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Abstract Indoor subarea localization can facilitate nu-
merous location-based services, such as indoor naviga-

tion, indoor POI recommendation and mobile adver-
tising. Most previous subarea localization approaches
exist two bottlenecks, one is fingerprint-based meth-

ods require time-consuming site survey and another
is triangulation-based methods are lack of scalability
in large-scale environment. In this paper, we propose
a graph-based method for indoor subarea localization

with zero-configuration. Zero-configuration means the
proposed method can be directly employed without time-
consuming site survey or pre-installing additional in-

frastructure. To accomplish this, we first utilize two un-
exploited characteristics of WiFi radio signal strength
to generate logical floor graph, and then formulate the

problem of constructing fingerprint map in terms of a
graph isomorphism problem between logical floor graph
and physical floor graph. In online localization phase,
a Bayesian-based approach is utilized to estimate the

unknown subarea. The proposed method has been im-
plemented in a real-world shopping mall and extensive
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experimental results show that the proposed method
can achieve competitive performance comparing with

existing methods.
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1 Introduction

With the increasing number of mobile devices, indoor

location-based services, i.e., indoor advertising [24], pa-
tient activity monitoring [23] and indoor check-in ser-
vices [25], are expected to witness a significant growth
in the next decade. Recent years have witnessed an

increasing attention on indoor subarea localization in
view of its importance to indoor location-based ser-
vices. Since traditional GPS positioning technique is

infeasible in indoor environment and the positioning
accuracy of cellular-based method is not enough, local-
ization methods based on radio signal strength (RSS)
have attracted enormous research from both academia

and industry. Existing localization methods using RSS
either require time-consuming site survey or huge costs
for deploying additional infrastructure. Therefore, in-
door subarea localization remains an unsolved problem
according to the report from Microsoft indoor localiza-
tion competition [16].

Existing localization methods using RSS can be di-
vided into two categories: infrastructure-based method-
s and infrastructure-free methods. Infrastructure-based
methods require pre-installed hardware for localization,
such as UWB [15], ZigBee [7] or wearable sensor [21],
which make this kind of system unsalable to large-scale
environment. To address this drawback, many infrastructure-

free localization methods [10, 28, 31] without requiring
additional hardware have been proposed. One of the
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most promising infrastructure-free localization method

is using WiFi RSS, which is mainly attributed to the

widespread deployment of WLAN infrastructure.

Previous localization methods based on WiFi RSS

include geometric-based scheme and fingerprint-based

scheme. Geometric-based scheme utilizes geometry re-

lation between the unknown location and more than

two reference locations for localization, such as TOA

[29], TDOA [19] and AOA [11]. Geometric-based scheme

requires prior knowledge of WiFi access point (AP)

and indoor radio signal propagation model. However,

there is not a ubiquitous radio signal propagation mod-

el due to complex phenomena (e.g., multi-path fading,

shadowing, etc.) in indoor environment. Moreover, the

performance of geometric-based scheme is sensitive to

many factors, such as layout changes or crowd walking.

On the contrary, fingerprinting-based scheme is more

robust since it does not depend on radio signal propaga-

tion model. Typically, fingerprinting-based scheme con-

sists of two phases: (1) construct fingerprint map, which

firstly divides indoor space into a few cells and man-

ually associates each cell with the scanned RSS values

from surrounding APs; (2) online localization, which es-

timates the unknown location by matching the scanned

RSS values with the fingerprinting map. The main bot-

tleneck of fingerprint-based scheme is that manually

constructing fingerprint map is time-consuming and la-

bor intensive. For instance, the deployment overhead

for a 300m2 environment is more than 7 hours [16]. Ad-

ditionally, the fingerprinting map needs to be updated

dynamically for maintaining localization accuracy.

For a practical subarea localization system, several

requirements are necessary: reasonable localization ac-

curacy; no additional hardware components on user’s

side; scalable to large-scale deployment. On this basis,

we propose a graph-based indoor subarea localization

method with zero-configuration, which is infrastructure-

free and constructing fingerprint map by passive crowd-

sourcing. Specifically, we firstly generate logical floor

graph by utilizing two inherent characteristics of WiFi

RSS in indoor environment, and then we formulate the

problem of constructing fingerprinting map as a graph

mapping problem between logical floor graph and phys-

ical floor graph. Finally, we utilize a Bayesian-based

approach to estimate the unknown location.

The rest of this paper is structured as follows. Sec-

tion 2 surveys related studies on indoor subarea local-

ization. Section 3 describes the proposed method in de-

tail. Section 4 reports and discusses our experimental

results. Finally, we present our conclusion and future

work in Section 5.

