle length.

• We conduct extensive evaluation using real taxi traces
from Shenzhen, China. Evaluation results validate the
effectiveness of our solution.

The rest of the paper is organized as follows: In Sec-
tion II, we analyze the the taxi traces and describe some
exclusive characteristics. In Section III, we briefly introduce
the overview of the system. Following that, section IV de-
scribes data preprocessing. Section V VI and VII present the
main parts of the algorithm. I.e., cycle length, signal change,
and scheduling change identification. Section VIII describes
the evaluation and results. Related work are summarized in
Section IX. Finally, Section X concludes this paper.

Fig. 1. Comparison between aggregated plot of Shenzhen taxi updates
between 8 am and 11 am in December 5, 2014 and Openstreetmap data

TABLE I
DATA FORMAT OF TAXI TRACE

Index Description Format
1 Car plate number STRING
2 Longitude longitude ×1000000
3 Latitude latitude ×1000000
4 Report time YYYY-MM-DD HH:mm:ss
5 Onboard device ID NUMBER
6 Driving speed km/h
7 Car heading degree to north, clockwise
8 GPS condition 0: unavailable; 1: available
9 Overspeed warning 1: overspeed
10 SIM card number STRING
11 Passenger condition 0: vacant; 1: occupied
12 Taxi body color yellow, blue, etc

II. DESCRIPTION OF TAXI TRACE

The results of this research is highly dependent on the
crowdsourced taxi traces from Shenzhen, China. It is regulated
that every taxi has to install an onboard computer with GPS
and cellular network modules, which will upload the taxi’s
latest location information to the data center periodically [16].

There are 12 fields in the uploaded report and the detailed
data format is described in Table I. In this research, we mainly
use 5 of them (id, time, longitude, latitude, speed). GPS
condition, passenger condition, and car heading are also used,
but only for outliers filtering. Fig. 1 illustrates the aggregated
taxi traces for 3 hours in a day, and the comparison with real
road networks.
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Fig. 2. Statical analysis of taxi trace: (a) Number of records distribution
during a day. (b-d) Time, distance and speed differences between consecutive
records update

Judging from the taxi plate number, there are over 28,000
taxis in total. Everyday, they update approximately 80 million
records, which take about 10 GB of storage. To have a
better understanding of such a huge amount of data, statistical
analysis is conducted. The results are shown in Fig. 2. Fig. 2(a)
describes the number of records in each time of a day, divided
into 10 minutes time slot. We can see that the trace can cover
entire 24 hours, but the number of record is unbalanced, caused
by driver shifting, etc. On average, there are 52,000 records per
minute. Fig. 2(b) is the distribution of update frequency. Each
taxi updates at a fixed frequency. The interval may range from
5 seconds to over 100 seconds. Several typical frequencies
can be easily observed from the plot. E.g., 15s, 30s and 60s.
Other long or short intervals may be caused by packet loss or
network delay. The mean update interval is 20.41 second, and
the standard deviation is 20.54. Fig. 2(c) shows the traveled
distance among consecutive update. We can see that lots of
taxis remain at the same position between two consecutive
updates. This is mainly caused by the waiting of red lights.
Because the data update frequency is usually less than the red
light duration. This observation also motivates the design of
our red light identification algorithm. For moving taxis, most
of them can drive 50 to 500 meters during one update interval,
and the mean update distance is 100.69 meters. Fig. 2(d) is
the speed differences between consecutive update. A positive
value indicates that the taxi is accelerating while negative
means decelerating. The distribution fits normal distribution
well with µ = 0 and σ = 40, which again confirms
the observation that many taxis stay still during consecutive
updates.
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peak houroff-peak hour
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change

Red
Green

Fig. 3. Scheduling parameters of a traffic light

III. SYSTEM OVERVIEW

According to our on-site interview with Shenzhen traffic
police, there are three categories of traffic lights on roads,
they are:

1) Static scheduling: The length of red and green lights
are static and never change according to time of day
or current traffic flow. The majority of the traffic lights
belong to this category.

2) Pre-programmed dynamic scheduling: These traffic
lights have multiple scheduling policies. E.g., two dif-
ferent policies are used for off-peak hours and peak
hours. The scheduling varies only according to current
time of day. This kind of traffic light is usually used in
downtown.

