
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Efficient RFID Grouping Protocols
Jia Liu, Member, IEEE, Min Chen, Bin Xiao, Senior Member, IEEE, Feng Zhu, Member, IEEE,

Shigang Chen, Fellow, IEEE, and Lijun Chen, Member, IEEE

Abstract—The grouping problem in RFID systems is to effi-
ciently group all tags according to a given partition such that
tags in the same group will have the same group ID. Unlike
previous research on unicast transmission from a reader to a
tag, grouping provides a fundamental mechanism for efficient
multicast transmissions and aggregate queries in large RFID-
enabled applications. A message can be transmitted to a group of
m tags simultaneously in multicast, which improves the efficiency
by m times when comparing with unicast. This paper studies
this practically important but not yet thoroughly investigated
grouping problem in large RFID system. We start with a
straightforward solution called the Enhanced Polling Grouping
(EPG) protocol. We then propose a time-efficient Filter Grouping
(FIG) protocol that uses Bloom filters to remove the costly ID
transmissions. We point out the limitation of the Bloom-filter
based solution due to its intrinsic false positive problem, which
leads to our final ConCurrent Grouping (CCG) protocol. With
a drastically different design, CCG is able to outperform FIG
by exploiting collisions to inform multiple tags of their group ID
simultaneously and by removing any wasteful slots in its frame-
based execution. We further enhance CCG to make it perform
better with very large groups. Simulation results demonstrate
that our best protocol CCG can reduce the execution time by a
factor of 11 when comparing with a baseline polling protocol.

Index Terms—RFID, grouping, time efficiency

I. INTRODUCTION

RADIO Frequency IDentification (RFID) has been widely
deployed for tagged object tracking [2]–[4], supply chain

management [5]–[7], and warehouse inventory control [8]–
[13]. Grouping of RFID tags can play an important role in
improving the performance of RFID-enabled applications. For
example, when tags belonging to the same group share a
common group ID, the reader can simultaneously transmit the
same data to them, greatly saving the communication overhead
in comparison with the traditional unicast transmission. In
another example, after grouping all tags, the reader can execute
effective aggregate queries, such as cardinality estimation
[14]–[18] or sensor-data collection [19]–[21], for tags in the
same group, dramatically benefiting the functions of inventory
management and monitoring.

Jia Liu, Feng Zhu, and Lijun Chen are with the State Key Laboratory for
Novel Software Technology, Nanjing University, Nanjing 210023, China. E-
mail:{liujia,zhufeng}@smail.nju.edu.cn, chenlj@nju.edu.cn.

Min Chen and Shigang Chen are with the Department of Computer &
Information Science & Engineering, University of Florida, Gainesville, FL
32611, USA. E-mail:{min,sgchen}@cise.ufl.edu.

Bin Xiao is with the Department of Computing, The Hong
Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. E-
mail:csbxiao@comp.polyu.edu.hk.

A preliminary version [1] of this paper appeared in the proceedings of IEEE
INFOCOM’15.

Manuscript received June 30, 2015; revised October 6, 2015.

tag reader Group 1 Group 2

(a) (b)

t2

t1 t6

t3 t4

t5 t2

t1 t6

t3 t4

t5D1 D2

Fig. 1: Multicast transmissions with the grouping scheme.

Given the tag population G in an RFID system and an
arbitrary group partition of G (i.e., non-overlapping subsets
of G), the grouping problem is to efficiently inform all tags
in G about which groups they belong to, such that tags in the
same subset will have the same group ID. We use an example
to further clarify this problem and its practical significance.
Consider multicast transmissions in Fig. 1. The reader in
Fig. 1(a) intends to transmit data D1 to tags t1, t2, and t3,
and data D2 to tags t4, t5, and t6, where the data may be
shipment information about tagged objects to be recorded on
tags for tracking purpose or queries for reporting different
sensor information. The traditional approach is for the reader
to unicast the same data to the relevant tags, one at a time. Six
data transmissions are needed. In contrast, with the tags being
grouped in Fig. 1(b), the reader is able to send D1 to tags t1,
t2, and t3 by one transmission that carries their group ID as
the destination address. Similarly, data D2 can be transmitted
to t4, t5, and t6 in one transmission. Two transmissions are
needed in total, reducing the overhead by a factor of 3.
Therefore, grouping tags is a fundamental mechanism that
may greatly improve management efficiency in RFID-enabled
applications.

We give a few application examples. Consider a warehouse
where goods come in and then are shipped out. Each shipment
is a group, and we want to write the same information (for
tracking purpose) to the tags in the group. With a grouping
protocol, such writing can be made more efficient, which is
desirable in order to minimize the interference with other
normal operations in a busy warehouse such as moving objects
in or out of the area where the writing happens. In another
example, the use of access password allows us to prevent
unauthorized readers from accessing the tags’ information in
privacy-sensitive environment. According to the C1G2 RFID
standard [22], the length of the access password stored in
the tag memory is 16 bits, which is too weak to guard
against the brute force attack. Therefore, we may want to
frequently update the passwords on tags to strengthen the
privacy protection. Assigning each tag a different password
is time-consuming. Alternatively, we may split the entire tag
set into small groups, and assign the tags in the same group

The following publication J. Liu, M. Chen, B. Xiao, F. Zhu, S. Chen and L. Chen, "Efficient RFID Grouping Protocols," in IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 3177-3190, October 2016 is available at https://doi.org/10.1109/TNET.2016.2514361.

This is the Pre-Published Version.

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

the same new password. The split can be different each time
for better security. In this scenario, a grouping protocol as
proposed in this paper can help further improve the efficiency
in group-based password updates. Finally, consider an RFID
programming system that programs the tags before shipping
them out. Tags of different purposes will be programmed
differently with data written to the tag memory or even code in
case of WISPs (Wireless Identification and Sensing Platform)
[23] or similar tags. With a large number of pre-packaged
blank tags kept in the system, we can dynamically define
groups as needed and program tags in each group together,
saving the communication overhead of air programming.

Little work studied how to efficiently group RFID tags
before. One intuitive solution is to leverage the traditional
polling protocol [21]: For each tag, the reader transmits its
ID together with the assigned group ID to inform the tag
of its group. This protocol is inefficient for a large RFID
system because it requires the reader to broadcast a large
number of tag IDs and the same number of group IDs.
In this paper, we propose a series of protocols to progres-
sively improve the grouping performance. We first present
an Enhanced Polling Grouping (EPG) protocol that avoids
repeatedly transmitting the same group ID, improving the
grouping efficiency over the traditional polling protocol. We
then propose a Filter Grouping (FIG) protocol that uses Bloom
filters [24] to avoid transmitting the tag IDs. We address
the negative impact of the false positive problem (which
is intrinsic to any Bloom filter), and determine the optimal
system parameters through a joint optimization to minimize
the protocol execution time. We finally propose a more scal-
able and efficient ConCurrent Grouping (CCG) protocol that
avoids the false positive problem and can simultaneously label
tags of different groups with their respective group IDs in
a single time frame, which is fundamentally different from
the one-group-at-a-time approach by FIG. Moreover, CCG
is capable of exploiting collisions to label multiple tags in
one slot. The efficiency is further improved by leveraging an
ordering vector to eliminate any slot waste. We derive an upper
bound for the execution time of CCG, which is equivalent
to transmitting (0.028 + 0.018×⌈ log2 k⌉)×n tag IDs, much
faster than transmitting n tag IDs as well as n group IDs in
the traditional polling protocol, where n is the number of tags
in the system, k is the number of groups, an tag ID is 96 bits
long, and a group ID can be indexed by ⌈ log2 k⌉ bits. Finally,
we enhance CCG to make it perform better with very large
groups.

We conduct extensive simulations based on the specification
of the EPC C1G2 standard [22]. The simulation results show
that for grouping a total of 10,000 RFID tags in 100 groups,
the execution time of the traditional polling protocol is 44.6s.
EPG reduces the execution time to 39.1s. FIG further shortens
the execution time to 7.4s. CCG performs best and takes only
3.9s, improving the grouping efficiency by a factor of 11 when
comparing with the traditional polling protocol. It is thus more
suitable for real-time RFID-enabled applications.

The rest of the paper is organized as follows. Section II
defines the grouping problem and gives a straightforward
solution. Section III proposes a filtering grouping protocol.

Section IV presents a more efficient concurrent grouping pro-
tocol. Section V enhances the concurrent grouping protocol.
Section VI generalizes the single grouping problem to multiple
grouping problem. Section VII evaluates the performance of
the proposed protocols. Section VIII discusses the related
work. Finally, Section IX concludes this paper.

II. PROBLEM STATEMENT

A. System Model

An RFID system consists of one or multiple readers and
a large number of tags. The readers are connected with a
backend server for information storage and computation. Each
tag has a unique tag ID. It can communicate with a reader
directly. But tags cannot communicate amongst themselves.
We can logically treat the readers as one if they are well
synchronized and scheduled [25]. To simplify the description,
our protocols are presented for a single reader, but they can
be easily modified for multiple readers when the collision-free
transmission schedule among the readers is established.

We assume that the reader has the knowledge of all tag IDs
as a priori [19], [26], [27]. The tag IDs can be automatically
collected through one of the numerous existing tag identifica-
tion protocols [28]–[30].

In a large RFID system, tagged objects may be classified
into groups by their categories (e.g., shoes or bags), proper-
ties (e.g., shoe sizes), manufacturers, arrival/departure dates,
or other criteria. Grouping objects facilitates the inventory
process and benefits the warehouse management because we
can easily carry out operations for particular groups based on
their group IDs. For example, once we have informed tags
about their group IDs, we can transmit a message to tags in
one group by using their group ID as the destination address,
which is much more efficient than sending each tag in the
group a separate message using the tag ID as the destination
address.

