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Abstract

Data clustering is the task to group the data sam-
ples into certain clusters based on the relationships
of samples and structures hidden in data, and it is a
fundamental and important topic in data mining and
machine learning areas. In the literature, the spec-
tral clustering is one of the most popular approach-
es and has many variants in recent years. Howev-
er, the performance of spectral clustering is deter-
mined by the affinity matrix, which is usually com-
puted by a predefined model (e.g., Gaussian kernel
function) with carefully tuned parameters combina-
tion, and may not optimal in practice. In this paper,
we propose to consider the observed data clustering
as a robust matrix factorization point of view, and
learn an affinity matrix simultaneously to regular-
ize the proposed matrix factorization. The solution
of the proposed adaptive manifold regularized ma-
trix factorization (AMRMF) is reached by a nov-
el Augmented Lagrangian Multiplier (ALM) based
algorithm. The experimental results on standard
clustering datasets demonstrate the superior perfor-
mance over the exist alternatives.

1 Introduction
The task of data clustering partitions the input data samples
into certain clusters such that the samples in a same group
would share high similarity to each other, and it has been
widely investigated in the data mining and machine learning
areas [Zhang et al., 2012; Wang et al., 2013; Xu et al., 2017;
Liu et al., 2017]. Since the data clustering could be re-
garded as a special case of classification but without any
training data, the clustering results always highly depend on
the data similarity learning [Nie et al., 2014]. In the past
decades, many clustering algorithms have been proposed,
e.g., k-means clustering [Hartigan and Wong, 1979], hierar-
chical clustering [Jain et al., 1999], spectral clustering [von
Luxburg, 2007; Shi and Malik, 2000], subspace clustering
[Vidal, 2011], and matrix factorization based methods [Ding
et al., 2010]. Among which, our proposed method shares both
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of the advantages of the spectral clustering and matrix factor-
ization, therefore we briefly review the related works along
these two directions, respectively.

Spectral clustering is one of the most important clustering
techniques in the literature and has demonstrated its strong
capability in group objects by analyzing complex data struc-
tural information [Yang et al., 2016]. Specifically, it assumes
that any two data points in the high density region of the
low dimensional data manifold should share the same clus-
ter. In order to capture the nonlinear and low dimensional
manifold structure of the input data, an affinity matrix (or
data similarity matrix) is required as input [He et al., 2011;
Guo, 2015], and then the cluster assignment could be ob-
tained by the spectrum of that affinity matrix. Traditional-
ly, the Gaussian kernel function is usually employed to con-
struct such affinity matrix [Huang et al., 2015]. In recen-
t years, some advanced techniques have been proposed to
explore some better affinity matrices or data representations,
e.g., constrained Laplacian rank [Nie et al., 2016a], clustering
with adaptive neighbors [Nie et al., 2014], low-rank represen-
tation [Liu et al., 2013], least squares regression [Lu et al.,
2012], and robust subspace segmentation [Guo, 2015]. How-
ever, the spectral clustering is basically a two-steps approach,
thus usually a simple k-means would be used after the affinity
matrix has been learned, which may cause sub-optimal and
unscalable clustering results due to the drawbacks inherited
by the k-means clustering [Xu et al., 2016].

The non-negative matrix factorization (NMF) aims to find
two non-negative matrices whose product provides a good
approximation to the observation feature matrix [Liu and
Tao, 2016], thus it could be used for data clustering by in-
terpreting the two factor matrices as the cluster indicator
and latent feature matrix, respectively [Ding et al., 2010;
Cai et al., 2011]. In addition, various of priories have been
added into the model to regularize the matrix factorization
more fit for the task of data clustering, e.g., the manifold
regularization [Huang et al., 2014] and sparsity constrain-
t [Wang et al., 2015]. However, there are still following
issues which may easily achieve poor performance in the
matrix factorization based clustering. Firstly, as discussed
above, most of exist methods directly introduce the Gaus-
sian kernel derived Laplacian matrix for manifold regular-
ization, while ignore to explore a more meaningful affini-
ty matrix to better regularize the model. Secondly, the s-
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tandard NMF uses the `2-norm based squared residue min-
imization to measure the loss, which would be easily ef-
fected by the noises and outliers [Meng and la Torre, 2013;
Huang et al., 2014].