3) Manual scheduling: For traffic lights at arterial roads
where congestions occur frequently during peak hour,
on-site traffic policemen will manually control the
scheduling according to the traffic flow. When these
traffic lights are not manually controlled, they work
similar as pre-programmed traffic lights.

In this research, our system is able to detect the traffic light
scheduling change. Therefore, our system can be applied to
identify the scheduling of the first two categories.

To identify the exact scheduling of a traffic light, three pa-
rameters need to be figured out. They are: cycle length, signal
change time, and scheduling change time. These parameters
are illustrated in Fig. 3. Cycle length is the time duration of
two consecutive red and green lights. Signal change time is
the time point when the traffic light changes from red to green,
and vice versa. Scheduling change time is only applicable
to those pre-programmed dynamic scheduling traffic lights. It
indicates the time when traffic light scheduling policy changes.
E.g., peak hour / off-peak hour switching. Yellow light is not
included in the figure, as it usually follows green light and
lasts for 3-5 seconds. In this research, we simply treat the
yellow lights as red ones according to traffic regulation.

Fig. 4 depicts the key components and flow chart of the
system. First, the collected taxi updates are partitioned into
small blocks according to the closest traffic lights. Then,
for each traffic light, the cycle length is firstly determined.
Next, in signal change identification, the length of red light
and green light, and the exact time when the light change
will be detected. Finally, the system keeps on monitoring the
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scheduling of the traffic light. When the scheduling changes,
the system is able to determine the changing time.

IV. DATA PREPROCESSING

The raw taxi trace can not be directly analyzed, as it con-
tains outliers and miscellaneous errors. Data preprocessing is
necessary to eliminate these errors and simplify the subsequent
data analysis. In this work, map matching and data partitioning
are applied to the raw data.

Map matching eliminates the GPS sampling errors and
place the discrete GPS points onto a road segment on digital

map. We utilize OpenStreetMap [17] for digital map service.
Accurate low sampling GPS data matching [18] is extremely
difficult. We only use current car position and driving direction
to match GPS points, as depicted in Fig. 5. Normally, GPS
points are matched to the nearest road segment, e.g., v1 is
mapped to m1. There is only one exception, the driving
direction is in conflict with the road orientation. In this case,
the nearest intersection is replaced by the next one with the
same orientation. E.g., v2 is matched to m2 rather than the
nearest m2′. Since a traffic light at a road intersection only
controls the taxis on the nearest segments, data can be simply
partitioned into different parts according to the nearest traffic
light. Then, the traffic light scheduling identification algorithm
for different traffic lights can be easily paralleled. In the
following sections, we will discuss how to identify the traffic
light scheduling of a single traffic light.

V. CYCLE LENGTH IDENTIFICATION

Cycle length identification determines the length of an
entire red and green cycle. The key idea of our cycle length
identification algorithm is to treat the nearby traffic speed as
a periodic signal, whose frequency is the same as the traffic
light. By analyzing the traffic speed in frequency domain, the
periodicity and cycle length can be reconstructed.

A. Frequency Domain Analysis

It is not easy to identify the frequency of taxi speed directly,
as the raw taxi traces are updated in low frequency and contain
potential errors. Fig. 6(a) shows the raw traces recorded at a
road intersection for a minute. From this figure, we can find out
that the traces are not continuous in time domain. Moreover, it
is also possible that multiple taxis report their locations at the
same time and same road segment. From the signal’s point of
view, these problem can be treated as data missing and data
redundancy, which must be corrected before transforming the
signal into frequency domain. Therefore, for the first step, we
use interpolation to construct the missing data points. If there
is more than one records in a second (e.g., the 10th, 20th
second), we utilize the mean value as the interpolating input
data point. Spline interpolation is adopted to obtain a smoother
signal. This process is illustrated in Fig. 6(b). Notice that the
interpolated traffic speed may have negative values, which are
infeasible in real world. However, the purpose of interpolation
is only to obtain the frequency of speed, and negative values
will not affect the frequency of signal. Therefore, we just leave
them along without special treatment.

