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Abstract

Feature representation and object category classifi-

cation are two key components of most object detec-

tion methods. While significant improvements have been

achieved for deep feature representation learning, tradi-

tional SVM/softmax classifiers remain the dominant meth-

ods for the final object category classification. However,

SVM/softmax classifiers lack the capacity of explicitly ex-

ploiting the complex structure of deep features, as they are

purely discriminative methods. The recently proposed dis-

criminative dictionary pair learning (DPL) model involves

a fidelity term to minimize the reconstruction loss and a dis-

crimination term to enhance the discriminative capability

of the learned dictionary pair, and thus is appropriate for

balancing the representation and discrimination to boost

object detection performance. In this paper, we propose

a novel object detection system by unifying DPL with the

convolutional feature learning. Specifically, we incorporate

DPL as a Dictionary Pair Classifier Layer (DPCL) into the

deep architecture, and develop an end-to-end learning al-

gorithm for optimizing the dictionary pairs and the neural

networks simultaneously. Moreover, we design a multi-task

loss for guiding our model to accomplish the three cor-

related tasks: objectness estimation, categoryness compu-

tation, and bounding box regression. From the extensive

experiments on PASCAL VOC 2007/2012 benchmarks, our

approach demonstrates the effectiveness to substantially im-

prove the performances over the popular existing object de-

tection frameworks (e.g., R-CNN [13] and FRCN [12]), and

achieves new state-of-the-arts.

1. Introduction

Aiming at finding instances of real-world objects from

images or video sequences, object detection has been at-

∗Corresponding author is Liang Lin (Email: linliang@ieee.org).

tracting great interests in computer vision community. Al-

though its performance has been improved substantially in

the past decade [31, 34, 21, 8, 30, 33, 13, 16], object detec-

tion remains a challenge problem under complex and un-

constrained environments.

Recently, ground breaking progress on object detection

has been made due to the advances in deep convolutional

neural networks (CNNs) [19, 28] and the increasing size

of training dataset [5]. The state-of-the-art object detection

methods generally adopt the region-based CNN framework

which includes three components: region proposal, feature

extraction and object category classification. By far, many

region proposal methods [31, 3, 24] and deep CNN archi-

tectures [13, 26, 28, 27, 16, 12] have been proposed, but not

too many methods have been proposed for object category

classification, where the SVM/softmax classifiers are dom-

inantly used. Several complex classifiers, such as network

on convolutional feature maps (NoCs) [25] and structured

SVM [38], have been developed to improve the accuracy

and robustness of object detection. These classifiers, how-

ever, are fully discriminative methods which directly learn

an optimal mapping from the CNN features to the desired

classification output.

Combining of discriminative learning with representa-

tion or generative modeling is beneficial to exploit the com-

plex structure of CNN features for improving object detec-

tion. As an extension of the reconstructive dictionary learn-

ing proposed in image and signal modeling, discriminative

dictionary learning (DDL) has achieved great success in the

last decade [22, 9, 36, 18]. DDL aims to learn a dictio-

nary by considering both its representation accuracy and

discriminative capability, and thus it is more suitable to act

as a classifier for object category classification. However,

the existing DDL methods cannot achieve state-of-the-art

performance for large scale image classification and object

detection, partially due to that the DDL models have only

been evaluated with conventional handcrafted features (e.g.,
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SIFT and HOG). Therefore, it is interesting to investigate

whether we can significantly boost the object detection per-

formance of DDL by utilizing more powerful deep CNN

features.

Computational burden is another obstacle which restricts

the application of DDL to large scale scenarios. Most DDL

models involve costly ℓ0- or ℓ1-norm regularization to gen-

erate sparse coding vectors, limiting their use to the scenario

with high feature dimension and large volumes of data. For-

tunately, Gu et al. [15] suggested a projective dictionary

pair learning (DPL) method, which improves greatly the

computational efficiency. To avoid costly sparse coding,

DPL adopts an analysis dictionary to generate coding vec-

tor via linear projection and a synthesis dictionary for class-

specific discriminative reconstruction, respectively. In this

work, we propose to design a dictionary pair classifier layer

(DPCL) at the end of the CNN for object detection. For

readability, some main abbreviations of this paper are listed

in Tab. 1.

Rather than learning the CNN and the dictionary pair

separately, we adopt a joint training mechanism for simul-

taneous feature learning and classifier learning. A dictio-

nary pair back propagation (DPBP) algorithm is proposed

to jointly update the parameters of CNN and DPCL in an

end-to-end learning manner. With DPBP, we can fine-tune

the trained CNN to extract discriminative features special-

ized to DPCL. Meanwhile, DPCL is tailored to the learned

CNN features and better detection results can be expected.