In this contribution, we propose a novel adaptive manifold
regularized matrix factorization (AMRMF) algorithm for da-
ta clustering, which avoids the risks mentioned in the above
sections. In detail, the major advantages of the proposed al-
gorithm are summarized as follows.

• The AMRMF model regards the clustering in a matrix
factorization point of view, thus the desired data labels
could be explicitly obtained from one of the factor ma-
trices, i.e., the cluster indicator matrix. By such way,
the AMRMF could always arrive at a scalable and re-
produceable result in practice, which is superior to the
traditional methods such as k-means and spectral clus-
tering.
• The AMRMF model jointly learns an affinity matrix

with the matrix factorization, therefore, the ideal data
similarity under our assumption has been well uncov-
ered, and the learned affinity matrix may better guide the
manifold regularization to fit the clustering task. Com-
pare to the exist graph clustering methods which direct-
ly address the Gaussian kernel function to construct the
affinity matrix, the proposed AMRMF reveals a more
flexible, meaningful but parameter-free way.
• The AMRMF model employs the `2,1-norm to measure

the loss of matrix factorization, therefore, compare to
the conventional `2-norm based matrix factorization, the
proposed AMRMF model would not sensitive to the data
noises and outliers and could be better applied to practi-
cal data mining applications.

However, since the proposed AMRMF model learns the
data similarity matrix and cluster indicator simultaneously
and introduces a new constraint (i.e., the `2,1-norm), the con-
ventional auxiliary function optimization method is no longer
applicable for our AMRMF problem. Therefore, we have
figured out a new Augmented Lagrangian Multiplier (ALM)
based procedure to get the solution of our proposed objective
function. The rest of the paper is structured as follows: sec-
tion 2 introduces the detailed objective function of the pro-
posed AMRMF model, section 3 presents an efficient op-
timization procedure to solve the AMRMF objective func-
tion. After that, the experimental results on several real world
datasets are reported in section 4, followed by the conclusions
in section 5.

2 Adaptive Manifold Regularized Matrix
Factorization

In this section, we present the proposed AMRMF model by
first formulating the objective function of robust matrix fac-
torization, and then introducing the steps to learn the affin-
ity matrix simultaneously. After that, an efficient algorithm
to tackle the AMRMF model is discussed in the next sec-
tion. Throughout this paper, the matrix is represented as
A ∈ Rp×q , in which the (i, j)-th element of A is denoted
by aij , the i-th column of A is denoted by a vector ai ∈ Rp.

The trace and transpose of A are denoted by tr(A) and AT,
respectively. The F-norm and `2,1-norm of A are denoted by
‖A‖F and ‖A‖2,1, respectively.

Given a data matrix X ∈ Rl×n, in which l and n are the
the feature dimensionality of each sample and number of data
samples, respectively. Therefore, each data sample could be
denoted by xi ∈ Rl. In this paper, we propose to perform the
matrix factorization on X and consider one of the factor ma-
trices as the cluster indicator which divides X into k clusters:

arg min
U,V

∥∥X − V UT
∥∥2
F
, s.t. UTU = I, U ≥ 0, (1)

where V ∈ Rl×k is the latent feature matrix (or the cluster
centroid) and U ∈ Rn×k is the cluster indicator [Cai et al.,
2011; Huang et al., 2014; Trigeorgis et al., 2014]. Note that
in the objective function eq. (1), the loss of matrix factoriza-
tion is measured by the squared residue error in the form of
`2-norm, therefore, the noises and outliers in the dataset with
large reconstruction errors will heavily effect the matrix fac-
torization because the errors have been enlarged. In order to
relieve this issue, in this paper, we introduce the `2,1-norm in-
stead of the conventional `2-norm based matrix factorization,
which avoids the samples with large errors (i.e., the noises
and outliers) dominate the objective function and thus makes
the model more robust. Then we have the following improved
matrix factorization optimization:

arg min
U,V

∥∥X − V UT
∥∥
2,1
, s.t. UTU = I, U ≥ 0. (2)