Next, we use Discrete Fourier Transformation (DFT) to ob-
tain the frequency of the traffic speed. To obtain the frequency
domain information, a time period of data (e.g., the past 30
minutes) is required as the input. We denote the time domain
input as Xn, which contains N data items in total. According
to DFT equation, the frequency domain representation xn is
obtained by:

xn =
1

N

N−1∑
k=0

Xk · ei2πkn/N , n ∈ Z (1)
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Fig. 6. Traffic light periodicity identification

Then, we traverse the frequency data xn to find out the one
with the largest magnitude. And this frequency can be regarded
as the scheduling frequency of traffic light. Due to the nature
of DFT, there are two symmetric peaks in the results. The real
cycle length can be calculated using:

l =
N

argmaxn(|xn|)
, n ∈ [0, N/2] (2)

For example, Fig. 6(c) depicts the magnitude of traffic speed
in frequency domain. We can easily find out that index 37
has the largest magnitude, which means there are 37 traffic
scheduling cycles in that hour. Then, the cycle length can be
calculated by: 60 × 60/37 ≈ 97 seconds. While the ground
truth of the traffic light cycle length is 98 seconds.

B. Intersection based Enhancement

The data sparsity, which is caused by low frequency taxi
update, is a big challenge to aforementioned algorithm, espe-
cially for some minor roads where the taxi trajectories seldom
cover. In these cases, the interpolated taxi speed may contain
remarkable errors and may lead to unacceptable inaccuracy
in frequency domain analysis (as depicted in Fig. 7(a)). To
overcome this difficult, more meaningful input data points are
required.

Fortunately, based on the statistics and observations, the
cycle lengths of all traffic lights that are installed at the
same crossroad intersection are also the same (although the
length of red and green lights may vary). This fact motivates
us to use the taxi traces on the perpendicular road at the
same intersection to enhance our frequency domain analysis
algorithm.

Fig. 7(a) illustrates the interpolated speed of two per-
pendicular roads (North-South and East-West) at the same
intersection in 5 minutes. Due to the low update frequency,
there are only 3 data points in every minute approximately.
Using the data from either north-south or east-west direction
have difficulty to reconstruct the traffic light cycle length. It
is well-known that cars in N-S direction and E-W direction
move forward alternatively. Therefore, to use one direction to
enhance the other, we can simply “mirror” the sampled speed.
In this work, we obtain the mirrored speed using mean speed
as line of symmetry. Specifically, the enhanced speed at time
t, denoted by vet is calculated using:

vet =


vt vt 6= ∅
max(0, 2× v̄ − vpt ) vt = ∅ ∧ vpt 6= ∅
∅ Otherwise

(3)

where vt is the sampling at the direction that has more
data points, vpt is the perpendicular direction, v̄ is the mean
speed of the intersection, and vt 6= ∅ means time t has no data
sampling. Fig. 7(b) shows the result of mirrored N-S direction,
and Fig. 7(c) is the interpolation of enhanced data points from
both directions. By applying data enhancement, more data
points are added to the DFT input, and more accurate results
can be achieved.

VI. SIGNAL CHANGE IDENTIFICATION

Only cycle length can not describe the scheduling of a traffic
light. In this section, we will go further to find out the length of
red and green light, and also at what time the signal changes.
The key idea is to utilize the cycle length obtained from the
previous step to merge data from multiple cycles into one.
And then sufficient data can be accumulated to identify the
length of red light and signal change time using accumulated
statistical patterns.

A. Red light duration identification

Fig. 8(a) shows a typical trace when a taxi meets a red
light. Based on our on-site observation of 36 traffic lights, the
mean red light duration is 91.7s, which is 4.5 times longer
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Fig. 7. Intersection based enhancement

than the mean taxi update duration (20.14s). Therefore, it is
very likely that at least two updates are recorded during the
taxi’s waiting in front of a red light. This observation is further
validated by the statistical results in Fig. 2(c), which reveals
that 42.66% of the taxis are stopped during two consecutive
updates. Therefore, we can utilize this observation to design
the red light duration identification algorithm. The basic idea
is to find out the longest stop duration before a red light, and
treat the longest stop duration as the length of red light.