Furthermore, we present a sample weighting scheme in

DPCL to improve the localization accuracy. As analyzed

in [13], poor localization remains the major type of detec-

tion errors. One major cause of inaccurate localization is

that the objective of classifier is to correctly predict the cat-

egory label of the object, while the objective of detection is

to accurately estimate the location. To make classification

conformable with localization, careful selection of thresh-

olds of the intersection-over-union (IoU) with the ground

truth is important to define positive and negative sam-

ples [13]. To alleviate the inaccurate localization, Zhang

et al. [38] adopted the structured SVM classifier to simulta-

neously predict category and location, while Girshick [12]

suggested a multi-task loss to balance between classifica-

tion and localization. Different from [38, 12], we introduce

a predefined weight to each training sample based on its IoU

overlapping with the ground truth bounding box, encourag-

ing the samples with higher IoUs (i.e., better localization) to

have lower reconstruction residual (i.e., higher score). Ex-

perimental results show that the weighting scheme in DP-

CLs can further improve the detection performance.

Motivated by the success of multi-task learning [4] in

object detection [12], we present a novel multi-task loss

for joint training of the DPCL and bounding-box regressor.

In [12], Girshick considered two learning tasks, where the

classification task loss is on the probability distribution over

K + 1 categories (K object categories and one background

category), and the location task loss is on the bounding box

regression offsets. In this work, we divide the classifica-

tion task into two related ones, i.e., an objectness task to

distinguish object from background and a categoryness task

to recognize the category of the object. Although the ob-

jectness [2] can be used as a pre-filtering process in object

detection [13, 16], its potential remains untapped and not

fully released. First, most objectness measures are based on

hand-crafted features, while the learned objectness on deep

CNN features can further benefit object detection. Second,

the incorporation of objectness and categoryness allows us

to use the coarse-to-fine strategy for object category classi-

fication. Third, our objectness detection task is not aimed

to learn a general objectness measure but to learn a classi-

fier to distinguish background from objects of interest. To

this end, we employ two separate DPCLs to accomplish

the two correlated tasks, i.e., objectness learning and cat-

egoryness learning, and our multi-task loss includes three

tasks: objectness, categoryness, and localization. Com-

pared with [12], we adopt a hybrid fusion strategy, where

the product rule is used to fuse objectness score and cate-

goryness score into classification score, and the sum rule is

then utilized to combine classification score and localiza-

tion loss. Moreover, DPBP can also be extended to mini-

mize the multi-task loss in an end-to-end manner.

By integrating DPCL classifier training with CNN fea-

ture learning, the proposed method achieves about 3% / 2%

mAP gain over the popular existing object detection frame-

works (e.g., R-CNN [13], FRCN [12]) on PASCAL VOC

2007/2012 benchmarks, respectively. This establishes the

significance of the joint learning framework as well as the

proposed multi-task loss. In summary, the contributions of

this work are three-fold. i) A novel deep architecture is de-

veloped by integrating DPCL with CNN for objection de-

tection, and a DPBP algorithm is suggested for the end-

to-end learning of CNN and DPCL parameters. ii) Based

on the R-CNN [13]/FRCN [12] framework, we propose a

novel multi-task loss by combining objectness estimation,

categoryness computation and bounding box regression to

improve the detection performance. iii) A sample weighting

scheme is introduced to assign larger weight to the training

samples with higher IoU with the ground truth, which can

further improve the location accuracy of object detection.

DPL Dictionary Pair Learning

DPCL Dictionary Pair Classifier Layer

DPBP Dictionary Pair Back Propagation

ODP Objectness Dictionary Pair

CDP Categoryness Dictionary Pair

Table 1. Some main abbreviations are used in this paper.
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2. Related Work

Deep Convolutional Neural Networks. By directly

learning features from raw images, deep convolutional neu-

ral networks (CNNs) have made impressive progresses on

image classification, object detection, semantic segmenta-

tion and many other recognition tasks [19, 28, 13, 1, 17].

Motivated by the success of CNNs [19] on the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [5], a

variety of CNN-based object detection methods have been

proposed. Szegedy et al. [30, 6] treated object detection

as a regression problem, and trained CNNs to predict object

bounding boxes (MultiBox) or bounding box masks (Detec-

torNet). Overfeat [26] suggested by Sermanet et al. adopts

the sliding window scheme, and uses two CNNs to predict

the objectness and the true bounding box location, respec-

tively. Deformable parts models (DPMs) can also be ex-

plained from the CNN perspective, and the integration of

DPMs and CNNs has been investigated in [32, 14].

Most recent object detection methods are based on the

R-CNN framework [13], which includes three main com-

ponents: region proposal, feature extraction and object cat-

egory classification. To improve the efficiency of region

proposal generation, Szegedy et al. [29] improved Multi-

Box by using the Inception-style network, contextual fea-

tures and robust loss, while Ren et al. [24] suggested a re-

gion proposal network (RPN). To improve the efficiency of

detection network and avoid region proposal resizing, spa-

tial pyramid pooling networks (SPPnets) [16] and fast R-

CNN [12] proposed to introduce a RoI-pooling layer to ex-

tract fixed-size proposal features from shared convolutional

feature maps of the entire image. For better classification

and localization, Girshick adopted a multi-task loss, and

Zhang et al. [38] used a fine-grained Bayesian search al-

gorithm for region proposal refining and a structured SVM

classifier for simultaneous classification and localization.