However, the model in eq. (2) would result in unsatisfacto-
ry clustering performance since there is no further constraints
on the cluster indicator U . In the literature, the manifold reg-
ularization is often adopted to let the similar data samples
from X share the similar clustering labels [Gong et al., 2015;
Zhang et al., 2015], and in most of the cases, the Laplacian
regularization is incorporated with the matrix factorization
[Cai et al., 2011; Huang et al., 2014]. However, in the exist
works, the affinity matrix is usually computed by a predefined
model (e.g., Gaussian kernel function) with carefully tuned
parameters combination, which may not optimal in practice.
Therefore, in this paper, we propose to learn an affinity ma-
trix to better regularize the proposed matrix factorization in
eq. (2).

To begin with the data similarity learning, we suppose that
each sample xi could be linked to any other sample xj with
probability sij , where sij is an element of the expected simi-
larity matrix S. Obviously, we suggest that the similar sample
pair with small distance ‖xi−xj‖22 should be assigned a high
probability sij . Therefore, we have the following objective
function to optimize the S which meets our assumption:

arg min
S

∑
i,j

‖xi − xj‖22sij + α‖S‖2F ,

s.t.
∑

j
sij = 1, 1 ≥ sij ≥ 0,

(3)

where α is the regularization parameter.
In order to further make the model benefit for clustering,

we need the similarity matrix contains exact k connected
components rather than all the elements have been linked
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together. Note that we have the equation that
∑
ij ‖ui −

uj‖22sij = 2tr(UTLSU) in which LS is the Laplacian ma-
trix computed by the learned S, according to [Chung, 1997],
then, the optimization in eq. (3) could achieve an ide-
al neighbors assignment if we add an additional constraint
rank(LS) = n − k. However, the eq. (3) with this rank
constraint is hard to solve. To track this issue, we relax
the problem followed by [Nie et al., 2016b]. Let σi(LS)
denotes the i-th smallest eigenvalue of LS , since the LS
must be positive semi-definite, then we have σi(LS) ≥ 0.
Therefore, the rank constraint rank(LS) = n − k equals to∑k
i=1 σi(LS) = 0. On the other hand, we also have the fac-

t that
∑k
i=1 σi(LS) = minU tr(UTLSU), thus, we rewrite

problem eq. (3) as:

arg min
S,U

∑
i,j

‖xi − xj‖22sij + α‖S‖2F + 2γtr(UTLSU),

s.t. ∀i,
∑

j
sij = 1, 1 ≥ sij ≥ 0,

U ∈ Rn×k, UTU = I, U ≥ 0.
(4)

Note that optimization in eq. (4) is a relaxation of eq. (3)
with the rank constraint as long as γ has been set as a large e-
nough value, in such condition, tr(UTLSU) would be forced
to close to zero and thus

∑k
i=1 σi(LS) = 0 would be satisfied

accordingly.
Finally, by combining the eqs. (2) and (4) together with an

additional regularization parameter β, we have the objective
function of the proposed AMRMF clustering model:

arg min
S,U,V

∥∥X − V UT
∥∥
2,1

+ 2γtr(UTLSU)

+ β(
∑
i,j

‖xi − xj‖22sij + α‖S‖2F ),

s.t. ∀i,
∑

j
sij = 1, 1 ≥ sij ≥ 0, UTU = I, U ≥ 0.

(5)

3 AMRMF Optimization
The objective function in above eq. (5) is not convex in three
variables, thus, we consider to use an Augmented Lagrangian
Multiplier (ALM) method to optimize them alteratively. By
introducing two auxiliary variables E = X − V UT and Z =
U . The objective function can be rewritten into the following
equivalent problem:

arg min
S,U,V,E,Z

‖E‖2,1 + 2γtr(ZTLSU)

+ β(
∑
ij

‖xi − xj‖22sij + α‖S‖2F ),

s.t. E = X − V UT, Z = U,UTU = I, Z ≥ 0,

∀i,
∑

j
sij = 1, 1 ≥ sij ≥ 0,

(6)

which can be solved by the following ALM problem:

arg min
S,U,V,E,Z,λ1,λ2,µ

‖E‖2,1 + 2γtr(ZTLSU)