In practice, taxis may also stop when the traffic light is
green, in which case the longest stop duration may be longer
than the actual red light length. For example, taxis may stop
temporarily to pick up or drop off passengers. These errors
must be eliminated to ensure the accuracy of prediction. In
this research, we use two approaches to remove the errors: 1)
stop durations that are longer than the traffic light cycle are
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Fig. 8. Principle of signal change identification: (a) Typical trace when a taxi
meets red light. Use longest stop duration to determine red light (b) Green
and red light classification
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Fig. 9. Use the longest stop duration to determine the length of red light:
Cycle length is 106s. Valid data takes 3 times of the mean sample interval
(20.14× 3), and errors takes 2 times of it (20.14× 2). The ground truth is
63s

directly dropped. 2). If the passenger condition (index 11 in
Table I) in the taxi trace changes, the record is also discarded.
However, these approaches can not remove all errors. Fig. 9(a)
shows the stop duration distribution of a road intersection. The
ground truth of corresponding red light duration is 63s. We can
see that there are still errors in the data and it is not obvious
to find the actual red light duration.

To determine the length of red light accurately, we need to
distinguish the errors from valid data. Since the errors usually
take a small portion of the data (< 10%), the key design of
this step is also to utilize the mean sample interval. Valid data
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Fig. 10. Data superposition: merge taxi traces from 3 consecutive cycles into
one cycle

are always located on the left side of the figure because the
durations are shorter, while errors are on the right side. So
we divide the entire cycle length into multiple mean sample
intervals, and classify each sample interval into error or valid
data according to the number of records in it. In this way, we
can find the “border interval”, which either belongs to valid
data or errors. We then obtain the stop duration by calculating
the weighted average of border interval, using the number of
records as weight. Fig. 9(b) shows the CDF of stop duration,
and the result of the algorithm.

Since we have already estimated the cycle length and red
light duration, the green light duration can be easily calculated
by subtracting red light duration from the entire cycle length,
as in Fig. 8(b).

B. Data Superposition

The next step is to determine what time the traffic signal
changes. Again, data sparsity is one of the major challenges.
Even if we know the duration of the cycle, red light and green
light, it is still difficult to distinguish between red lights and
green ones (e.g., in Fig. 10(a)). To tackle this challenge, we
design a data superposition algorithm, which merges the data
from multiple cycles into one. In this way, sufficient samples
are obtained. The idea is to separate data into multiple parts,
and the length of each part equals to the cycle length. Then
we plot all data into one cycle length with new index as old
index modulo cycle length. Notice that, data superposition will
keep the relative index of data within a cycle. Hence the signal
change time within a cycle also remains unchanged.

Fig. 10 shows how data superposition algorithm works.
Fig. 10(a) depicts taxi traces for 3 consecutive cycles, whose
cycle length is 98s, red light length is 39s, and green is 59s.
Due to data sparsity, it is not easy to directly distinguish red
and green lights. Fig. 10(b) is the superposed data. In this
figure, with more data available, the red and green pattern can
be easier discovered. E.g., 50s – 80s are likely to be red, while
0s – 20s tend to be green.

C. Changing Point identification

The last step is to classify the data points within a cycle
into red or green light. In other words, we need to find out
what time the traffic signal changes. To achieve this goal, we
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Fig. 11. Use sliding window to determine signal change: cycle length 98s,
red light length 39s, and green length 59.

rely on the observation that when the traffic light turns red, all
cars begin to decelerate and stop gradually. More and more
cars are stopped in the waiting queue. Therefore, the mean
speed of all the cars in the waiting queue keeps decreasing.
At the time when the traffic light turns green, the mean speed
will reach the minimum.

To reproduce this procedure, we design a sliding window
based moving average to find the signal changing point. The
key design is to use red light duration as sliding window to
calculate the moving average of taxi speed using convolution
operation. Fig. 11(b) shows the results of moving average
speed. Then, we can easily find out the time spot with the
minimum taxi speed, which can be treated as signal change
time. The rectangle in Fig. 11(a) shows the identified red light
duration. The identified signal change time (from green to red)
is at 44s, while the ground truth is 41s.

VII. SCHEDULING CHANGE IDENTIFICATION

Till now, we have introduced the entire procedure of iden-
tifying the scheduling parameter of a single traffic light. As
we have discussed before, not all traffic lights are statically
scheduled. Therefore, the scheduling parameters can not be
identified once and used forever. Our system must have
the ability to discover at what time the traffic scheduling
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is changed, although the traffic light scheduling change is
generally a rare event.

In this work, our system keeps on monitoring the traffic light
by calculating the cycle length every 5 minutes. Fig. 12 shows
the continuous cycle length change in three days (May 21–24,
2014). Despite some obvious outliers, we can easily find the
pattern for different time of day. Moreover, this traffic light
uses similar scheduling policy at the same time of different
day. This observation provides us insight to utilize historical
traffic light scheduling to correct the identification of current
scheduling.