Besides, contextual information, e.g., background, parts,

and segmentation, can also be utilized to improve the de-

tection performance [11, 39].

Discriminative Dictionary Learning. Discriminative

dictionary learning (DDL) plays an important role in sparse

representation or collaborative representation based classi-

fier [35, 37], and has been intensively studied in computer

vision community. Generally, there are two approaches to

enhance the discriminative capability of the learned dictio-

nary. First, the discrimination can be imposed on the coding

vectors to have a better classification performance. Jiang et

al. [18] introduced a binary class label sparse code matrix

to encourage samples from the same class to have similar

sparse codes. Mairal et al. [22] proposed a task driven dic-

tionary learning (TDDL) framework, which minimizes dif-

ferent risk functions of the coding coefficients for different

tasks. Yang et al. [36] proposed a Fisher discrimination dic-

tionary learning (FDDL) method which applies the Fisher

criterion to representation coefficients.

Second, the discrimination can also be obtained by learn-

ing structured dictionary, i.e., learning a sub-dictionary for

each class and minimizing the class-specific residual [36].

Ramirez et al. [23] used a structured incoherence term to

enforce the independence of the sub-dictionaries. Besides

the sub-dictionaries, Gao et al. [10] learned an extra shared

dictionary to encode common features shared by all classes.

To improve the efficiency of DDL, Gu et al. [15] proposed a

projective projective dictionary pair learning (DPL) model

by utilizing an analytic dictionary to estimate the represen-

tation coefficients efficiently.

3. Integration of DPCL and CNN

3.1. The Dictionary Pair Classifier Layer

3.1.1 Layer Description

Let X = [X0, ...,Xk, ...,XK ] (Xk ∈ Rd×nk , nk is

the number of training samples for the k-th category)

denote a set of previous layer’s d-dimensional outputs

for the input image regions I from K + 1 categories.

The DPCL aims to find a class-specific analysis dictio-

nary P = [P0, ...,Pk, ...,PK ] ∈ Rm(K+1)×d (Pk ∈
Rm×d) and a class-specific synthesis dictionary D =
[D0, ...,Dk, ...,DK ] ∈ Rd×m(K+1) (Dk ∈ Rd×m) to an-

alytically encode and reconstruct the feature X, where m is

the number of dictionary atoms. The sub-dictionaries Pk

and Dk form a dictionary pair for the k-th category. Given

Pk and Dk, the encoding coefficients Ak of the k-th cat-

egory training samples Xk over synthesis Dk can be ana-

lytically obtained as Ak = Pk Xk. Compared to the costly

l0-norm or l1-norm non-linear sparse coding operation in

most of the existing DDL methods, it is quite efficient to re-

solve the code Ak for the representation of Xk in DPL. To

learn such an analysis dictionary P together with the syn-

thesis dictionary D, the DPL model [15] is formulated as:

{P∗,D∗} = argmin
P,D

K
∑

k=0

‖Xk −DkPkXk‖
2
F

+Φ{P,D,X,Y},

(1)

where Y represents the category label matrix of samples

in X, and Φ{P,D,X,Y} is some discrimination term to

promote the discriminative power of D and P.

In the original DPL [15], the sub-dictionary Pk is en-

forced to project the samples Xk from another category i,

i 6= k, to a nearly null space, i.e., PkXi ≈ 0, ∀k 6= i.

With this constraint, the coefficient matrix Ak is nearly

block diagonal. However, the original DPL does not con-

sider the fact that different training samples may play dif-

ferent importance in training a discriminative model. In this

work, we introduce a diagonal importance weight matrix

Wk to the k-th category of training samples, and the pro-

posed DPCL is then defined as:
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Objectness DPCL

Categoryness DPCL

Figure 1. The flowchart of our multi-loss CNN+DPCL model. Our model is stacked up by convolutional layers, fully connected layers,

objectness DPCL and categoryness DPCL. The four values inside 2× 2 grids are corresponding to the four input regions. The final score

for each image region is the combination of objectness and categoryness.

{P∗,D∗} = argmin
P,D

K
∑

k=0

‖(Xk −DkPkXk)Wk‖
2
F

+λ‖PkXk‖
2
F + κ‖Dk‖

2
F .

(2)

where λ > 0 and κ > 0 are scalar constants, Xk denotes the

complementary data matrix of Xk from the whole training

samples X. To avoid the trivial solution of Pk = 0, an extra

constraint term ‖Dk‖
2
F is added.