B. Problem Definition

Consider a large RFID system of n tags. Denote the tag set
as G = {t1, t2, ..., tn}. A partition of the set G is a family of
disjoint sets P = {P1, P2, ..., Pk} such that

∪k
i=1Pi = G. We

refer to Pi as a group and each tag in G exactly belongs to
one group. There are k groups in P .

The grouping problem is to efficiently label all RFID tags in
G according to P , such that tags in the same group will carry
the same group ID. More specifically, the reader is instructed
by the user with the partition P , and it is supposed to inform all
tags in the same group Pi about their group IDs gi, 1 ≤ i ≤ k,
where different groups should have different group IDs.

In today’s practice, when a tag ID is written, a portion of
the prefix in the ID can serve as a static group ID. This works
when we manually program tags one by one before deploy-
ment. This paper studies dynamic grouping based arbitrary
partition after tags are deployed. Certainly we can still use a
portion of the prefix in the tag ID as its group ID. In that case,
we will have to overwrite that portion for regrouping.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

C. A Naı̈ve Solution

In the Traditional Polling Grouping (TPG) protocol, the
reader first separates a tag from others by broadcasting its
ID and then transmits the corresponding group ID to label
this tag. The same group ID will be repeatedly broadcast for
labeling multiple tags in a group. We now present an Enhanced
Polling Grouping (EPG) protocol that avoids transmitting any
group ID repetitively.

EPG contains k grouping rounds. In each round, the reader
polls all tags in a single group. Consider an arbitrary round
for grouping Pi, 1≤i≤k. The reader broadcasts IDs of all tags
belonging to Pi in turn. Each unlabeled tag keeps listening to
the wireless channel. Only when the tag receives its own ID,
it transitions from the unlabeled state to the marked state.
After polling all tags in Pi, the reader labels the marked tags
by broadcasting the group ID gi and these tags transition to
the labeled state. Each labeled tag then keeps silent while
others stay active for participating in the subsequent rounds.
Fig. 2 illustrates the state diagram of an RFID tag in the EPG
protocol, with the initial state being the unlabeled state.

Unlabeled Marked Labeled
ID Matching

ID Mismatching

Receiving Group ID

Fig. 2: State diagram of an RFID tag in EPG.

Note that the major difference between TPG and EPG is
that EPG transmits each group ID only once. Let tid be the
length of a time slot that transmits a 96-bit tag ID [22], and
tgid be the length of a slot for transmitting a group ID, where
a tag ID is much longer than a group ID. The total execution
time of TPG is n×(tid+ tgid), where n is the number of tags.
In comparison, the execution time of EPG is n×tid+ k×tgid.

Although EPG can improve the grouping efficiency over
TPG, it still has to painstakingly transmit n tag IDs, resulting
in long running time under a large tag set. Hence, we seek
novel grouping protocols to quickly group a large number of
tags.

III. FILTER GROUPING PROTOCOL

The Efficient Tag-Ordering Polling protocol (ETOP) in [21]
was designed to collect sensor data from a subset of tags in
a large sensor-augmented tag system. It uses Bloom filters
to encode the subset and broadcast the filters to the tags for
two purposes: (1) Informing the tags in the subset that they
need to report their sensor data; (2) establishing an order
among the tags so that they can take turns to report their
data, free of collision. The primary objective is to achieve
energy efficiency, assuming battery-powered active tags. ETOP
effectively establishes one group. If we apply it repetitively, it
can be used to establish multiple groups.

For energy efficiency, ETOP uses a large number of small
Bloom filters instead of a single large one to encode a subset
of tags (such that each tag reads one small filter instead of a
common, large filter). However, breaking a large Bloom filter
into many smaller ones will increase the overall false positive
ratio. Moreover, ETOP’s filters are partitioned Bloom filters

designed for establishing an order among the tags in the subset.
Partitioned Bloom filters have slightly higher false positive
ratio than their standard counterpart.

Since this paper does not need to establish an order among
tags in each group and our goal is time efficiency instead
of energy efficiency, directly using ETOP for our purpose is
inefficient. Consequently, we redesign a Bloom-filter based
solution in this section, using a single standard Bloom filter,
called the Filter Grouping protocol (FIG), to avoid most ID
broadcasting. The protocol is introduced as a performance
benchmark for comparison with the main contribution of this
paper in the following sections.

FIG is also similar to CATS [25] in its Bloom filter
construction, except that CATS encodes a set X of wanted
tags (which may contain many tags not in the system) in a
Bloom filter and its goal is to find the intersection of X and
the set of tags currently in the system.

A. Basic Idea

The idea is to separate tags in one group at a time from
other groups by using a space-efficient Bloom filter [24].
As the reader broadcasts a filter encoding one group to all
tags in the system, the tags in the encoded group will be
correctly marked. Some tags in other groups may also be
marked mistakenly due to the false positives of Bloom filters.
Because the reader has both the filter and all tag IDs, it can
predict the mis-marked ones and can thus inform them to
unmark by transmitting their IDs in an additional phase, which
can however cause significant overhead. We may reduce the
unmarking overhead by lowering the false positive ratio with a
larger filter, at the expense of increasing the filtering overhead.
The key is to perform a joint optimization to minimize the
combined overhead of filtering and unmarking. The end result
is a protocol that is far superior than EPG. Moreover, we need
to consider the order of the groups in which the Bloom filters
are applied, which also affects the overall execution time.

B. Protocol Overview

FIG consists of k grouping rounds, each of which deals
with one group in P with three phases: filtering phase, polling
phase, and labeling phase. 1) In the filtering phase, the reader
broadcasts a filter that encodes tags in a group, and only tags
passing this filter will transition from the unlabeled state to the
marked state. Transitions 1 and 2 in Fig. 3 depict this phase.
2) The polling phase is to unmark all incorrectly marked tags
caused by false positives. The reader broadcasts these tags’
IDs. Upon receipt of their IDs, the tags move back to the
unlabeled state. Transitions 3 and 4 in the figure illustrate this
phase. 3) In the labeling phase, the reader labels the remaining
marked tags by broadcasting the group ID. These tags then
transition from the marked state to the final labeled state.
Other unlabeled tags will participate in and be grouped by
subsequent rounds.

C. Protocol Details

Consider the ith round for grouping P ′
i∈P , 1≤i≤k. The

reason for using P ′
i instead of Pi is to show that the order

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Unlabeled Marked Labeled

4: ID Mismatching

1: Pass the Filter

2: Not Pass the Filter

3: ID Matching

5: Receiving Group ID

Fig. 3: State diagram of an RFID tag in FIG.

of groups in the rounds does not have to follow the order of
groups defined in P . Let Gi be the set of unlabeled tags at
the beginning of this round.

1) Filtering Phase: This phase approximately marks all
tags in P ′

i using a Bloom filter. The reader first constructs a
Bloom filter by mapping each tag in P ′

i to ki bits in an Li-bit
vector and setting those bits to ones, where mapping is done
by hashing the ID of the tag. The optimal values of Li and ki
will be determined shortly. The filter is denoted as BF (P ′

i).
The reader broadcasts the values of Li and ki first, and then
the filter BF (P ′

i). If the filter is too long, the reader can split
it into 96-bit segments and transmit each of them in a time
slot of length tid [19]. Each unlabeled tag in Gi hashes its
own ID to ki bit positions in the filter, and thus knows which
segments it needs to listen. If all those ki bits in BF (P ′

i) are
ones, the tag passes the filter and transitions to the marked
state. Otherwise, the tag remains in the unlabeled state. We
denote the set of tags in the marked state as Mi(⊆ Gi).

2) Polling Phase: A Bloom filter does not have false
negatives, meaning that P ′

i ⊆Mi. However, it may have false
positives, namely, a tag in Mi may not be in P ′

i . Knowing
the filter BF (P ′

i) and the unlabeled tag set Gi, the reader
can predict the subset Mi−P ′

i of marked tags that should be
unmarked. The reader then broadcasts the IDs of the tags in
Mi − P ′

i one after another. When receiving their IDs, these
incorrectly marked tags will transition back to the unlabeled
state. After this phase, all remaining marked tags belong to
P ′
i .
3) Labeling Phase: In the final phase, the reader broadcasts

the group ID of P ′
i to notify all marked tags which group they

belong to. When receiving the group ID, the marked tags move
to the labeled state. The protocol then enters the next round.

D. Optimal Parameter Setting

We give the optimal values of Li and ki in the following
theorem.

Theorem 1. Let ni be the number of unlabeled tags in Gi
and m′

i be group size of P ′
i . The optimal filter length Li and

the optimal number ki of hash functions for the ith round,
∀1≤i≤k, are

ki = ln 2× Li
m′
i

Li =
m′
i

(ln 2)2
× ln(96×(ln 2)2×ni −m′

i

m′
i

),

(1)

which minimize the execution time of the ith round to

T (m′
i, ni) =

Li
96

×tid+(ni−m′
i)×0.6185

Li
m′

i ×tid+ tgid. (2)

Proof. Consider the ith grouping round, where 1≤i≤k. In the
filtering phase, the reader takes Li

96×tid time to transmit an
Li-bit filter.1 In the polling phase, the reader needs to poll
|Gi − P ′

i | × fi improperly marked tags, where fi is the false
positive rate of the Bloom filter. Since P ′

i⊆Gi, |Gi − P ′
i | =

|Gi| − |P ′
i | = ni −m′

i. The polling time in this phase is thus
equal to (ni−m′

i)× fi×tid. In the labeling phase, the reader
takes a time slot of tgid to transmit a group ID. We thus have
the total execution time T (m′

i, ni) of this round:

T (m′
i, ni) =

Li
96

×tid + (ni −m′
i)× fi×tid + tgid.