+ β(
∑
ij

‖xi − xj‖22sij + α‖S‖2F )

+ < λ1, X − V UT − E > + < λ2, Z − U >

+
µ

2
(‖X − V UT − E‖2F + ‖Z − U‖2F ),

s.t. UTU = I, Z ≥ 0, ∀i,
∑

j
sij = 1, 1 ≥ sij ≥ 0,

(7)

where λ1 and λ2 are the Lagrangian multipliers and µ is a
regularity coefficient to control the penalty for the two vio-
lation of equality constraints in eq. (7). Since the objective
function above carries five variables and additional multipli-
ers, we adopt an alternative optimization method to reduce it
to a few manageable subproblems with the closed form so-
lution, each minimizes the objective function with respect to
one variable while fixing the other variables.

Update S
To update S, we fix other variables except S and remove

terms that are irrelevant to S. Denote dxij = ‖xi − xj‖22, then
eq. (7) becomes:

arg min
S

∑
i,j

(dxijsij + αs2ij) +
2γ

β
tr(ZTLSU),

s.t. ∀i,
∑

j
sij = 1, 1 ≥ sij ≥ 0.

(8)

Denote duzij = ‖zi − uj‖22, note that the problem above is
independent between different i, we can deal with following
problem individually for each i:

arg min
si

n∑
j=1

(dxijsij + αs2ij +
γ

β
duzij sij),

s.t. ∀i,
∑

j
sij = 1, 1 ≥ sij ≥ 0.

(9)

Denote di ∈ Rn is a vector with the j-th element as
dij = dxij + γ

β d
uz
ij , then the above problem can be rewritten

as follows:

arg min
si
‖si −

1

2α
di‖22, s.t.∀i,

∑
j
sij = 1, 1 ≥ sij ≥ 0.

(10)
Update U
To update U , we fix other variables except U and remove

terms that are irrelevant to U . Then eq. (7) becomes:

arg min
UTU=I

< λ1, X − V UT − E > + < λ2, Z − U >

+
µ

2
(‖X − V UT − E‖2F + ‖Z − U‖2F ) + 2γtr(ZTLSU),

(11)

which can be further reduced as following:

arg min
UTU=I

µ

2
‖U‖2F − µ < H,U >, (12)

where

H =
1

µ
λ2 + Z − 2γ

µ
LSZ + (X − E +

1

µ
∗ λ1)TV, (13)
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Thus, we further arrives:
arg min

UTU=I
‖U −H‖2F . (14)

Denote:

L(U,Λ) = ‖U −H‖2F + Λ(UUT − I). (15)

We then have:

U = NuQ
T
u , (16)

whereNu andQu are the left and right singular vectors of the
economic singular value decomposition of H .

Update V
To update V , we fix other variables except V , then obtain

the following objective function:

arg min
V

µ

2
‖X − V UT − E +

1

µ
λ1‖2F . (17)

Considering that UTU = I , we can rewrite the above ob-
jective function as:

arg min
V

1

2
‖V − (X − E +

1

µ
λ1)U‖2F , (18)

then we have V = (X − E + 1
µλ1)U .

Update E
To updateE, we fixed other variables exceptE and remove

terms that are irrelevant to E. The the objective function be-
comes:

arg min
E

1

2
‖E − (X − V UT +

1

µ
λ1)‖2F +

1

µ
‖E‖2,1. (19)

Let B = X − V UT + 1
µλ1, then E can be updated as:

ei =

{
(1− 1

µ‖bi‖ )bi, if‖bi‖ ≥ 1
µ ,

0, otherwise.
(20)

Update Z
Optimizing eq. (7) with respect to Z yields the equation:

arg min
Z≥0

µ

2
‖Z − U‖2F+ < λ2, Z − U > +2γtr(ZTLSU).

(21)
Then we obtain:

arg min
Z≥0
‖Z −K‖2F , (22)

where K = (U − 1
µλ2 −

2γ
µ LSU).