The introduction of Wk is to improve the localization

performance. To this end, we assign higher weights to the

samples with better localization. By this way, lower recon-

struction residual will be expected for sample with higher

weight, and thus the reconstruction residual can be adopted

to find the proposal with better localization. Therefore, we

use the IoU with the ground truth bounding box of the k-th

object category to define Wk.

3.1.2 Learning of the Dictionary Pair

To exploit the alternating minimization algorithm for dic-

tionary pair learning, we relax Eqn. (2) by introducing a

coding coefficient matrix A:

{P∗,A∗,D∗} = arg min
P,A,D

K
∑

k=0

‖(Xk −DkAk)Wk‖
2
F

+τ‖(PkXk −Ak)Wk‖
2
F + λ‖PkXk‖

2
F + κ‖Dk‖

2
F ,

(3)

where τ is a scalar constant. All terms in the above objective

function are characterized by the squared Frobenius norm,

and thus Eqn. (3) can be efficiently solved by alternating

minimization.

By initializing P and D with random matrices with unit

Frobenius norm, the minimization for Eqn. (3) can be per-

formed by alternating between the following three steps:

(i) Fix {D, P, X}, and update A via:

A
∗
k = (DT

kDk + τI)−1(τPkXk +D
T
kXk). (4)

(ii) Fix {D, A, X}, and update P via:

P
∗
k = τAkWkW

T
k X

T
k (τXkWkW

T
k X

T
k

+λXkX
T

k + γI)−1,
(5)

where the constant γ is empirically set as 0.0001 according

to the validation set.

(iii) Fix {A, P, X}, update D via:

D
∗
k = XkWkW

T
k A

T
k (AkWkW

T
k A

T
k + κI)−1. (6)

Since all steps have closed-form solutions for {A, P,

D}, the 3-step minimization is quite efficient. We stop the

iteration when the difference between the energy in two ad-

jacent iterations is less than a threshold (e.g., 0.01).

3.2. Dictionary Pair Back Propagation

In this section, we propose a dictionary pair back prop-

agation (DPBP) algorithm for joint learning of DPCL and

CNN parameters in an end-to-end manner.

The dictionary pair (Dk,Pk) of the DPCL model can be

optimized separately, and thus Eqn. (2) can be decomposed

into the following K + 1 sub-problems:

arg min
Pk,Dk

Lk(Pk,Dk)

= arg min
Pk,Dk

‖(Xk −DkPkXk)Wk‖
2
F

+λ‖PkXk‖
2
F + κ‖Dk‖

2
F .

(7)

In DPBP, the partial derivatives with respect to

{Pk,Dk} are defined as:

∂Lk(Pk,Dk)

∂Pk

= −2Dk(I−DkPk)XkWkW
T
k X

T
k

+2λPkXkX
T

k

∂Lk(Pk,Dk)

∂Dk

= −2XkWk(I −DkPk)W
T
k X

T
kP

T
k

+2κDk

(8)
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With L =
∑K

k=0 Lk, the partial derivatives with respect

to Xk is then defined as:

∂L

∂Xk

= 2(I−P
T
kD

T
k )(Xk −DkPkXk)WkW

T
k

+
∑

k′ 6=k

2λPT
k′Pk′Xk

(9)

Once all ∂L
∂Xk

are obtained, we can perform the standard

back propagation [20] to update the CNN parameters.

3.3. Object Detection on Test Image

Given a proposal I from the test image, we first extract

the CNN feature x from I , and then define the reconstruc-

tion residual for the k-th category as:

L(x;Dk,Pk) = ‖x−DkPkx‖
2
F . (10)

The classification rule of the DPCL is

y = argmin
i

L(x;Di,Pi). (11)

When y 6= 0, we further use bounding box regression to

refine the location of the object location.

4. Optimization with Multi-Task Loss

4.1. MultiTask Loss

The proposed DPCL is a category classification method

and is not conformable with localization task. To improve

localization, Girshick [12] adopted a multi-task loss to bal-

ance classification and localization. In this method, each

proposal is classified into either background or one of the

object categories, which may not work well in distinguish-

ing background from object categories. To address this is-

sue, we further decompose the classification task into two

related ones. As illustrated in Fig. 1, the feature extracted

by the CNN layers is duplicated and simultaneously fed into

two DPCLs: the objectness DPCL layer and the category-

ness DPCL layer. The former estimates the score for being

an object, while the latter computes the scores for being a

specific object category.