Given Li, ni, and m′
i, T (m

′
i, ni) increases monotonously with

the false positive rate fi. We want to decrease fi as much as
possible, so as to minimize T (m′

i, ni). It is well known that

fi =
(
1− (1− 1

Li
)kim

′
i
)ki ≈ (

1− e
−kim

′
i

Li

)ki
.

Let the first-order derivative of fi be 0. We can derive the

minimal fi = 0.6185
Li
m′

i when ki = ln 2× Li

m′
i
. We thus have

the execution time of the ith round under the optimal ki as
follows.

T (m′
i, ni) =

Li
96

×tid + (ni −m′
i)×0.6185

Li
m′

i ×tid + tgid.

Given m′
i and ni, let dT (m′

i,ni)
dLi

= 0. We can derive the
minimal execution time T (m′

i, ni) in (2) when Li is equal
to m′

i

(ln 2)2× ln(96×(ln 2)2×ni−m′
i

m′
i

).

E. Order of Grouping

Although we can minimize the execution time of each single
round according to (1) and (2), different group sequences will
lead to different global execution time, where a sequence
among groups in P gives the order in which the rounds
are applied. It is however a challenging task to find the
optimal sequence. A straightforward solution is to exhaustively
search all possible group sequences, compute their execution
time, and find out the optimal sequence. However, there exist
k! permutations among k groups in P , which makes the
straightforward solution unscalable to a large k.

We propose a greedy group ordering scheme that finds
a near-optimal group sequence (see Section VII-B1). This
scheme takes the candidate group with minimal grouping
overhead as the next to be grouped. More formally, the
greedy scheme is to form an ordered grouping sequence
P ′
1, P

′
2, ..., P

′
k satisfying T (m′

i, ni)≤T (m′
j , ni), 1≤i≤j≤k,

where m′
1,m

′
2, ...,m

′
k are the group sizes. Recall that

T (m′
j , ni) denotes the execution time to label the tags belong-

ing to P ′
j in the ith round and T (m′

i, ni)≤T (m′
j , ni) means

that the group P ′
i is the best choice for the current round

since the grouping overhead is minimum among all unlabeled
groups. Consider the ith grouping round. There are (k− i+1)
unlabeled groups left since the reader has labeled (i−1) groups
in the previous (i − 1) rounds. Suppose that the group size

1For the purpose of clarity, we ignore the negligible communication
overhead of transmitting Li and ki, since they generally take only a couple
of bytes to encode [25].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

x=737

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Group Size

Fig. 4: Execution time with respect to the group size of an
unlabeled group.

of each unlabeled group is q1, q2, ..., qk−i+1. Without loss of
generality, we assume that q1≤q2≤...≤qk−i+1. We then have
the following Theorem.

Theorem 2. The next group to be labeled must be one of the
two groups whose group sizes are q1 and qk−i+1.

Proof. Consider T (x, ni) as a function of group size x. It is
defined by (2) with m′

i replaced by x. From dT (x,ni)
dx = 0, we

can derive that the maximum (or minimum) execution time is
reached when

x =
lambertw(0, e5× ln 2+ln 3+2× ln(ln 2))

lambertw(0, e5× ln 2+ln 3+2× ln(ln 2)) + 1
×ni≈0.7369ni,

(3)
where lambertw(0, x) indicates the main branch2 of
the Lambert W function [31] at the elements of x.
Since limx→0T (x, ni) = tgid and T (0.7369×ni, ni) =
0.0607×ni×tid + tgid, T (0.7369×ni, ni) is greater
than limx→0T (x, ni) when ni≥1, suggesting that
T (0.7369×ni, ni) is the function T (x, ni)’s maximum value
for a given ni≥1. In other words, T (x, ni) first increases
with x. After peaking at 0.7369×ni, it monotonously
declines. Since q1≤q2≤...≤qk−i+1, the minimal grouping
overhead T (x, ni) in the ith round must be T (q1, ni) or
T (qk−i+1, ni).

Fig. 4 illustrates the execution time with respect to the
group size of an unlabeled group, where k = 10, ni = 1000,
tid = 3.8ms, and tgid = 0.4ms (the parameter setting follows
the EPC C1G2 standard [22], see Section VII-A). We can
clearly see that the execution time T (x, 1000) increases as
the group size x increases. After reaching the maximum when
x = 0.7369×ni ≈ 737, the execution time decreases with x.

Algorithm 1 gives the pseudo code for ordering groups of
sizes m′

1,m
′
2, ...,m

′
k in a near-optimal sequence. We will show

that the performance of such an ordered group sequence is
close to the optimal in Section VII-B1.

IV. CONCURRENT GROUPING PROTOCOL

A. Motivation

Although FIG improves the grouping performance by using
Bloom filters, it has to separately deal with one group at a

2In mathematics, the Lambert W function is the inverse relation of the
function f(x) = xex. Since the mapping of x 7→ xex is not injective, the
Lambert W function consists of a set of branches. In particular, the main
branch is defined for x∈[−e−1,∞].

Algorithm 1: Group Ordering Scheme
Input: M : sizes of all groups in P; each element in M
corresponds to a group
Output: an ordered sequence of groups

1: while M ̸= ∅ do
2: x− = min(M);
3: x+ = max(M);
4: ni = sum(M);
5: if T (x−, ni) ≤ T (x+, ni) then
6: m′

i = x−;
7: else
8: m′

i = x+;
9: end if

10: M =M − {m′
i};

11: place the corresponding group as the next in the
sequence;

12: end while

time. A filter can successfully label all tags in the group P ′
i

that it encodes, but some tags in other groups may be mis-
takenly marked due to false positives, which can be logically
considered as collision in the filter between tags outside P ′

i and
tags in P ′

i . The problem is that there may be a lot more tags
outside P ′

i than those inside, which means that the number of
incorrectly marked tags could be even larger than the number
in P ′

i , causing significant polling (unmarking) overhead, unless
we make the false positive ratio of the filter sufficiently small.
Lowering the false positive ratio is not free; it increases the
size of the filter.

The above dilemma is fundamentally caused by the choice
of Bloom filters and the one-group-at-a-time strategy in our
protocol design. To further improve the performance, we need
to explore other radically different ideas: labeling tags in all
groups together, making some collisions useful so that multiple
tags can be labeled together in one slot, and identifying
unusable collisions beforehand so that they can be avoided
without incurring actual overhead. These ideas form the basis
of our next protocol, called the ConCurrent Grouping (CCG)
protocol.

B. Protocol Description

CCG also consists of multiple grouping rounds, each of
which has an ordering phase and a labeling phase. The
ordering phase tells tags whether and when they will be labeled
in the current round, and the labeling phase transmits group
IDs to label the tags. Details are given below.

1) Ordering Phase: The reader first broadcasts a request
with parameters ⟨f ,r⟩, where f is the number of slots in a
virtual frame and r is a random seed. Note that the virtual
frame will never be actually played out. It only serves as a
vehicle for finding useful slots, and later an actual frame of
only the useful slots will be carried out.

Upon receiving this request, each unlabeled tag randomly
picks a slot whose index is H(id, r) mod (f + 1), where id
is the tag’s ID and H(·) is a hash function. Slots picked by

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

no tag, exactly one tag, and multiple tags are called empty
slot, singleton slot, and collision slot, respectively. For our
protocol, useful slots are singletons or collision slots that are
picked by tags from the same group. These slots are also
called homogeneous slots. Collision slots picked by tags from
different groups are called heterogeneous slots, which are not
useful. Empty slots are certainly not useful, either.

Take Fig. 5 for example. The second slot is homogeneous
since it is chosen by t1 and t4, which belong to the same
group P1. So does the sixth slot. In contrast, the fourth slot is
heterogeneous as its two tags, t2 and t5, are from two different
groups. The remaining slots are empty slots.

The tags that pick homogeneous slots are called homoge-
neous tags. Each tag does not know whether it has picked a
homogeneous slot or not, but the reader does. With the tag ID
information, the reader can predict which slots in the virtual
frame are empty, homogeneous, or heterogeneous. It will
remove the empty and heterogeneous slots before initiating
the frame to tell the tags their group IDs. More specifically,
the reader informs the tags which slots are removed by
broadcasting an ordering vector V of f bits [21], with one bit
for each slot in the virtual frame, 0 for empty or heterogeneous
and 1 for homogeneous. If V is too long, the reader can split it
into 96-bit segments and transmit each segment in a time slot
of length tid [19]. For instance, the ordering vector V for the
example in Fig. 5 is ‘010001’. The actual frame to be carried
out contains only two homogeneous slots, the second slot and
the sixth slot, indicating by the two 1s.

From a tag’s perspective, the ordering vector V carries two
pieces of information. For one, the tag can learn whether
the slot it picks is homogeneous or not by examining the
corresponding bit in V . Only if it is, the tag transitions from
the unlabeled state to the marked state. For the other, V tells
the index of a homogeneous slot in the actual frame to be
carried out. If a marked tag finds that there are i ones in V
preceding its bit, the tag knows that it picks the (i + 1)th
homogeneous slot.

2) Labeling Phase: Only the marked tags participate in this
phase. Let h be the number of homogeneous slots. The reader
initiates an actual labeling frame of h slots, and transmits a
group ID in each slot for the tag(s) that pick the slot. Because
the tag(s) in each slot are from the same group, the reader
can label them simultaneously. From the ordering vector, each
marked tag knows which slot it picks in the frame and thus
receives its group ID from that slot. For example, in Fig. 5,
the actual frame contains only two homogeneous slots. In the
first slot, the reader broadcasts P1’s group ID to label t1 and
t4. In the second slot, the reader broadcasts P2’s group ID to
label t3. No slot is wasted in the actual frame.