The above object function can be further decomposed to
element-wise optimization problem as:

arg min
zij≥0

‖zij − kij‖2. (23)

Therefore, the optimal solution of above problems is:

zij = max(kij , 0). (24)

Update ALM Parameters
Finally we need to update the ALM parameters, i.e., λ1,

λ2, and µ. According to [Boyd and Vandenberghe, 2004],
they should be updated as following:

λ1 = λ1 + µ(X − V UT − E). (25)

λ2 = λ2 + µ(Z − U). (26)

µ = ρµ. (27)

Table 1: Description of datasets for data culstering.

Dataset Classes Samples Features
Caltech101 Silhouettes 101 8461 256

COIL20 20 1440 1024
Control 6 600 60

Dermatology 6 366 34
Ecoli 8 336 343

Movement 15 360 90
MSRA25 12 1799 256

PalmData25 100 2000 256
Seeds 3 210 7
USPS 10 9298 256

4 Experimental Analysis
In this section, we evaluate the performance of the proposed
AMRMF method on ten real world benchmark datasets (Ta-
ble 1). In detail, we firstly introduce the datasets and ex-
perimental settings, and then compare the proposed AMRM-
F with the state-of-the-art clustering algorithms and provide
our observations. Finally, the convergence performance of
the proposed AMRMF optimization is reported based on all
the involved datasets.

The data clustering experiments are conducted on ten
public available benchmark datasets, including five image
datasets (Caltech101 Silhouettes, COIL20, MSRA25, Palm-
Data25, and USPS) and five non-image datasets from the U-
CI machine learning repository (Control, Dermatology, Ecoli,
Movement, and Seeds). For each dataset, the data is format-
ted as a feature matrix (i.e., input X of AMRMF algorithm)
with the size of number of features and number of samples,
and an additional ground truth vector with the size of number
of samples. The statistics of the datasets used in the clustering
experiments are summarized in Table 1. After the AMRMF
algorithm has ended, the predicted label vector is obtained
from the cluster indicator (i.e., output U of AMRMF algo-
rithm), and then compared with the ground truth vector for
quantitative evaluation.

The following two well accepted measurements have been
used as metrics:
• Clustering accuracy (ACC), which discovers the one-to-

one relationship between clusters and classes:

ACC =

∑n
i=1 δ(map(ri), li)

n
, (28)

where ri and li are predicted and ground truth label of
sample xi, respectively, δ(x, y) is the delta function that
equals 1 if x = y and equals 0 otherwise, and map(ri) is
the permutation mapping function that maps each cluster
ri to the equivalent label from the dataset.
• Normalized mutual information (NMI), which measures

the the quality of clusters:

NMI =

∑k
i=1

∑k
j=1 ni,j log

ni,j

nin̂j√
(
∑k
i=1 nilogni

n )(
∑k
j=1 n̂j log

n̂j

n )
, (29)

where ni denotes the number of data contained in the
cluster Ci(1 ≤ i ≤ k), n̂j is the number of data belong-
ing to the Lj(1 ≤ j ≤ k), and ni,j denotes the number
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Table 2: Clustering results of different methods by the measurement of ACC.

Dataset k-means NCuts LRR LSR RSS SSC AMRMF
Caltech101 Silhouettes 0.5457±0.0601 0.5731±0.0683 0.5808 0.6055 0.6526 0.5637 0.6552

COIL20 0.5660±0.0560 0.5925±0.0506 0.6007 0.6340 0.5465 0.7521 0.8576
Control 0.5823±0.0661 0.6200±0.0466 0.5917 0.6050 0.6983 0.6750 0.7000

Dermatology 0.7495±0.1068 0.8235±0.0364 0.9399 0.9426 0.9208 0.9344 0.9617
Ecoli 0.5714±0.0526 0.5283±0.0360 0.6696 0.7411 0.7440 0.6190 0.8214

Movement 0.4450±0.0228 0.4647±0.0192 0.5000 0.5056 0.5222 0.5250 0.5167
MSRA25 0.5252±0.0660 0.5501±0.0395 0.5709 0.5759 0.5675 0.5742 0.5770

PalmData25 0.7426±0.0536 0.7900±0.0371 0.7680 0.8740 0.8710 0.8550 0.8890
Seeds 0.7086±0.0725 0.8557±0.1020 0.8857 0.9143 0.9000 0.9048 0.9333
USPS 0.6322±0.0237 0.6653±0.0372 0.6690 0.7008 0.7094 0.6913 0.7309

Table 3: Clustering results of different methods by the measurement of NMI.