Objectness Dictionary Pair Classifier Layer. The ob-

jectness usually is defined as the score of covering objects

of any category. For the purpose of measuring the object-

ness of the input region, the proposed Objectness Dictionary

Pair (ODP) layer applies two dictionary pairs {Do, Po} and

{Db, Pb} to represent objects of any category and back-

ground, respectively. If a region feature x can be better rep-

resented by the background dictionary pairs {Db, Pb}, it

is very unlikely to have objects inside. Rather than directly

identify the background according to Eqn. (11), ODP cal-

culates objectness of the input feature x for further object

detection in a soft way: a threshold T is used to distinguish

the region with large background. With the reconstruction

residual defined in Eqn. (10), the objectness score Q(x) for

the feature x of the input region is defined as:

Q(x) =

{

1− L(x;Do,Po)∑
i∈{o,b} L(x;Di,Pi)

; L(x;Do,Po)
L(x,Db,Pb)

< T ;

0, otherwise,

(12)

where T controls the precision and recall rate of detecting

background (larger T results in higher precision and lower

recall rate), and is empirically set as 0.5 according to the

validation set. Thus, our model is able to identify the back-

ground based on whether Q(x) is 0 or not.

Categoryness Dictionary Pair Classifier Layer. The

categoryness score S(x, k) denotes the likeliness that the

feature x belongs to the k-th category. In order to compute

the categoryness for object detection, the proposed Catego-

ryness Dictionary Pair (CDP) layer consists of K dictionary

pairs, where K is the number of object categories. Once

the feature x of the input region is fed, CDP will encode x

over the K category-specific dictionary pairs {Dk,Pk} and

output the reconstruction residual for each dictionary pair.

We define the categoryness S(x, k) using the reconstruction

residual as:

S(x, k) = 1−
L(x;Dk,Pk) · e

βL(x;Dk,Pk)

∑K
i=1L(x;Di,Pi) · eβL(x;Di,Pi)

, (13)

where the constant β is empirically set as 0.003 according

to the validation set.

Then, the product rule is used to fuse objectness score

and categoryness score, and the classification score Fk that

x belongs to the k-th category is defined as:

Fk(x) = S(x, k) ∗Q(x). (14)

Let φ denote the function of the CNN layers and Ii de-

note the input region with the category label yi, we have the

feature x = φ(I, ω). With the classification score Fk, the

final classification loss is defined as:

Lcls(I) =

K
∑

k=0

1(y = k) logFk(φ(I, ω))

+(1− 1(y = k)) log(1−Fk(φ(I, ω)))

+R{ω,D,P},

(15)

where 1 ∈ {0, 1} is the indicator function, and R{ω,D,P}
denotes the regularization term on the parameters of CNN

and two DPCLs.

Bounding Box Regression Loss. Our defined multi-task

loss can easily append other correlated loss, e.g., the ro-

bust loss in [12]. Let tk(I) = (tkx, t
k
y , t

k
w, t

k
h) and t∗(I) =

(t∗x, t
∗
y, t

∗
w, t

∗
h) be the predicted and ground truth bounding

boxes of the proposal I , where k denotes that the proposal

I belongs to the k-th object category. Then, the bounding

box regression loss is defined as:

Lloc(t
k(I), t∗(I)) =

∑

i∈x,y,w,h

H1(t
k
i − t∗i ), (16)
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Algorithm 1 Multi-Task CNN+DPCL Learning

Input:

Training samples I = [I1, I2, ..., IK , Ib] for K +1 classes (Ib denotes

background), pre-trained CNN layers’ parameters.

Output:

Dictionary pairs {D,P} = {{D1,P1}, {D2,P2}, ..., {DK ,PK},
{Do,Po}, {Db,Pb}}, fine-tuned CNN parameter ω, bounding box

regressors ωr .

Initialization:

1. Initialize CNN parameters ω with pre-trained network;

2. Obtain output features xi = φ(Ii;ω) for all training samples;

3. Regard φ(Ib;ω) as background samples and the other φ(Io;ω) =

[φ(I1;ω), φ(I2;ω), ..., φ(IK ;ω)] as object samples;

5. Optimize dictionary pair {D, P} as described in Sect. 3.1.2:

i. Given φ(Ib;ω) and φ(Io;ω), train {Do,Po}, {Db,Pb};

ii. Given φ(Ik;ω), train {Dk,Pk}, k = 1, ...,K.

repeat

6. Fine-tune {D,P, ω, ωr} via mini-batch based back propagation on

Lmt;

until Eqn.(18) converges.

where H1(z) is the Huber loss

H1(z) =

{

0.5x2, if |z| < 1
|z| − 0.5, otherwise

, (17)

which is robust to outliers.

We can adopt the sum rule in [12] to combine Lcls and

Lloc, and the multi-task loss is defined as:

Lmt = −
1

N

(

N
∑

i=1

Lcls(Ii) + p∗iLloc(t
k(Ii), t

∗(Ii))
)

,

(18)

where p∗i is an indicator to denote whether the proposal Ii
is an object.

4.2. Optimization

After obtaining the partial derivatives of Lmt with re-

spect to Db, Pb, Do, Po, Dk, Pk, Xk, we can extend

DPBP to fine-tune CNN+DPCL to update the dictionary

pairs, CNN parameters and bounding box regressors. To

optimize Lmt, we initialize the CNN parameters with some

pre-trained network, e.g., AlexNet [19] or VGG [27], and

initialize the dictionary pairs using the dictionary pair learn-

ing algorithm in Sect. 3.1.2. Then the DPBP algorithm is

adopted to further optimize CNN+DPCL in an end-to-end

manner. We summarize the whole learning procedure as

Alg. 1.