VIII. EVALUATION

The accuracy of the system is of great importance for real-
world applications. To evaluate the performance of the system
and demonstrate its potential application, we have conducted
two types of experiments: First, we record the scheduling of
some traffic lights by on-site observation, and compare our
identified value with the recorded ground truth. Second, we
develop a car navigation application with traffic simulator,
which can avoid possible red lights in route recommendation,
and compare the performance with traditional shortest-time
navigation.

A. On-site ground truth recording

Since neither the traffic management office nor the taxi
companies has the ground truth of the traffic light scheduling,
we have to monitor and record the ground truth by ourselves.
As on-site observation is a time consuming task, we have
to select some typical road intersections to monitor. In this
experiment, 36 traffic lights from 9 intersections are selected.
The 9 intersections have covered both the busiest intersection
and minor roads that taxis seldom visit. Table II lists the
intersections, their locations and the number of records per
hour. From this table, we can see that the car flow of the
busiest intersection (ID 1) is 25x larger than the idlest one (ID
5), which further validate that the data are highly unbalanced.
These intersections are monitored for over 8 days (May 20–25,
2014 and Dec 05–06, 2014) to obtain the scheduling ground

TABLE II
ON-SITE DATA COLLECTED TRAFFIC LIGHTS

ID Road Name Geo
Location

No. of
Records Per

Hour
1 ShenNan

WenJin
114.125,
22.547 5071

2 FuHua
FuTian

114.072,
22.538 1638

3 FuHua
ZhongXinSi

114.053,
22.538 1039

4 SunGang
BaoAn

114.104,
22.558 1863

5 BaGua
BaGuaSan

114.094,
22.564 198

6 ShenNan
BeiDou

114.129,
22.548 1687

7 HongLi
HuangGang

114.068,
22.551 2178

8 FuHua
ZhongXinWu

114.056,
22.537 708

9 FuZhong
JinTian

114.058,
22.547 266
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Fig. 13. Ground truth v.s. identified values at 15:22 Dec 05, 2014

truth. To simplify the analysis, we simply treat all yellow lights
as red ones in the following experiments.

Fig. 13 shows the comparison between recorded ground
truth and the system identified scheduling parameter for a
randomly selected time point (15:22 Dec 05, 2014). From
these figures, we can find out that the errors for both cycle
length and red light duration are less than 5 seconds on
average.

To obtain statistical results about the system performance,
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we randomly select multiple time spots and repeat the traffic
light identification algorithm for all traffic lights for over 1,000
times. Fig. 14 illustrates the cumulative distribution of the
identification errors for cycle length, red light length, and
signal change time. The CDF curve of cycle length reveals that
the cycle length identification algorithm is either very accurate,
or has notable errors. About 7% of the results may have errors
larger than 10 seconds, which is intolerable in real world ap-
plications. This is caused by the nature of the algorithm, since
it analyzes the periodicity in frequency domain, and the strong
magnitude is not necessarily continuous in frequency domain.
Fortunately, since the errors are significant, recognizing and
correcting the errors is not difficult. E.g., in Fig. 12, the errors
can be easily identified. For red light length and signal change
time errors, about 80% of the errors are within 6 seconds.
Considering that the yellow lights usually last for as long as
5 seconds, the results are very promising.

B. Simulation based application

To exhibit the benefits of the traffic light identification
technique, we have developed a demo application that can
utilize the identified real-time traffic light scheduling to im-
prove the navigation efficiency. The application is developed
using SUMO [19] simulator, which can simulate traffic lights
and traffic flows, and provides APIs to control them at runtime.
Fig. 15 shows the road topology we use in the application, and
the length of shortest road segment is 1km. Traffic lights are
placed on each intersection. To simplify the case, the traffic
lights cycle length are randomly picked from 120s to 300s.
The red and green lights have the same duration.