Dataset k-means NCuts LRR LSR RSS SSC AMRMF
Caltech101 Silhouettes 0.5684±0.0021 0.5255±0.0493 0.5416 0.5352 0.6008 0.5363 0.5573

COIL20 0.7354±0.0264 0.7322±0.0225 0.7309 0.7325 0.6572 0.8683 0.9220
Control 0.6612±0.0527 0.6675±0.0504 0.6068 0.6311 0.6890 0.6971 0.7959

Dermatology 0.8462±0.0350 0.8417±0.0373 0.8690 0.8852 0.8292 0.8580 0.9234
Ecoli 0.5271±0.0304 0.4495±0.0259 0.5712 0.5399 0.5218 0.4847 0.6506

Movement 0.5754±0.0108 0.5993±0.0138 0.6017 0.5868 0.6423 0.6303 0.6353
MSRA25 0.5910±0.0480 0.5994±0.0220 0.6312 0.6116 0.6493 0.6683 0.7122

PalmData25 0.9026±0.0198 0.9285±0.0135 0.8930 0.9562 0.9592 0.9433 0.9538
Seeds 0.4835±0.0437 0.6647±0.1002 0.6576 0.7145 0.6872 0.6990 0.7658
USPS 0.5969±0.0058 0.6446±0.0186 0.6491 0.6918 0.7190 0.6817 0.7350

of data that are in the intersection between clusterCi and
class Lj .

In the our experiment, we compare the AMRMF algorith-
m with k-means, Normalized Cuts (NCuts) [Shi and Malik,
2000], low-rank representation (LRR) [Liu et al., 2013], least
squares regression (LSR) [Lu et al., 2012], robust subspace
segmentation (RSS) [Guo, 2015], and sparse subspace clus-
tering (SSC) [Elhamifar and Vidal, 2013]. Among which, the
k-means is executed by the Matlab R2015b statistical tool-
box, while the codes of others are downloaded from the au-
thors’ webpages. To obtain the best possible performance of
the compared methods, the detailed experimental settings are
as follows.

For k-means and NCuts, we repeat the experiments ten
times and report the average results with standard deviation-
s. In particular, we tune the Gaussian kernel parameter in
the range of 10[−5:5] for NCuts. For the released codes of
LRR, LSR, RSS, and SSC, since the authors have fixed the
detailed parameters in the last step of k-means clustering
(e.g., initialization, distance measure and number of repeat-
s), the algorithms output relatively stable results so we need
not to average their results. In detail, for LRR, we have tried
the two versions of LRR uploaded by the authors, with the
λ ∈ [0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 1, 2, 5], and report the
best results. For LSR, we have also tested two implemen-
tations by the authors, with the λ ∈ 2[−5:5] to find the best
performance. For RSS, we have tuned the three regulariz-
er weights in the same range of 2[−3:3], respectively, which
is a much wider range than the author recommended. For
SSC, the parameter spaces are α ∈ 10[−5:5], ρ ∈ [1 : 5], re-
spectively. Finally, for the proposed AMRMF algorithm, we

have tuned the regularization parameters in the same range of
10[−5:5]. Note that our proposed AMRMF algorithm outputs
stable result by the suggested optimization steps, therefore,
we also need not to average the reported results.

Tables 2 and 3 summarize the clustering performance for
each method on ten datasets. We can see that AMRMF algo-
rithm outperforms other clustering methods in most of the
cases. In particular, the Caltech101 Silhouettes is a large
dataset which has rarely been considered for clustering ex-
periment. The significant performance on all these datasets,
especially the Caltech101 Silhouettes, meets the advantages
of our proposed method. To emphasize, the superiority of
AMRMF algorithm arises in the following aspects. Firstly,
the objective function combines the matrix factorization and
similarity learning into a single framework, by which an ef-
fective affinity matrix has been optimized and it could be fur-
ther benefit for the clustering task. Besides, the introduced
`2,1-norm helps to alleviate the data noises and outliers is-
sues that are common among other clustering methods, which
brings positive effects into the proposed clustering model.