4.3. Inference

The inference task is to predict the detection scores and

bounding box to a given image region I . Formally, we

perform forward propagation to output the CNN feature

φ(I, ω) of the region, and then feed it into the ODP layer

and the CDP layer, simultaneously. With the learned dictio-

nary pairs, we calculate reconstruction residuals of the fea-

ture via Eqn. (10), and obtain the objectness Q(φ(I, ω)) via

Eqn. (12) as well as the categoryness S(φ(I, ω)) for each

category via Eqn. (13). Finally, our model outputs the final

object detection score via Eqn. (14) for each object cate-

gory. If Q(φ(I, ω)) > 0, we further use the bounding box

regressors to predict the object location.

5. Experiments

We demonstrate the performance of our proposed joint

feature and DPCL learning framework on serveral object

detection benchmarks. The experiments are conducted on

the commonly used Pascal VOC 2007/2012 datasets [7].

During evaluation, we adopt the PASCAL Challenge proto-

col: a correct detection should has more than 0.5 IoU with

the ground truth bounding-box. The performance is evalu-

ated by mean Average Precision (mAP).

5.1. Parameter Setting

In all experiments, we set {τ, λ, κ, β, γ, T ,m} as

{0.01, 0.01, 0.001, 0.003, 0.0001, 0.5, 64}. We consider R-

CNN [13] with AlexNet [19] / VGG [27] and FRCN with

VGG [27] as the baseline model. Following the same exper-

iment settings in [13], the employed CNN parameters are

firstly pretrained on ImageNet, and then fine-tuned on the

corresponding VOC training and validation sets by stochas-

tic gradient descent (SGD) with a 21-way softmax loss (20

object categories plus one background). Then we replace

the softmax classification layer with our proposed model,

and fine-tune the network via DPBP with learning rate start-

ing at 0.00001 and momentum beginning at 0.9. During

the fine-tuning, all regions with < 0.5 IoU overlap with a

ground-truth bounding box are treated as background, while

those with ≥ 0.5 IoU are considered as positives for the cor-

responding object category. The weight of these positives

is defined as the IoU with the ground truth bounding box.

For instance, if a region has 0.6 IoU with the ground-truth

bounding box from the cat category, then it is a positive

sample with the weight 0.6 for the further dictionary pair

learning of the cat category.

5.2. Results and Comparisons

We denote by R-CNN(Alex/VGG) [13] and FRCN [12]

the used CNN frameworks, by ODP and CDP the proposed

objectiveness and categoryness dictionary pair layers, and

by BB the Bounding Box regression in the R-CNN frame-

work. From Tab. 2, BB regression can consistently achieve

3% ∼ 4% performance gain by mAP. Therefore, we have

included BB regression for all the results listed in the Tab.

3∼5, and the comparison is fair. Our full implemented

model with the proposed DPBP in AlexNet [19] is then de-

noted as “R-CNN(Alex) + CDP + ODP”. Other variants of

our implementation are represented similarly.

In Tab. 2, we report in detail the accuracy on all ob-

ject categories of VOC 2007, compared with the meth-
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Method data mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

DPM [8] 07 33.7 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5

SS [31] 07 33.7 43.5 46.5 10.4 12.0 9.3 49.4 53.7 39.4 12.5 36.9 42.2 26.4 47.0 52.4 23.5 12.1 29.9 36.3 42.2 48.8

Regionlet [34] 07 41.7 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.6 57.0 54.5 43.4 16.4 36.6 37.7 59.4 52.3

DetNet [30] 07 30.5 29.2 35.2 19.4 16.7 3.7 53.2 50.2 27.2 10.2 34.8 30.2 28.2 46.6 41.7 26.2 10.3 32.8 26.8 39.8 47.0

R-CNN(Alex) [13] 07 54.2 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7

SPP(Alex) [16] 07 55.2 65.5 65.9 51.7 38.4 32.7 62.6 68.6 69.7 33.1 66.6 53.1 58.2 63.6 68.8 50.4 27.4 53.7 48.2 61.7 64.7

Best approach of [32] 07 46.9 49.3 69.5 31.9 28.7 40.4 61.5 61.5 41.5 25.5 44.5 47.8 32.0 67.5 61.8 46.7 25.9 40.5 46.0 57.1 58.2

R-CNN(Alex)+ODP+CDP 07 57.5 64.8 71.5 54.6 46.1 50.7 68.9 78.2 56.9 36.2 58.3 47.1 51.2 67.5 67.8 66.0 34.7 61.5 42.8 58.7 66.7