After the labeling phase, the current grouping round termi-
nates and the above two phases repeat round after round until
all tags are labeled.

C. Parameter Setting and Performance Analysis

We determine the optimal value of f . Consider an arbitrary
grouping round. Recall that h is the number of homogeneous
slots. Let ψ be the number of homogeneous tags (which have

 !"!#$%$!&'()*!+(

 $+$,!#$%$!&'()*!+

-".+/()*!+

t1 t2 t3 t4 t5

P1={t1,t4,t5} P2={t2,t3}

1 2 3 4 5 6

Fig. 5: Three kinds of slots in the ordering phase.

picked the homogeneous slots). The execution time t of this
round is:

t =
f

96
×tid + h×tgid. (4)

We define the grouping efficiency, denoted as λ, as the ratio
of the number of homogeneous tags to the execution time of
this round:

λ =
ψ

t
=

ψ
f
96×tid + h×tgid

. (5)

Clearly, the bigger the value of λ is, the more the tags will be
labeled in each unit of execution time. We thus need to find
the optimal f that maximizes λ.

Let m′
1,m

′
2, ...,m

′
k be the numbers of unlabeled tags in

groups P1, P2, ..., Pk respectively at the beginning of the
round. Let n′ be their sum, i.e., n′ =

∑k
i=1m

′
i. We give the

expected number h of homogeneous slots and the expected
number ψ of homogeneous tags in the following two theorems.

Theorem 3. With a virtual frame of f slots, the expected
number of homogeneous slots is

h = f×
k∑
i=1

(
(1− 1

f
)n

′−m′
i×(1− (1− 1

f
)m

′
i)
)
. (6)

Proof. Consider the group Pi, 1≤i≤k. The probability that all
m′
i tags in Pi do not pick a given slot is (1 − 1

f)
m′

i . Hence,
the probability that at least one tag in Pi picks this slot is
(1 − (1 − 1

f)
m′

i). To make this slot homogeneous, the other
(n′ −m′

i) tags are not supposed to pick this slot, that is (1−
1
f)
n′−m′

i . Therefore, the probability that this slot is chosen by
only tags coming from Pi is (1 − 1

f)
n′−m′

i(1 − (1 − 1
f)
m′

i).
With k groups, the probability that a slot is homogeneous is∑k
i=1

(
(1− 1

f)
n′−m′

i(1− (1− 1
f)
m′

i)
)
. There are f slots, and

we thus have the final expression of h as shown in (6).

Theorem 4. With a virtual frame of f slots, the expected
number of homogeneous tags is

ψ = f×
k∑

i=1

m′
i∑

j=0

(j×

(
m′

i

j

)
×(

1

f
)
j

×(1− 1

f
)n

′−j) (7)

= f×
k∑

i=1

(1− 1

f
)n

′−m′
i

m′
i∑

j=0

(j×

(
m′

i

j

)
×(

1

f
)
j

×(1− 1

f
)m

′
i−j)

=

k∑
i=1

(m′
i×(1− 1

f
)n

′−m′
i).

Proof. Given j tags belonging to Pi, the probability that a slot
is picked by only these tags is (1f)

j×(1 − 1
f)
n′−j . Because

there are
(
m′

i
j

)
possible combinations for j tags, the probability

that a certain slot is exactly mapped by j tags from Pi is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

(
m′

i
j

)
×(1f)

j×(1 − 1
f)
n′−j . With j ranging from 0 to m′

i,
the expected number of tags in Pi (excluding tags outside
Pi) mapping to this slot is

∑m′
i

j=0 j
(
m′

i
j

)
(1f)

j
(1 − 1

f)
n′−j .

By extracting the common factor (1 − 1
f)
n′−m′

i , we have

the expression
∑m′

i
j=0 j×

(
m′

i
j

)
×(1f)

j×(1 − 1
f)
m′

i−j . Hence,
the expected value of the variable X follows the binomial
distribution with parameters m′

i and 1
f , i.e., X∼B(m′

i,
1
f).

Since E(X) =
m′

i

f , the expected number of homogeneous tags

belonging to Pi in a slot is m′
i

f ×(1 − 1
f)
n′−m′

i . Considering
all k groups, the expected number of homogeneous tags in a
slot is

∑k
i=1

(
(1− 1

f)
n′−m′

i×m′
i

f

)
. With f slots in the ordering

phase, the total expected number of homogeneous tags in this
phase is

∑k
i=1

(
m′
i×(1− 1

f)
n′−m′

i

)
.

Substituting h and ψ in (5) with (6) and (7), we have the
grouping efficiency λ in this round.

λ =

∑k
i=1

(
(1− 1

f)
n′−m′

i×m′
i

f

)
tid
96 + tgid×

∑k
i=1(1−

1
f)
n′−m′

i(1− (1− 1
f)
m′

i)
. (8)

It is challenging to directly derive the maximal λ from (8). We
instead find an interval of f where the grouping efficiency λ is
maximized, and we then search the optimal f in this interval.

Theorem 5. When λ attains the maximum, f must be in the
interval [1,n′(e+1.09β)], where e is the natural constant, n′

is the number of unlabeled tags, and β =
96×tgid
tid

.

Proof. Consider any two frame sizes f1 and f2, f1≤f2.
Let ψ1 and ψ2 be the corresponding expected numbers of
homogeneous tags respectively; h1 and h2 be the expected
numbers of homogeneous slots respectively. We have the group
efficiency λ from (5):λ(f1) =

ψ1
f1
96×tid+h1×tgid

λ(f2) =
ψ2

f2
96×tid+h2×tgid

.

Let λ(f1)− λ(f2)≥0, we have:

f2 ≥ ψ2

ψ1
(f1 + βh1)− βh2. (9)

Given a frame size f , the expected number of singleton slots
is n′×(1− 1

f)
n′−1 ≈ n′×e−

n′
f [16], [32]. As aforementioned,

a singleton slot must be a homogeneous slot, and thus we have

n′×e−
n′
f1 ≤h1. (10)

Since at least one tag resides in a homogeneous slot, the num-
ber of homogeneous tags is no less than that of homogeneous
slots for sure. On the other hand, the number of homogeneous
tags cannot exceed the total number of unlabeled tags. We
have {

h1≤ψ1≤n′

h2≤ψ2≤n′.
(11)

Consider the slots in the virtual frame. The number of homoge-
neous slots must be no greater than the number of non-empty
slots (chosen by one or more tags). Given a frame size f , the
expected number of empty slots is f×(1 − 1

f)
n′≈f×e−

n′
f ,

and the number of non-empty slots is f − f×e−
n′
f . Hence,

we have
h1≤f1×(1− e−

n′
f1). (12)

Intuitively, the number of homogeneous slots increases as the
frame size increases. This conclusion can be easily proved
if we can give the proof that the number of homogeneous
slots chosen by a single group increases with the frame size.
Consider an arbitrary group with m unlabeled tags. According
to (6), we have the number h(m, f) of homogeneous slots
chosen by this group:

h(m, f) = f×((1− 1

f
)n

′−m − (1− 1

f
)n

′
).

Based on this equation, we have

dh(m, f)

df
= (f−1+n′−m

f)(1− 1
f)
n′−m−1

−(f−1+n′

f)(1− 1
f)
n′−1.

Let g(x) = (f−1+x
f)(1− 1

f)
x−1. We have

dg(x)

dx
= (1− 1

f
)x−1(

1

f
+ (1 +

x− 1

f
) ln(1− 1

f
)).

According to the Taylor series for ln(1− 1
f), we have

ln(1− 1

f
) =

∞∑
i=1

−1

i×f i
, for | 1

f
| < 1.

Hence,

dg(x)

dx
< (1− 1

f
)x−1(

1

f
+ (1 +

x− 1

f
)× −1

f
)≤0.

Therefore, the function g(x) monotonically decreases with x.
Since (n′−m) is less than n′, dh(m,f)df = g(n′−m)−g(n′) >
0. That means h(m, f) monotonically increases with the frame
size f . As h =

∑k
i=1 h(mi, f), we have

h1≤h2. (13)

Let Γ = ψ2

ψ1
(f1 + βh1) − βh2. Clearly, Γ increases with ψ2

and f1, while decreasing with ψ1 and h2. From (10), (11),
(12), and (13), we have:

Γ ≤ ψ2

ψ1
(f1 + βh1)− βh1

=
ψ2

ψ1
f1 + βh1(

ψ2

ψ1
− 1)

≤ n′

n′e−
n′
f1

f1 + βf1(1− e−
n′
f1)(

n′

n′e−
n′
f1

− 1)

= f1e
n′
f1 + βf1(e

n′
f1 + e−

n′
f1 − 2). (14)

Let γ(f) = fe
n′
f + βf(e

n′
f + e−

n′
f − 2). According to (9)

and (14), the grouping efficiency λ(f1) is greater than λ(f2)
if f2≥γ(f1)≥Γ. We set f1 = n′ and derive γ(f1) = n′(e +
1.09β). In other words, when the frame size f is no less than
n′(e + 1.09β), there must be a frame size f1 = n′ making
λ(f1) > λ(f) always hold.