The objective of the application is to provide the shortest-
time navigation. Conventional shortest-time navigations only
consider the real-time traffic speed, if traffic light scheduling
is available, some red lights are also avoidable. Designing
a red light bypassing algorithm itself is not trivial [5]. Our
demo application adopts a simple strategy to bypass red lights.
We simply enumerate all the possible trajectories from source
to destination and calculate the total traveling time, which
includes both driving and waiting time, and choose the mini-

Fig. 15. Simulation road topology
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Fig. 16. Shortest-time navigation performance comparison

mum one. The strategy is updated whenever the car meets an
intersection. The strategy is relatively easy to be implemented,
but the complexity is not polynomial-time. Therefore, it can
not be applied to large-scaled real road network.

The performance comparison is illustrated in Fig. 16. From
this figure, we can see that when the total navigation distance
is small, the improvement is not obvious. Because red light
bypassing usually increases the driving distance, which also
increases the total navigation time. With the increase of nav-
igation distance, the advantage of using real-time traffic light
scheduling is obvious. Overall, about 15% driving time can
be saved. This result reveals that the technique has promising
applications in real world.

IX. RELATED WORK

Crowdsourcing based traffic light scheduling identification
is rapidly developing due to the low cost in data collection.
In this approach, participants contribute their privately owned
data from vehicles or smartphones to infer the traffic light
scheduling. The data includes acceleration, location, speed,
and etc. CityDrive [5] collects data from in-vehicle smart-
phone’s accelerometer, magnetometer and GPS to infer the
traffic light phase and cycle. Similar idea can be found in
iTrip [12]. The traffic light changing phase can be inferred
with vehicle acceleration or deceleration events. Differently,
Kerper’s approach [13] only leverages the speed profile of
vehicles to find the difference pattern of red and green lights.
However, all of these approaches assume high frequency data



collection rate like 2Hz or 1Hz. Differently, in our taxi traces,
every taxi only reports their condition once or twice per
minutes. Hence, the speed variation pattern is impossible to
be found in our case.

Towards the most related work, Fayazi et al. [14] analyzes
bus traces for traffic signal estimation. Similar to our taxi
data, the bus traces are also updated with a low frequency
(every 200m). The key different between taxi and bus traces
is that buses always travel with predefined trajectories and
stop at fixed bus-stops, which can be utilized to find the
correlation with traffic light. But it does not hold for the case
of taxi, which is much chaotic and unbalanced. In addition,
the temporal and spatial coverage of the bus traces can also
limit the application of the systems.

Vision based traffic light identification is also popular be-
cause it is natural. Levinson et al. [6] introduce an algorithm
that can effectively identify the states of traffic light. Roters et
al. [20] propose another solution to use video from smart-
phones to recognize the traffic light. Besides traffic signal
recognition, SignalGuru [11] takes a step forward. It relies
on a series of smartphones mounted on the windshield of
cars to collect the image of traffic light ahead. Based on
the collaboratively collected vision information, traffic light
patterns can be deduced. However, the vision based technolo-
gies are restricted within line-of-sight range. Obstacles in front
may cause interferences. In addition, the performance may be
affected by the environment factors, such as light and weather.

Researchers have also investigated using vehicular ad-hoc
networks (VANETs) to obtain the traffic light status [9]. Tielert
et al. [8] studies to send traffic light information directly to
vehicle using single hop communication. Evaluations show
that the system can help to reduce fuel consumption by 8%.
Differently, Alsabaan et al. [21] propose to combine vehicle-
to-infrastructure and vehicle-to-vehicle communication to de-
liver traffic light information. Messages are propagated in
multi-hop fashion. These approaches can obtain accurate traf-
fic signal results. However, the high cost of upgrading existing
infrastructures may confine the practicability.

X. CONCLUSION

Knowing the pattern and scheduling of traffic signal can
bring new opportunities to many intelligent transportation
systems. In this research, we have adopted a data analytic
approach using massive taxi traces to recognize traffic lights
scheduling patterns. At the beginning, we presented some
statistical features of the taxi trace. Then, we developed a
system to identify the traffic light scheduling. The system
utilizes DFT and frequency analysis to find out the periodicity
of the traffic pattern, which is also the cycle length of the traffic
light. Then, we investigate the longest stop duration to identify
the length of red light. Finally, we developed a moving average
based algorithm to find the signal change time. To tackle the
data sparsity issue, we have designed two approaches. One
is time domain interpolation, and the other is cycle based
data superposition. To validate the system, we have conducted

extensive experiments using taxi traces. The evaluation results
confirm the effectiveness of our system and algorithms.
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