R-CNN(VGG) [13] 07 62.2 71.6 73.5 58.1 42.2 39.4 70.7 76.0 74.5 38.7 71.0 56.9 74.5 67.9 69.6 59.3 35.7 62.1 64.0 66.5 71.2

R-CNN(VGG)+BB [13] 07 66.0 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1

Best approach of [38] with BB 07 68.5 74.1 83.2 67.0 50.8 51.6 76.2 81.4 77.2 48.1 78.9 65.6 77.3 78.4 75.1 70.1 41.4 69.6 60.8 70.2 73.7

R-CNN(VGG)+ODP+CDP 07 65.7 71.0 76.5 62.8 49.5 58.3 76.9 81.1 74.0 43.5 72.5 58.1 71.8 75.2 74.0 70.2 42.2 65.2 56.9 64.9 70.0

R-CNN(VGG)+ODP+CDP+BB 07 68.6 75.0 79.3 65.3 52.8 60.9 80.2 81.7 77.0 45.2 75.5 62.5 76.1 80.3 74.8 71.7 42.1 68.1 59.4 72.3 71.7

Table 2. Test set mAP for VOC 2007. The entries with the best APs for each object category are bold-faced. Training data key: “07”:

VOC07 trainval.

Method data mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FRCN 07 66.9 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8

FRCN+CDP+ODP 07 71.1 78.6 78.9 70.4 57.8 47.7 83.1 82.5 84.2 51.8 75.7 69.1 80.4 82.1 77.7 76.3 42.4 69.0 68.6 77.6 67.3

FRCN 07+12 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

FRCN+CDP+ODP 07+12 73.4 79.6 80.0 70.6 65.1 50.0 86.1 85.4 84.1 54.2 79.5 71.5 82.0 83.9 79.3 77.1 44.6 69.2 74.1 83.3 69.2

Table 3. Test set mAP for VOC 2007. The entries with the best APs for each object category are bold-faced. Training data key: “07”:

VOC07 trainval, “07+12”: VOC07 trainval union with VOC12 trainval, “07++12”: VOC07 trainval and test with VOC12 trainval.

Method data mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FRCN 12 65.7 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7

FRCN+CDP+ODP 12 66.9 81.0 75.1 69.8 50.0 43.6 73.4 71.0 87.7 44.4 69.6 54.4 85.5 77.2 77.8 72.0 37.1 66.4 58.8 77.0 65.5

FRCN 07++12 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2

FRCN+CDP+ODP 07++12 69.7 82.4 78.1 72.1 55.7 44.3 77.6 73.3 89.4 49.1 73.4 56.3 87.0 80.2 79.5 74.4 40.9 67.0 66.9 78.9 67.3

Table 4. Test set mAP for VOC 2012. The entries with the best APs for each object category are bold-faced. Training data key: “12”:

VOC07 trainval, “07++12”: VOC07 trainval and test with VOC12 trainval.

ods based on hand-crafted feature engineering [8, 34, 31]

and deep CNNs [30, 13, 16, 38, 32]. Given the same

CNN and region proposals (AlexNet), our proposed model,

R-CNN(Alex)+ODP+CDP, achieves the mAP of 57.5%,

distinctly superior to the other six competing methods,

i.e., 33.7% [8], 33.7% [31], 41.7% [34], 46.9% [32],

30.5% [30], 54.2% [13] and 55.2% [16]. Given another

network architecture VGG, our R-CNN(VGG)+ODP+CDP

model obtains 65.7%/68.6% mAP with/without bounding

box regression, and is comparable with the recently pub-

lished state-of-the-art method [38].

Tab. 3 and Tab. 4 demonstrate that our proposed model

FRCN+CDP+ODP can consistently achieve 3% and 2%

performance gain over FRCN on VOC 2007 and VOC 2012

datasets, and also justify that our model is robust to different

CNN frameworks.

Fig. 2 demonstrates some object detection examples ob-

tained by the proposed method and FRCN. Thanks to the

use of reconstruction residual in both objectness estimation

and categoryness calculation, the selected bounding box

with optimal detection score by our method has fewer back-

ground, as shown in Fig. 2 (a). When one bounding box

covers more background, its reconstruction residual over

the objectness dictionary pairs will be larger, resulting in

a lower detection score. Thanks to the divide-and-conquer

manner brought by ODP and CDP, our model can recognize

bikebike

tv-monitortv-monitor

chair
chair

chair

chair

car

person

person

dog

cat

cat

Figure 2. Detection examples from PASCAL VOC 2007 dataset.

The boxes and category labels obtained by baseline FRCN is in

green, and those obtained by the proposed structure model is in

red.

more objects (Fig. 2 (b)) in the image with better accuracy

(Fig. 2 (c)).