Based on Theorem 5, we can numerically compute the
optimal f that maximizes λ in (8). As an example, Fig. 6

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

0 2000 4000 6000
0

1

2

3

4

Frame Size f

G
ro

u
p

in
g

 E
ff

ic
ie

n
c
y
 λ

 (
#

/m
s
)

Optimal f=827

n’=1000

Fig. 6: Grouping efficiency λ with respect to the frame size
f .

shows the grouping efficiency with respect to f . In this figure,
β = 4, tid = 3.8ms, and the number n′ of unlabeled tags is
1,000, which are evenly distributed among 10 groups, i.e., each
group has 100 tags. As we can see, the grouping efficiency λ
attains the maximum when f is equal to 827, which is in the
interval [1,7078].

Once we get the optimal value of f , we are able to compute
h via (6), and the expected execution time via (4). We now
give an upper bound of CCG’s execution time for a rough
glance at the protocol performance.

Theorem 6. An upper bound of CCG’s execution time is

Tupper = n×(
e

96
×tid + (e− 1)×tgid), (15)

where n is the number of tags in G.

Proof. Consider an arbitrary round, in which the number of
unlabeled tags is n′. From (5), we have:

λ(f) =
ψ

f
96×tid + h×tgid

≥ min(ψ)
f
96×tid +max(h)×tgid

.

As previously mentioned, since a singleton slot must be a
homogeneous slot, the number ψ of homogeneous tags is no
less than that of singleton slots, i.e., min(ψ) = n′×e−

n′
f .

Besides, the number h of homogeneous slots is no more than
that of non-empty slots (homogeneous slots and heterogeneous
slots), i.e., max(h) = f×(1− e−

n′
f). Let f = n′. We have

λ(f)≥ e−1n′

n′

96×tid + (1− e−1)n′×tgid
=

e−1

tid
96 + (1− e−1)tgid

.

With n tags in G, the total execution time of CCG
is n

λ(f)≤n×(e96×tid + (e − 1)×tgid) ≈ n×(0.028×tid +

1.718×tgid).

D. Performance Improvement

Consider the labeling phase. The reader needs to broadcast
a group ID in each labeling slot, which is time-consuming
when the group ID is long, e.g., 32 bits. In this case, we
make a minor modification to the labeling phase, so that the
overhead is insensitive to the length of group IDs. The key idea
is to transmit the index of each group (instead of the group
ID) in the time frame of the labeling phase. That means, for
each group Pi, 1≤i≤k, we just need to transmit the index i
rather than gi. Since there are k groups, ⌈log2 k⌉ bits for each

index are enough to distinguish each group. For example, only
⌈log2 2⌉ = 1 bit is needed for a group in Fig. 5. The reader
can respectively broadcast ‘1’ and ‘0’ in the first and second
labeling slot to label corresponding tags. After the frame, the
reader will transmit the sequence of group IDs in order of
their indices.

For further improvement, we concatenate all group indices
to form a labeling vector of ⌈log2 k⌉×h bits, and then
broadcast it, where h is the number of homogeneous slots.
If the vector is too long, we can split it into 96-bit segments
and transmit each of them in tid [19]. The tags in the ith
labeling slot are thus labeled by the ith index that is from
the ((i− 1)×⌈ log2 k⌉+ 1)th bit to (i×⌈ log2 k⌉)th bit in the
labeling vector. In this way, tgid in (5) and (15) is equal to
⌈ log2 k⌉

96 ×tid. The upper bound of the total execution time of
CCG is (0.028 + 0.018×⌈ log2 k⌉)×tid×n.

V. ENHANCED CCG
A. Motivation

Although CCG achieves high grouping efficiency by si-
multaneously labeling tags from different groups, it needs to
assign each homogeneous slot a group ID of ⌈ log2 k⌉ bits.
When there is a very large group whose tags pick numerous
(homogeneous) slots, the same group ID will be transmitted in
all these slots. This high-level redundancy presents opportunity
for optimization.

Our idea is to deal with each large group separately. For
any given large group P ′, we will treat the tags in all
other unlabeled groups logically as another group. The reader
applies CCG on these two groups, P ′ and all other unlabeled
tags. In the labeling phase, each slot needs only one-bit index
(instead of ⌈ log2 k⌉ bits): ‘1’ for P ′ and ‘0’ for all others.
After the time frame, the group ID for P ′ is transmitted, which
will be received by all tags in P ′ that have been labeled with
index ‘1’.

The above modified CCG for labeling one large group is
denoted as CCG1. Note that there may be multiple large groups
in the system, and each of them requires a separate execution
of CCG1. In the following, we design an enhanced version of
CCG (denoted as E-CCG), which first invokes CCG1 to handle
large groups one at a time and then invokes CCG (as described
in the previous section) for the remaining small groups.

B. Protocol Description

The basic idea of E-CCG is to separately label the large
groups and then concurrently label all remaining groups.
Consider the initial partition P = {P1, P2, ..., Pk}. Without
loss of generality, we assume that |P1|≥|P2|≥...≥|Pk|. Al-
gorithm 2 gives the pseudo code of the protocol. In line 2,
we compare the execution time of using CCG to label all
remaining groups with that of first using CCG1 to label Pi,
1≤i≤k, and then using CCG to label the rest concurrently.
The term Tc(·) is the execution time of using CCG to group
tags according to a given partition. This time can be predicted
by the reader because it has all tag IDs and precomputes
all system parameters. More specifically, CCG consists of
multiple rounds. The reader can determine which tags will be

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Algorithm 2: Enhanced CCG Protocol
Input: P: {P1, P2, ..., Pk}, where |Pi|≥|Pj |, 1≤i≤j≤k

1: for (i = 1; i ≤ k; i++) do
2: if Tc(P) < T1(Pi,P) + Tc(P − {Pi}) then
3: break;
4: end if
5: CCG1(Pi,P); /* separate Pi from P using CCG1 */
6: P = P − {Pi};
7: end for
8: CCG(P); /* group all tags left using CCG */

labeled at each round and the per-round execution time is given
by (4). T1(Pi,P) is the execution time of using CCG1 to label
tags in Pi from a partition P , which can also be predicted.
Lines 2-6 state that if applying CCG1 takes less time, then
we will use it to label the next large group; otherwise we use
CCG to label all remaining groups concurrently.

C. Performance Analysis

The execution of E-CCG consists of CCG1 for the large
groups and CCG for other groups. The performance of using
CCG to group all unlabeled tags has been discussed in Section
IV-C. Here we will focus on the performance analysis of
CCG1. Consider the current set G′ of unlabeled tags and a
group P ′ to be labeled next. The partition is logically treated
as {P ′,G′ − P ′}. Let n′ = |G′| and m′ = |P ′|. According
to CCG1, there may be several grouping rounds to separate
P ′ from G′. For the ith round, we let n′i be the number of
unlabeled tags in G′ and m′

i be the number of unlabeled tags
in P ′ before this round. Initially, n′1 = n′ and m′

1 = m′. The
grouping time ti and the grouping efficiency λi in this round
are

ti =
fi + hi
96

×tid

λi =
ψi
ti
,

(16)

where ψi is the expected number of homogeneous tags in this
round, fi is the length of the virtual frame in the ordering
phase, and hi is the expected number of homogeneous slots
in the labeling phase (which will not be actually carried out
as we have explained in Section V-A). Note that fi+hi is the
total number of bits transmitted by the reader in this round.
From (6), the expected number hi of homogeneous slots in
this round is

hi = fi×((1− 1

fi
)m

′
i + (1− 1

fi
)n

′
i−m

′
i − 2(1− 1

fi
)n

′
i). (17)

From (7), the expected number ψi of homogeneous tags in
this round is

ψi = m′
i×(1− 1

fi
)n

′
i−m

′
i + (n′i −m′

i)×(1− 1

fi
)m

′
i . (18)

Substituting hi and ψi in (16) with (17) and (18), we derive
the grouping efficiency λi in this round:

λi =

m′
i

fi
(1− 1

fi
)n

′
i−m

′
i +

n′
i−m

′
i

fi
(1− 1

fi
)m

′
i

tid
96 (1 + (1− 1

fi
)m

′
i + (1− 1

fi
)n

′
i−m′

i − 2(1− 1
fi
)n

′
i)

≈ 96

tid
×

m′
i

fi
e
−n′

i−m′
i

fi +
n′
i−m

′
i

fi
e
−m′

i
fi

1 + e
−

m′
i

fi + e
−

n′
i
−m′

i
fi − 2e

−
n′
i

fi

.

(19)

Once m′
i and n′i are given, we can derive the optimal fi

that maximizes λi by computing dλi(fi)
dfi

= 0. Besides, based
on Theorem 5, we can also derive the interval [1, 3.8n′i] in
which the optimal fi resides by letting β = 1. Enumerating
all possible candidates in this interval can easily find out the
optimal fi.

VI. MULTIPLE GROUPING

So far, we have discussed the protocol design with each
tag belonging to exactly one category. In practice, however,
a tagged product may belong to multiple groups due to
different classification criteria. For example, milk is both food
and liquid produce. In this section, we discuss the multiple
grouping problem that assigns each tag one or more group
IDs as needed. Formally, let C = {C1, C2, ..., Ck} be the set
of all groups, where k is the number of categories. Each Ci,
1≤i≤k, represents a category as well as the tag set belonging
to this category. A tag in G may reside in one or more groups.
Hence, the intersection of Ci and Cj , 1≤i < j≤k, may be
non-empty. The multiple grouping problem is to inform all
tags to which group(s) they belong. By contrast, we refer to
the previous case where each tag belongs to exactly one group
as single grouping.