Also from the experimental results above, we have the fol-
lowing detailed observations.

The basic data clustering algorithms, i.e., k-means and N-
Cuts, present poor clustering rates with large variations (in
many times greater than 0.05 in ACC and 0.03 in NMI, re-
spectively) on all the datasets. In detail, the k-means algo-
rithm presents larger variations compares to NCuts on most
of the datasets, which makes the clustering results impossi-
ble to be reproduced in practice. In fact, the NCuts could be
viewed as the k-means clustering but in a new representation
rather than the raw input data, since the clustering accuracies
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Figure 1: Convergence performance of the proposed algorithm on all the datasets.

of NCuts always outperform the k-means as shown in table
2, we could know that it is crucial to seek a better feature
representation (or data similarity).

The advanced algorithms, i.e., LRR, LSR, RSS and SSC,
which could be understood as to learn a better affinity matrix
for spectral clustering (or consider the learned affinity matrix
itself as a better feature representation for clustering), usually
show respectable improvements compare to the basic algo-
rithms mentioned above. For those algorithms, we have also
experimentally found that the variations on clustering accu-
racies have been greatly reduced even use the free k-means
(without any parameter settings) for final clustering. Howev-
er, it is also observed that for some datasets, the clustering
accuracies are comparable or even lower than the basic algo-
rithms, e.g., in the Caltech101 Silhouettes dataset, the mean
ACC of NCuts reaches 0.5731 while the SSC only achieves
0.5637.

The proposed AMRMF algorithm arrives at the best ACC-
s for nine datasets (only failed on the dataset of Movement
with less than 0.01 of ACC), and such results could be accu-
rately reproduced, compared to the basic algorithms (k-means
and NCuts, the results of which have large variations) and ad-
vanced algorithms (LRR, LSR, RSS and SSC, the results of
which are relatively stable but actually the identical reproduc-
tion couldn’t be guaranteed). Furthermore, the proposed AM-
RMF algorithm has obtained the best NMI on seven datasets
(only failed on the datasets of Movement and PalmData25
with less than 0.01 and lower than RSS with 0.04 on the
Caltech101 Silhouettes dataset. However, AMRMF leads it-
s competitors around 0.1 for many times (e.g., the metric of
ACC on the datasets of COIL20 and Ecoli), which confirms
the superior performance of the proposed algorithm.

Finally, we would like to present the convergence per-
formance of the proposed AMRMF optimization on the ten
datasets, as illustrated in Figure 1. In each sub-figure, the
transverse axis indicates the number of iterations from 1 to
100, while the longitudinal axis shows the error of objective
function value in eq. (5) between iterations. It is clear that the
AMRMF optimization often converges at stable values in less
than ten iterations, which suggests that the proposed AMRM-
F optimization is very efficient in practice.

5 Conclusion
In this paper, we propose an adaptive manifold regularized
matrix factorization (AMRMF) algorithm for joint learning
the data affinity matrix and data clustering. The AMRMF is
based on the idea of spectral clustering and low-rank matrix
factorization. In order to overcome the point that the affin-
ity matrix is always model based and may not optimal, i.e.,
computed by a predefined model with carefully tuned param-
eters combination, the proposed AMRMF aims to learn an
affinity matrix jointly with the data clustering framework by
considering it as an additional regularization. In this way, the
learned affinity matrix could better guide the matrix factor-
ization in a manifold point of view. Furthermore, the `2,1-
norm is applied to the matrix factorization to obtain the ro-
bust solution against the noises and outliers. Experimental
results on numerous of datasets demonstrate the superior per-
formance of the proposed method in accuracy and stability
perspectives. For future work, the proposed method could be
further extended to its more generalized version, which could
deal with the out-of-sample problem and be employed for big
data clustering [Cai and Chen, 2015].
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