5.3. Analysis

For further evaluation, we conduct the following three

empirical analysis under different settings. To show the ad-

vantages of the proposed model, we directly employ the pre-
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Method data mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FRCN 07+12 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

FRCN+softmax+ODP 07+12 72.3 81.3 79.7 71.6 65.4 47.9 86.6 84.0 85.6 48.4 78.6 70.2 80.4 82.9 77.6 70.8 43.7 69.8 71.3 81.8 69.6

FRCN+CDP (w/o FT) 07+12 70.2 74.7 76.1 68.3 60.2 43.6 79.8 79.1 82.7 50.5 77.3 69.9 83.9 81.0 72.0 68.8 37.4 73.3 71.8 77.2 76.7

FRCN+CDP 07+12 70.9 78.1 78.8 70.1 57.8 47.8 84.1 82.9 84.1 51.7 75.2 67.5 79.7 82.3 77.0 76.2 42.5 68.2 68.4 77.6 67.7

FRCN+CDP+ODP (w/o FT) 07+12 72.4 83.0 83.4 77.1 56.1 42.7 83.5 72.8 90.5 52.5 73.3 62.0 90.0 81.8 85.1 69.1 44.0 71.2 73.6 85.1 72.0

FRCN+CDP+ODP (w/o weights) 07+12 71.1 78.9 79.0 70.5 59.0 47.2 83.7 82.7 84.7 51.5 75.3 69.1 80.3 82.4 77.6 76.2 41.8 67.8 69.4 77.3 67.7

FRCN+CDP+ODP 07+12 73.4 79.6 80.0 70.6 65.1 50.0 86.1 85.4 84.1 54.2 79.5 71.5 82.0 83.9 79.3 77.1 44.6 69.2 74.1 83.3 69.2

Table 5. Test set mAP for VOC 2007. The entries with the best APs for each object category are bold-faced. “07+12”: VOC07 trainval

union with VOC12 trainval.

trained CNN models (VGG [27]) under the FRCN frame-

work, and perform component analysis on the VOC 2007

dataset.

(I) We demonstrate the effectiveness of incorporating

objectness estimation into our model for object detection.

That is, we discard the ODP in our model, and train it only

with the CDP via DPBP. Note that, the number of dictio-

nary pairs is now 21 (20 object categories plus background).

We denote the model without ODP as “FRCN+CDP”. Sim-

ilarly, we introduce ODP into FRCN and keep its softmax

layer and denote this scheme as “FRCN+softmax+ODP”. In

FRCN+softmax+ODP, we directly adopt the FRCN model

fine-tuned on PASCAL VOC 07+12, which is provided

by the authors. Based on its feature representation, we

train an extra ODP classifier, and use the original soft-

max classifier to replace CDP for object detection. As

Tab. 5 reports, FRCN+softmax+ODP achieves 2.3% per-

formance gain. “FRCN+CDP” drops by 1.0% the perfor-

mance. This is because there are too many background sam-

ples to achieve fine level representation of objects. Hence,

owe to detecting objects in a divide-and-conquer strategy,

ODP makes great contributions to improve the detection ac-

curacy.

(II) To clarify the significance of the proposed DPBP for

network fine-tuning, we directly replace the softmax layer

of FRCN by the proposed ODP and CDP layers. We de-

note these models as “FRCN+ODP+CDP (w/o FT)” and

“FRCN+CDP (w/o FT)”. The results demonstrate that fine-

tuning can obtain about 1.0% performance gain.

(III) To demonstrate the effectiveness of predefined

weights for training samples, we set all weights to 1 in our

model. That is, the training samples have the same weights

during the dictionary pair training inside ODP and CDP. We

denote this model as “Ours (w/o weights)”, and compare

it with the original version “Ours (full)”. As illustrated in

Fig. 3, the test error rate of “Ours (w/o weights)” is much

higher than ”Ours (full)” after 10,000 iterations. The reason

is that the category-specific dictionary pair is introduced to

represent the parts of other category or background inside

the training examples. By means of regarding the IoU as the

predefined weights of training samples, this phenomenon

can be suppressed. From Fig. 3, one can see that the in-

troduced weights can make the training phase stable and

achieve a lower error rate. Tab. 5 also demonstrates that
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Figure 3. Test error rates with/without weighted training samples

in the deep model. The solid curve represents our full model, and

the dashed curve represents our model without using weights.

“FRCN+ODP+CDP” with weights can improve about 2%

mAP, compared with “FRCN+ODP+CDP (w/o weights)”.
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6. Conclusion

In this paper, we presented dictionary pair classifier-

driven CNNs for object detection, where dictionary pair

back propagation (DPBP) is proposed for the end-to-end

learning of dictionary pair classifiers and CNN representa-

tion, and sample weighting is adopted to improve the local-

ization performance. Furthermore, a multi-task loss is sug-

gested for joint training of the DPCLs and bounding-box

regressor. Experiments demonstrated the superiority of the

proposed framework. In the future, we will apply our model

with other powerful CNNs to improve detection accuracy.
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