A. Multiple Grouping With TPG
TPG in multiple grouping consists of n grouping rounds,

where n is the number of tags. For an arbitrary tag, the reader
first separates it from others by broadcasting its tag ID and
then transmits the corresponding group IDs to label it. Unlike
single grouping, the tag may belong to one or more groups
in multiple grouping. To reduce the communication overhead,
we concatenate all group IDs together to form a bit string
and broadcast it in one transmission. The tag matching the
tag ID can decode its group IDs by segmenting the bit string
according to the length of group IDs.

B. Multiple Grouping With EPG
Compared with TPG, EPG in multiple grouping aims to

reduce the redundant transmissions of group IDs. EPG parti-
tions the entire tag set G into disjoint subsets according to the
group set C. Any tags are classified into the same subset only
when they belong to the same groups (including the number of
groups and what exactly the groups are). After that, EPG labels
each subset in sequence. Namely, the reader first transmits the
IDs of tags in a subset and then broadcasts all group IDs that
these tags belong to. All unlabeled tags keep listening, and
those that receive their IDs will be grouped by the follow-up
group IDs. This process repeats until all tags are grouped.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

C. Multiple Grouping With FIG

FIG labels one group at a time. Consider the ith grouping
round for labeling Ci, 1≤i≤k. The reader takes Ci as the
input to encode a Bloom filter BF (Ci) and then broadcasts
it. Upon receiving and checking the filter, all tags in Ci are
correctly marked but some tags outside Ci may also be marked
due to false positives. Knowing all tag IDs, the reader is able
to predict the set Wi of mistakenly marked tags, and unmark
them in the polling phase. The remaining marked tags will be
labeled by the reader in the labeling phase.

The difference is that for single grouping, the labeled tags
will stay silent in subsequent rounds, but in case of multiple
grouping, all tags must be active throughout protocol execu-
tion, regardless of whether they have been labeled. Moreover,
when predicting false positives, the reader should consider all
tags outside Ci, i.e., G − Ci, in case of multiple grouping, in
contrast to G −

∪i
j=1Cj in single grouping. Besides, we do

not need to consider the issue of grouping order (Algorithm
1) since all groups participate in each round.

D. Multiple Grouping With CCG

CCG simultaneously labels tags from different groups. It
may have multiple grouping rounds. Consider an arbitrary
round. In the ordering phase, an ordering vector V is broadcast
to tell each tag whether the slot that it picks is homogeneous
and what the index of its homogeneous slot is in the actual
frame to be carried out. For multiple grouping, a significant
difference is that a slot is homogeneous if and only if the
tag(s) in this slot belong to exactly the same set of groups (as
each tag may now belong to more than one group). In case
that tags of a homogeneous slot belong to multiple groups,
the corresponding slot in the labeling phase will need to carry
more than one group ID (or index).

In the labeling phase, the reader broadcasts the labeling
vector to label the tags. The number of group IDs (or indices)
may be different in each labeling slot. To address this issue,
we add a 1-bit flag preceding each group ID to be broadcast,
where flag ’1’ signals the start of a new slot and flag ’0’ means
that the slot has more group ID(s), as shown in Fig. 8. Assume
a group ID is lv bits long. With this flag, each group ID in a
slot requires (lv + 1) bits. Each time after receiving (lv + 1)
bits for a group ID from the reader, each tag checks the first
bit to see whether a new slot starts or not. By keeping track
of the number of ‘1’s, the tag knows the number of slots and
will learn its own group ID(s) upon the arrival of its slot.

VII. EVALUATION

In this section, we evaluate the performance of EPG, FIG,
CCG, and E-CCG via simulations. Since there is no prior work
studying the grouping problem in RFID systems, we compare
the execution time of our protocols with the baseline protocol
TPG.

A. Simulation Setting

We randomly generate the group size of each group accord-
ing to the normal distribution N(µ, σ2), where µ is the mean

 Gid Gid Gid ...

1
st
 slot 2

nd
 slot

 flag 2 Group IDs

Fig. 8: Illustration for the labeling vector with flags, where
each slot may carry more than one group IDs (or indices).
Flag ’1’ signals the start of a new slot, and ’0’ means that at
least one more group ID (or index) will flow in the slot.

and σ is the standard variance. Our simulations will vary the
values of µ, σ and k to show the performance of the protocols
under different scenarios, where k is the number of groups.

The communication parameter setting follows the specifi-
cation of the EPC C1G2 standard [22]. Any two consecutive
communications, from the reader to tags or vice versa, are
separated by a time interval of 302 µs. The data rate from the
reader to tags is 26.7 kbps to 128 kbps. We set the data rate
to 26.7 kbps. Note that other rates will change the absolute
execution time of the protocols but there will be similar con-
clusions on relative comparison. It takes the reader 37.45 µs to
transmit one bit. Hence, tid = (37.45×96+302) = 3897.2 µs.
The group ID gi in our simulation is set to the corresponding
index i, 1≤i≤k, which is ⌈ log2 k⌉ bits long. We also have
tgid = (37.45×⌈ log2 k⌉ + 302) µs. All presented results are
the average of 200 independent trials.

B. Confirmation of Theoretical Results

1) The Greedy Group Ordering Scheme: As discussed
in Section III, different group sequences lead to different
execution time of FIG. We compare the execution time of the
optimal, greedy, random, and worst group sequences under
three different scenarios with different number of groups. In
the three scenarios, the group size follows N(1000, 10002),
and the number k of groups are 4, 6, and 8, respectively. For
each scenario, we arbitrarily generate a group sequence as the
random sequence. We then produce the greedy group sequence
using Algorithm 1. For the optimal and worst group sequences,
we exhaustively try out all k! possible group sequences and
find the minimal execution time and maximal execution time.
The results are shown in Fig. 7(a). We can see that the
optimal group sequence performs the best, the greedy sequence
follows, then the random sequence, and finally the worst
sequence. The negligible difference between the greedy group
sequence and the optimal group sequence suggests that our
greedy group ordering scheme can determine a nearly optimal
group sequence.

2) Verification of Execution Time: In Fig. 7(b) and Fig.
7(c), we conduct simulations to verify the correctness of the
derived execution-time formulas for FIG and CCG respectively
under three scenarios. In the first scenario, the number k of
groups is 20, the average group size µ is 200, and the standard
variance σ is 20. In the second scenario, we keep the same
value for k, but change the distribution of group sizes to
µ = 1000 and σ = 100. In the third scenario, we keep the
same values for µ and σ, but change k to 100. We perform 200

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

(a) Performance of FIG under different group sequences

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

k=20,µ=200,σ=20

k=20,µ=1000,σ=100

k=100,µ=200,σ=20

(b) Execution time of FIG

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

k=20,µ=200,σ=20

k=20,µ=1000,σ=100

k=100,µ=200,σ=20

(c) Execution time of CCG

Fig. 7: Confirmation of theoretical results through simulations for (1) the effectiveness of the greedy group ordering scheme
and (2) the execution-time formulas.

independent simulation runs in each scenario and plot the CDF
of relative error. The relative error is computed as |tsim−ttheo|

ttheo
,

where tsim is the simulation time and ttheo is the theoretical
time. In Fig. 7(b), we observe that the relative error of FIG
is less than 0.05 in the first scenario. With the increase of the
group size (scenario 2) or the number of groups (scenario 3),
the relative error further decreases. In Fig. 7(c), the relative
error of CCG is within 0.015, much smaller than FIG in the
first scenario. The same conclusions can also be drawn for
the second and third scenarios. The tightness between the
simulation value and theoretical value demonstrates that the
derived execution time can well depict the actual execution
time of FIG and CCG.

C. Protocol Performance

We evaluate the performance of our protocols under various
parameter settings. We compare the execution time of EPG,
FIG, and CCG with the baseline protocol TPG under three
scenarios. In scenario 1, we set k = 50, µ = 100, and
σ = 40. In scenario 2, we double the number k of groups, i.e.,
k = 100, µ = 100, and σ = 40. In scenario 3, we increase
the group size of each group, i.e., k = 100, µ = 200, and
σ = 80. The execution time of the protocols are presented
in Fig. 9(a). Take scenario 2 as example. The total number
n of tags is 10,000. The figure shows that the execution
time of TPG is 44.6s, which is the largest amongst the four
protocols. EPG reduces the execution time to 39.1s since it
avoids transmitting redundant group IDs. FIG further reduces
the execution time by 83% to 7.4s. CCG works best, taking
only 3.9s, no more than one eleventh of the time needed by
TPG. Similar conclusions can also be drawn from the other
two scenarios: CCG performs best, FIG next, then EPG, and
finally TPG.

Next we study in greater details the impact of different
parameters, including the number k of groups, the average
group size µ, and the standard variance σ. In Fig. 9(b), we
show how k influences the execution time of EPG, FIG, and
CCG. We set n = 214 = 16, 384, σ = 0, and µ = n

k ,
where n is the number of all tags. We vary k from 2 to
1,024 and observe the execution time of each protocol. The
execution time of EPG remains stable since the transmission
overhead for sending group IDs is negligible compared with
broadcasting n tag IDs. In contrast, FIG and CCG see a

logarithmic growth in their execution time over k. In FIG, the
number of grouping rounds increases as k increases, leading
to more execution time. In CCG, the reader needs to transmit
⌈ log2 k⌉ bits in a homogeneous slot in the labeling phase.
More transmission bits thus consume longer execution time.
Although both FIG and CCG experience the rise trend over
k, CCG increases more slowly than FIG. It demonstrates that
CCG is less sensitive to the number k of groups than FIG.