2 Related Work

In this section, we survey previous related works about

indoor subarea localization and discuss how these works

differ from our work. In general, existing studies on this

topic can be divided into two categories:

2.1 Infrastructure-based Localization System

Infrastructure-based localization systems estimate un-

known location based on the information from addition-

al infrastructure or external equipment, such as WiFi

signals, Bluetooth signals and ZigBee signals. For in-

stance, the beacon frames from multiple Bluetooth AP-

s [17] are used to localization the room, ZigBee inter-

face [7] is used to collect WiFi RSS for room local-

ization, wearable wrist sensors [21] is used to detect a

person. The main drawback of infrastructure-based sys-

tem is lack of scalability since costly infrastructure pre-

deployment is necessary. Moreover, the performance of

infrastructure-based systems is limited by disturbances

and errors caused by indoor obstacles (e.g. walls, ceiling

and furniture, etc.). Another challenge of infrastructure-

based systems is how to design optimal configurations

to trade-off the deployment cost and localization per-

formance. [9] analyzed the localization performance and

deployment issues by revealing localization error trends

with geometric configurations, and concluded the opti-

mal configuration is regular polygon where the vertices

represent the RSS APs.

2.2 Infrastructure-free Localization System

In contrast, infrastructure-free localization systems uti-

lize user’s mobile device or existing infrastructure (e.g.,

WiFi [12, 18, 28, 31, 32], magnetic field [1], etc.) to esti-

mate an unknown location without deploying addition-

al hardware.

Infrastructure-free localization system rely on mo-

bile device usually calculates users current location ac-

cording to previously determined position by built-in

sensors (e.g., gyroscope, accelerometer and compass,

etc.) of mobile devices, which is also called dead reck-

oning positioning. However, dead reckoning rely on the

initial location and will suffer from cumulative error,

and continually collecting data from multi-sensor is energy-

consuming.

Typically, infrastructure-free localization system us-

ing RSS consists of geometric-based method and fingerprint-

based method. Geometric-based method utilizes trian-

gulation principle to estimate the unknown location

based on radio propagation model, such as TOA [29],
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TDOA [19] and AOA [11]. However, there is not a ubiq-

uitous radio propagation model in indoor environment,

since the radio signal propagation would be strongly af-

fected by multipath effect. In addition, specific devices

for measuring TOA or AOA are costly. Fingerprint-

based method utilizes the RSS values collected from

a specific location as its fingerprint for labelling loca-

tion. The localization process of this scheme includes

two phases: offline construct fingerprint map and online

localization. For example, [5] utilized fingerprint-based

method with WiFi RSS to obtain room-level localiza-

tion for visualizing indoor energy consumption. [8] pro-

posed an subarea detection method using WiFi RSS. [4]

proposed a more robust location fingerprint for localiza-

tion using the RSS relative ordering of each pair of AP-

s. For reducing erroneous estimation, [10] utilized the

RSS characteristics when passing through a boundary

point to calibration. However, previous fingerprinting-

based method is infeasible because constructing finger-

print map is time-consuming and labor intensive [16].

Recently, several studies have been proposed to au-

tomatically construct fingerprinting map without time-

consuming site survey. For instance, [12] proposed an

indoor floor plan construction method with leverag-

ing WiFi RSS and user’s motion information, which

can be utilized to automatically construct fingerprint-

ing map. WILL [28] automatically construct fingerprint

map by utilizing RSS characteristics and user motions

to . WicLoc [18] records user motions as well as WiFi

signals for constructing fingerprint map. However, these

methods need user’s active participation when construct-

ing fingerprint map. In contrast, the proposed method

only utilizes WiFi RSS to automatically construct fin-

gerprint map, which can be done by passive crowdsourc-

ing.

3 Graph-based Localization Method

In this section, we first introduce the key data struc-

tures and notations used in the proposed subarea local-

ization method, and then present the problem definition

and solution.

3.1 Problem Definition

For ease of the following presentation, we define the key

notations used in the proposed method. Table 1 lists the

relevant notations used in this paper.

Definition 1: RSS Record. A RSS record is a

triple o(u, t, R) that means the collected WiFi RSS val-

ues by user u at time t. R is a K dimensional vector

and denotes by (r1, ..., ri, ..., rK), ri means the scanned

Table 1: Notations used in indoor subarea localization

Symbol Description

N,K,M,F the num of subareas, WiFi APs, RSS traces, floors
S,D,H the set of subareas, WiFi RSS traces, Histogram bins
ri the RSS value from api
R the RSS values from all WiFi APs
o(u, t, R) the RSS record collected by user u at time t
Li, traj(Li) a WiFi RSS trace, a virtual trajectory
si, fsi an indoor subarea,the fingerprint of subarea
νi virtual subarea with high similarity fingerprint
Y the fingerprint map
Gp, Gf the physical floor graph, logical floor graph
τ time windows size for identifying boundary points
σ user-specific threshold for removing false identification

WiFi RSS value from AP api, K is the num of WiFi

APs in indoor space and 1 6 i 6 K.