In Fig. 9(c), we study the impact of the average group size
µ on the execution time of EPG, FIG, and CCG. We set k =
100, σ = 0, and vary µ from 10 to 100. We observe that the
execution time of EPG rises quickly with respect to µ and it
approaches to 40s when µ = 100. By contrast, CCG spends
the minimal execution time under various µ. It takes less than
4s to achieve the same grouping task, producing a 10-fold
performance gain. Although FIG is far superior than EPG, it
takes longer time than CCG to achieve the same grouping task.
We thus conclude that the execution time of EPG, FIG, and
CCG increases with µ and CCG is the most insensitive to µ. It
is worth mentioning that, in this simulation, the total number
n of tags is equal to k×µ and we can thus assert that n has
the similar impact on the execution time.

In Fig. 9(d), we evaluate the impact of the standard variance
σ in group size on the execution time of EPG, FIG and CCG.
In this simulation, we set k = 10, µ = 1, 000, and vary σ from
100 to 800. The execution time of all protocols largely stay
the same under different values of σ. Although the variance
varies in the simulation, the total number of tags as well as
the number of groups stay the same.

Hence, we conclude that the average group size µ and the
total number n of tags have most significant impact on the
protocol execution time, the number k of groups has modest
impact, and the standard variance σ has little impact.

D. Performance of E-CCG

Fig. 10 presents the performance comparison of FIG, CCG,
and E-CCG. In this simulation, we set k = 101. The group
size of the first group P1 ranges from 50 to 5,000 and the sizes
of the remaining 100 groups follow N(50, 0). Fig. 10(a) shows
that (1) both E-CCG and CCG outperform FIG, and (2) when
the size of P1 is large, E-CCG significantly outperforms CCG;
for example, when the size of P1 is 5000, E-CCG achieves
more than 40% reduction in execution time over CCG. The

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

(a) Execution time of different protocols

2 4 8 16 32 64 128 256 512 1024
0

10

20

30

40

50

60

70

Number of Groups

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

EPG

FIG

CCG

(b) Execution time with respect to the num-
ber of groups

20 40 60 80 100
0

10

20

30

40

Group Size of Each Group

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

EPG

FIG

CCG

(c) Execution time with respect to group
sizes

100 200 300 400 500 600 700 800
0

10

20

30

40

Standard Variance

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

EPG

FIG

CCG

(d) Execution time with respect to standard
variances

Fig. 9: Performance comparison.

1000 2000 3000 4000 5000

2.5

3

3.5

4

Group Size of P1

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

FIG

CCG

E−CCG

(a)

1000 2000 3000 4000 5000
0

0.5

1

1.5

2

Group Size of P1

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

FIG

CCG
1

(b)

Fig. 10: Grouping overhead of FIG, CCG, and E-CCG. (a)
Total execution time to label all tags, (b) Execution time to
label tags in group P1.

performance gap diminishes as the size of P1 decreases. When
P1 is 700 or fewer, E-CCG becomes the same as CCG and
consequently its execution time is also the same as that of
CCG. Recall from Lines 2-5 in Algorithm 2 that CCG1 is
adopted only when the group size is sufficiently large such
that it will save time by using an added round to separate the
group from all other tags. However, when the group size is
small and CCG1 is not applied, E-CCG simply calls CCG for
grouping.

When designing E-CCG, we need to separate the tags in a
large group (e.g., P1) from all other tags. In our design, we
have used CCG1 which is modified from CCG. Alternatively
we may also use FIG for this purpose. Fig. 10(b) compares
these two choices. As we can see, FIG takes significantly more
time to label tags in P1 than CCG1, which validates our choice
of CCG1 in the design of E-CCG.

E. Performance of Multiple Grouping

Multiple grouping assigns each tag one or more group IDs.
In this subsection, we evaluate the performance of our multiple
grouping protocols. We set k = 50 and n = 10, 000. There are
three sets of simulations, where each tag is randomly classified
into up to 2, 3, and 4 groups, respectively. Fig. 11 compares
the versions of TPG, EPG, FIG, and CCG that are modified
for multiple grouping in Section VI. The results show that
CCG considerably outperforms FIG in terms of execution time
and FIG in turn outperforms EPG that outperforms TPG. For
example, when each tag belongs to no more than 2 groups,
TPG takes 45.4s to perform the task of multiple grouping.
In comparison, EPG reduces the time to 39.8s, due to the
less transmissions of group IDs. FIG further reduces the time
to 10.6s, about one fifth that of TPG, thanks to its use of

Fig. 11: Performance of multiple grouping.

filter for marking tags in each group and thus avoiding the
transmissions of most tag IDs. CCG works best and takes
only 5.4s, less than one eighth of the time needed by TPG.
Similar conclusions can also be drawn from the other two
cases with each tag belonging to no more than 3 and 4 groups,
respectively: CCG performs best, FIG follows, then EPG, and
TPG performs worst.

VIII. RELATED WORK

In RFID systems, much prior work concentrates on the tag
identification problem that collects IDs from all tags in an
interrogation zone [29], [30], [33], [34]. Due to limited on-chip
resources, tags cannot self-regulate their radio transmissions.
The main design principle of tag identification is thus to re-
move tag-to-tag collisions in open wireless channels. Existing
tag identification protocols fall into two categories: Aloha-
based protocols [29], [33] and tree-based protocols [30], [34].
The key idea of Aloha-based protocols is to let tags transmit
data in different slots. Each tag randomly selects a slot and
only the slots chosen by exactly one tag can be used to collect
ID information, effectively avoiding tag-to-tag collisions. The
tree-based protocols apply a dynamic ID prefix of tag IDs
to progressively split a tag set into ever smaller subsets until
only one tag is left in each subset. This process is iteratively
executed until all tags are successfully identified.

In recent years, the research moves on to mining functional
RFID data. For example, cardinality estimation [15]–[17] is
to count the number of tags in a large-scale RFID system;
missing tag identification [26], [27], [35] aims to identify
whether and which tags are absent; searching problems [8],
[25], [36] try to find a group of interested tags from the
existing tag set; unknown tag detection [37]–[40] proposes
to quickly detect whether new tags exist or not in the current

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

system. To efficiently tackle these problems, many advanced
solutions have been proposed, without collecting all tag IDs.
However, little previous work studied the grouping problem.
Traditional polling [41], as a widely used anti-collision tech-
nique, provides a request-response way to interrogate RFID
tags. It can be tailored to the grouping problem (Section II-C),
but the performance is poor. Some recent polling protocols
[21], [35] use advanced data structures, e.g., Bloom filters,
to reduce the transmission of tag IDs. In the polling phases,
however, these protocols still adopt the traditional polling.
These work targets at some specific applications, such as tag
information collection [21] and missing tag identification [35].

IX. CONCLUSION

This paper investigates a new problem of how to quickly
group a large number of tags in RFID systems according to a
pre-specified tag partition. This function plays a fundamental
role in improving the inventory and management efficiency in
various RFID-enabled applications. We present three grouping
protocols. The first one is called Enhanced Polling Grouping
(EPG) protocol, which avoids repeatedly transmitting the same
group ID as the baseline polling protocol does. The second one
is called Filter Grouping (FIG) protocol, which uses Bloom
filters rather than polling to label tags group by group. Joint
optimization together with a greedy group ordering scheme
is proposed to minimize the protocol’s execution time. The
third protocol is called ConCurrent Grouping (CCG) protocol.
It simultaneously labels tags of different groups in a single
time frame. An enhanced CCG is designed to improve the
performance in handling large groups. Simulation results show
that CCG performs best, taking about half the execution time
of FIG, one tenth the execution time of EPG, and only one
eleventh the execution time of the baseline protocol TPG.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China (No.61272418, 61373181), the
National Science and Technology Support Program of China
(No.2012BAK26B02), the Future Network Prospective Re-
search Program of Jiangsu Province (No.BY2013095-5-02),
the Lianyungang City Science and technology project (Indus-
try Development) (No.CG1420), the Fundamental Research
Funds for the Central Universities, HK PolyU G-SB40, US
National Science Foundation grant NeTS-1409797, and CNS-
1115548. Lijun Chen is the corresponding author.

REFERENCES

[1] J. Liu, B. Xiao, S. Chen, F. Zhu, and L. Chen, “Fast RFID grouping
protocols,” in Proc. of IEEE INFOCOM, 2015, pp. 1948–1956.

[2] L. Ni, Y. Liu, Y. C. Lau, and A. Patil, “LANDMARC: Indoor location
sensing using active RFID,” in Proc. of IEEE PerCom, 2003, pp. 407–
415.

[3] Y. Liu, Z. Yang, X. Wang, and L. Jian, “Location, localization, and
localizability,” Journal of Computer Science and Technology, vol. 25,
no. 2, pp. 274–297, 2010.

[4] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram:
Real-time tracking of mobile RFID tags to high precision using cots
devices,” in Proc. of ACM MobiCom, 2014, pp. 237–248.

[5] C.-H. Lee and C.-W. Chung, “RFID data processing in supply chain
management using a path encoding scheme,” IEEE Trans. on Knowl.
and Data Eng., vol. 23, no. 5, pp. 742–758, 2011.

[6] S. Qi, Y. Zheng, M. Li, Y. Liu, and J. Qiu, “Scalable data access control
in RFID-enabled supply chain,” in Proc. of IEEE ICNP, 2014, pp. 71–
82.

[7] J. Liu, B. Xiao, K. Bu, and L. Chen, “Efficient distributed query
processing in large RFID-enabled supply chains,” in Proc. of IEEE
INFOCOM, 2014, pp. 163–171.

[8] M. Chen, W. Luo, Z. Mo, S. Chen, and Y. Fang, “An efficient tag search
protocol in large-scale RFID systems,” in Proc. of IEEE INFOCOM,
2013, pp. 899–907.

[9] M. Chen, S. Chen, and Q. Xiao, “Pandaka: A lightweight cipher for
RFID systems,” in Proc. of IEEE INFOCOM, 2014, pp. 172–180.

[10] X. Liu, K. Li, G. Min, Y. Shen, A. Liu, and W. Qu, “A multiple
hashing approach to complete identification of missing RFID tags,” IEEE
Transactions on Communications, vol. 62, no. 3, pp. 1046–1057, 2014.

[11] K. Bu, B. Xiao, Q. Xiao, and S. Chen, “Efficient misplaced-tag pin-
pointing in large RFID systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 11, pp. 2094–2106, 2012.

[12] J. Liu and L. Chen, “Placement of multiple RFID reader antennas to
alleviate the negative effect of tag orientation,” in Proc. of IEEE ICPADS,
2012, pp. 432–439.

[13] L. Xie, Q. Li, C. Wang, X. Chen, and S. Lu, “Exploring the gap
between ideal and reality: An experimental study on continuous scanning
with mobile reader in RFID systems,” IEEE Transactions on Mobile
Computing, vol. 14, no. 11, pp. 2272–2285, 2015.

[14] L. Xie, H. Han, Q. Li, J. Wu, and S. Lu, “Efficiently collectiing
histograms over RFID tags,” in Proc. of IEEE INFOCOM, 2014, pp.
145–153.

[15] C. Qian, H. Ngan, Y. Liu, and L. Ni, “Cardinality estimation for large-
scale RFID systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 9, pp. 1441–1454, 2011.

[16] M. Shahzad and A. X. Liu, “Every bit counts: Fast and scalable RFID
estimation,” in Proc. of ACM MobiCom, 2012, pp. 365–376.

[17] Y. Zheng and M. Li, “Towards more efficient cardinality estimation
for large-scale RFID systems,” IEEE/ACM Transactions on Networking,
vol. 22, no. 6, pp. 1886–1896, 2014.

[18] X. Liu, B. Xiao, K. Li, J. Wu, A. Liu, H. Qi, and X. Xie, “RFID
cardinality estimation with blocker tags,” in Proc. of IEEE INFOCOM,
2015, pp. 1679–1687.

[19] S. Chen, M. Zhang, and B. Xiao, “Efficient information collection
protocols for sensor-augmented RFID networks,” in Proc. of IEEE
INFOCOM, 2011, pp. 3101–3109.

[20] Y. Zheng and M. Li, “Read bulk data from computational RFIDs,” in
Proc. of IEEE INFOCOM, 2014, pp. 495–503.

[21] Y. Qiao, S. Chen, T. Li, and S. Chen, “Energy-efficient polling protocols
in RFID systems,” in Proc. of ACM MobiHoc, 2011, pp. 25:1–25:9.

[22] Epcglobal. EPC radio-frequency identity protocols class-1 generation-2
UHF RFID protocol for communications at 860 mhz-960mhz version
1.2.0, Tech. Rep., 2008.

[23] WISP, “http://wisp.wikispaces.com/.”
[24] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.
[25] Y. Zheng and M. Li, “Fast tag searching protocol for large-scale RFID

systems,” IEEE/ACM Transactions on Networking, vol. 21, no. 3, pp.
924–934, 2013.

[26] ——, “P-MTI: Physical-layer missing tag identification via compressive
sensing,” in Proc. of IEEE INFOCOM, 2013, pp. 917–925.

[27] W. Luo, S. Chen, T. Li, and S. Chen, “Efficient missing tag detection
in RFID systems,” in Proc. of IEEE INFOCOM, 2011, pp. 356–360.

[28] H. Vogt, “Efficient object identification with passive RFID tags,” in Proc.
of IEEE PerCom, 2002, pp. 98–113.

[29] S.-R. Lee, S.-D. Joo, and C.-W. Lee, “An enhanced dynamic framed
slotted ALOHA algorithm for RFID tag identification,” in Proc. of
MobiQuitous, 2005, pp. 166–172.

[30] L. Pan and H. Wu, “Smart trend-traversal: A low delay and energy
tag arbitration protocol for large RFID systems,” in Proc. of IEEE
INFOCOM, 2009, pp. 2571–2575.

[31] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.
Knuth, “On the lambert W function,” in ADVANCES IN COMPUTA-
TIONAL MATHEMATICS, 1996, pp. 329–359.

[32] M. Kodialam and T. Nandagopal, “Fast and reliable estimation schemes
in RFID systems,” in Proc. of ACM MobiCom, 2006, pp. 322–333.

[33] L. Xie, B. Sheng, C. Tan, H. Han, Q. Li, and D. Chen, “Efficient tag
identification in mobile RFID systems,” in Proc. of IEEE INFOCOM,
2010, pp. 1–9.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[34] C. Qian, Y. Liu, R. Ngan, and L. Ni, “ASAP: Scalable collision
arbitration for large RFID systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 7, pp. 1277–1288, 2013.

[35] T. Li, S. Chen, and Y. Ling, “Identifying the missing tags in a large
RFID system,” in Proc. of ACM MobiHoc, 2010, pp. 1–10.

[36] X. Liu, B. Xiao, S. Zhang, K. Bu, and A. Chan, “STEP: A time-efficient
tag searching protocol in large RFID systems,” IEEE Transactions on
Computers, vol. 64, no. 11, pp. 3265–3277, 2015.

[37] X. Liu, B. Xiao, S. Zhang, and K. Bu, “Unknown tag identification
in large RFID systems: An efficient and complete solution,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 6, pp.
1775–1788, 2015.

[38] F. Zhu, J. Liu, and L. Chen, “Fast physical-layer unknown tag identi-
fication in large-scale RFID systems,” in Proc. of IEEE GLOBECOM,
2014, pp. 511–516.

[39] X. Liu, K. Li, G. Min, K. Lin, B. Xiao, Y. Shen, and W. Qu, “Efficient
unknown tag identification protocols in large-scale RFID systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 12, pp.
3145–3155, 2014.

[40] X. Liu, H. Qi, K. Li, I. Stojmenovic, A. Liu, Y. Shen, W. Qu, and
W. Xue, “Sampling bloom filter-based detection of unknown RFID tags,”
IEEE Transactions on Communications, vol. 63, no. 4, pp. 1432–1442,
2015.

[41] Y. Qiao, S. Chen, and T. Li, RFID as an Infrastructure. Springer New
York, 2013.

Jia Liu (liujia@smail.nju.edu.cn) received his B.E.
degree in Software Engineering from Xidian Univer-
sity, Xi’an, China, in 2010. He is currently a Ph.D.
student with the Department of Computer Science
and Technology at Nanjing University of China. His
research interests include RFID technologies and
wireless sensor networks. He is a member of IEEE.

�

Min Chen (min@cise.ufl.edu) received his B.E.
degree in Information Security from the University
of Science and Technology of China in 2011. He
is currently a Ph.D. student with the Department of
Computer and Information Science and Engineering
at the University of Florida. His advisor is Dr.
Shigang Chen, and his research interests include
RFID technologies and network security.

Dr. Bin Xiao (csbxiao@comp.polyu.edu.hk) re-
ceived the B.Sc and M.Sc degrees in Electronics En-
gineering from Fudan University, China, and Ph.D.
degree in computer science from University of Texas
at Dallas, USA. After his Ph.D. graduation, he joined
the Department of Computing of the Hong Kong
Polytechnic University as an Assistant Professor.
Now he is an associate professor and the director
of the Mobile Cloud Computing Lab. His research
is mainly on mobile cloud computing, smart phone
technology, network security, and wireless networks.

He is the editor of 3 books and has published more than 100 technical papers
in international journals and conferences. Currently, he is the associate editor
of the International Journal of Parallel, Emergent and Distributed Systems.
He is the IEEE Senior member.

Feng Zhu (zhufeng@smail.nju.edu.cn) received his
B.E. degree in Information Security from Harbin
Institute of Technology, in 2011. He is currently a
Ph.D. student with the Department of Computer Sci-
ence and Technology at Nanjing University of China.
His research interests include RFID technologies. He
is a member of IEEE.

Dr. Shigang Chen (sgchen@cise.ufl.edu) is a pro-
fessor with Department of Computer and Infor-
mation Science and Engineering at University of
Florida. He received his B.S. degree in computer sci-
ence from University of Science and Technology of
China in 1993. He received M.S. and Ph.D. degrees
in computer science from University of Illinois at
Urbana-Champaign in 1996 and 1999, respectively.
After graduation, he had worked with Cisco Systems
for three years before joining University of Florida
in 2002. He served on the technical advisory board

for Protego Networks Inc. in 2002-2003 and as CTO for Chance Media Inc.
during 2012-2014. His research interests include computer networks, Internet
security, wireless communications, and distributed computing. He published
more than 140 peer-reviewed journal/conference papers. He received IEEE
Communications Society Best Tutorial Paper Award and NSF CAREER
Award. He holds 12 US patents. He is an associate editor for IEEE/ACM
Transactions on Networking, and served as editors for a number of other
journals. He served in various chair positions or as committee members for
numerous conferences. He is a fellow of IEEE.

Dr. Lijun Chen (chenlj@nju.edu.cn) received his
B.S. degree in Electrical Engineering from the Xi’an
University of Science and Technology, P. R. China,
in 1982 and his M.S. degree and Ph.D. degree,
both in Automatic Control from China University
of Mining and Technology, P. R. China, in 1993
and 1998 respectively. He was a Post Doctoral
Follow at the Nanjing University (1998 -2000), P.
R. China and the Michigan State University (2001-
2002), U.S.A, and a Visiting Scholar at The Hong
Kong Polytechnic University in 2007. His current

research interests include distributed computing and ubiquitous network.