Definition 2: WiFi RSS Trace. We define a

WiFI RSS trace as a sequence of RSS records and de-

note by L = {o1, ..., oi, ..., oT }, oi represents the collect-

ed RSS record at time ti, 1 6 i 6 T .

Definition 3: Indoor Subarea. S = {s1, s2, ..., sN}
denotes the set of subareas, N is the num of subareas

and a subarea si refers to a region that makes up part

of indoor space. Typically, subareas are rectangle, such

as rooms and corridors, but not necessary.

Definition 4: Subarea Fingerprint. The feature

of subarea si is defined as aH×K matrix fsi = {p1, p2, ..., pK},
H is the histogram bins and pj represents the histogram

of scanned RSS values from apj in si, 1 6 i 6 N and

1 6 j 6 K.

We split the RSS values range into H bins and

then pj denote by a H dimensional vector, a bin-based

method is used to calculate the pj of subarea si, as

shown in Equation. 1.

pj =

H∏
h=1

∑K
j=1 C

h
ij

Ci
(1)

Where
∑K
j=1 C

h
ij is the num of collected RSS val-

ues from apj belongs to the h-th bin in total collected

RSS values, Ci means the total collected RSS values in

subarea si.

Definition 5: Fingerprint Similarity. The fin-

gerprint similarity of subarea si and sj is calculated by

cosine similarity, as shown in Equation. 2.

Sim(fsi, fsj) =
1

K

K∑
n=1

Rown(fsi) ·Rown(fsj)

||Rown(fsi)|| × ||Rown(fsj)||

(2)
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Where Rown(fsi) and Rown(fsj) represent the n-th

row vector of fsi and fsj , respectively.

Definition 6: Fingerprint Map. The fingerprint

map is a set of tuples by associating physical subarea

and its fingerprint and denote by Y = {(s1, fs1, ..., (si, fsi)
, ..., (sN , fsN ))}.

Definition 7: Physical Floor Graph. We denote

the physical floor graph by Gp =< Vp, Ep >, where

Vp = {v1, v2, ..., vN} and vi represents subarea si, Ep ⊆
V × V correspond to the directly reachable of subareas

in indoor space.

Based on the above definitions, we formulate the

problem of indoor subarea localization as: Given: 1)

indoor subarea set S = {s1, s2, ..., sN}. 2) WiFi RSS

Trace set D = {L1, L2, ..., LM} collected by passive

crowdsourcing. 3) physical floor graphGp =< Vp, Ep >.

4) a user localization request o?(u, t, R); Objective: find

the correspond subarea si when scanning RSS record

o?(u, t, R).

Our solution for this problem consists of two phases:

(1) construct fingerprint map by graph mapping; (2) es-

timate the unknown subarea with a Bayesian approach.

3.2 Construct Fingerprint Map

In this subsection, we first give a high-level overview

of the graph-based method for constructing fingerprint

map (as shown in Figure 1), and then present the details

of the method.

Unlike existing fingerprint-based methods, our method

automatically constructs fingerprint map without man-

ual site survey. First, we collect RSS traces by crowd-

sourcing (e.g., when participants go shopping, drink a

coffee or relaxing). Then, after obtaining enormous RSS

traces, the fingerprint map is constructed by the follow-

ing three steps: modelling physical floor plan to an undi-

rected graph, generate logical floor graph, and mapping

logical floor graph to physical floor graph.

3.2.1 Modelling Physical Floor Plan

Motivated by indoor robots pursuit/evasion research

[13], we model the indoor floor plan with a undirected

graph Gp =< Vp, Ep > by decomposing the indoor floor

plan into a collection of convex subareas, and further

reduce the indoor space to a graph by discretization.

Specifically, the discretization includes two steps:

– Step1 : decomposing the indoor floor plan into a set

of convex subareas based on critical visibility events

and association vertex vi to subarea si;

– Step2 : adding edges between vertices which are di-

rectly connected in the original indoor floor plan.

For example, the indoor floor plan of our experimen-

tal environment is shown in Figure 2a, which consisting

of 27 rooms and covering over 2000m2. Then, we decom-

pose the floor plan into a set of subareas and add edges

between directly connected vertices, and finally model

the indoor floor plan as a undirected graph as shown in

Figure 2b.

3.2.2 Generate Logical Floor Graph

Typically, large indoor space (e.g., urban shopping mall,

museum and airport, etc.) are multi-floor environment

with hundreds of WiFi APs to provide WiFi service.

For generating logical floor graph, we need to cluster

the RSS records that collected from the same floor.

1) Cluster RSS records to the same floor Several fac-

tors can influence the propagation of WiFi radio signal

in indoor environment, such as people walking, layout

change and multiple diffraction from window frames.

According to [14], one floor may weaken WiFi RSS val-

ues between 15dBm and 35dBm. Therefore, the range of

RSS values from a specific AP is useful for floor recog-

nition [30].

Formally, let R = (r1, ..., ri, ..., rK) denote the s-

canned RSS record from surround WiFi APs, L(x, y, f)

denote the location coordinate where the RSS record

is collected, where (x, y) is the two-dimensional coordi-

nate of location and f is the floor. Ideally, each location

can correspond to a unique WiFi RSS record, and we

can cluster WiFi RSS records to the same floor by re-

ducing high-dimensional RSS record to a 3-dimensional

vector. However, WiFi RSS record is very unstable [18,

19] even at the same location due to a few factors,

such as heterogeneous devices, environmental change

or crowd walking. We cluster RSS records to the same

floor by the following two steps:

– Step1 : using Laplacian Eigenmaps [3] to reduce the

RSS values with high-dimension to d-dimension vec-

tor (d > 2).

– Step2 : clustering the d-dimension vectors to F class-

es by k-means algorithm, where F is the number

of floors. In the clustering process, we use the Eu-

clidean distance to measure the closeness of two vec-

tors.

2) Construct Logical Floor Graph. A few factors can

influence the propagation of radio signal in indoor en-

vironment, such as multiple diffraction, reflection of s-

cattered signals from adjacent walls and crowd walking.

By investigating spatial-temporal characteristics of in-

door radio signal propagation, we observe two valuable

characteristics can be exploited to subarea localization.
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Fig. 1: High-level overview of constructing fingerprint map
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Fig. 2: Modeling physical floor plan as a undirected graph

Table 2: The RSS values scanned from three WiFi APs at different rooms

Range AP1 at Room 1 AP1 at Room 2 AP2 at Room 1 AP2 at Room 2 AP3 at Room 1 AP3 at Room 2

[−55,−40] 115 0 93 1 0 120
[−70,−55) 72 3 81 5 4 63
[−85,−70) 10 11 21 17 21 15
[−100,−85) 3 23 5 39 42 2

The first observation is physical obstacles, such as

walls and stairs, will make WiFi RSS values jump dra-

matically. In order to investigate the physical obstacles

effect on radio signal propagation, we collected 200 RSS

records from three APs in room 1 and room 2, where

AP1 and AP2 are located in room 1 and AP3 is locat-

ed in room 2. Statistical information of RSS values is

shown in Table 2, and we can observe that the range

of RSS values from the same AP significantly differ in

different rooms.

Therefore, this characteristic can reflect the indoor

floor plan to a certain degree and can be used to distin-

guish two subareas, which is also demonstrated in [6].

Based on this characteristic, we design a robust subarea

fingerprint using RSS histogram as shown in Definition

4. In order to distinguish different subareas, we further

define the similarity of subarea fingerprint as shown in

Definition 5.

Take RSS values of Table 2 as an example, split the

range of RSS values into 4 bins: {(−40,−55], (−55,−70]

, (−70,−85], (−85,−100]}, the fingerprint of room 1 and

room 2 can be calculated as fs1 and fs2, respectively.

fs1 =

0.575 0.36 0.05 0.015

0.465 0.405 0.105 0.025

0 0.0597 0.3134 0.6269

 (3)
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fs2 =

 0 0.0811 0.2973 0.6216

0.0161 0.0806 0.2742 0.629

0.6 0.315 0.075 0.01

 (4)

The second observation is the WiFi RSS values will

jump dramatically when passing a physical boundary

point, such as room entrances and corners. For exam-

ple, we collect a sequence of RSS values from three AP-

s when walking from room 1 to room 2, as shown in

Figure. 3a. Specifically, {t1, t2, t3, t4, t5} are collected

in room 1, {t6, t7, t8} are collected when passing the

entrance, {t9, t10, t11, t12} are collected in room 2, as

shown in Figure. 3b. We find that the ”jump” range can

reach 15dBm-30dBm. However, the RSS values should

change smoothly in a small continuous area according

to indoor empirical propagation model [22]. Therefore,

the RSS ”jump” characteristic when passing boundary

points can be utilized to identify subarea entrance.

Based on the two spatial-temporal characteristics

of radio signal propagation in indoor environment, we

generate logical floor graph by three stages, as shown

in Figure 4. Specifically, we first identify all physical

boundary points based on the RSS ”jump” characteris-

tic when passing a physical boundary point, and remove

false identification using subarea fingerprint similarity.

Then, we partition a WiFi RSS trace into a virtual tra-

jectory according to physical boundary points, as shown

in Figure. 4. Finally, we merge all virtual trajectories

to generate logical floor graph, as shown in Figure. 5.

Identify Physical Boundary Points. Based on

the observation that the WiFi RSS values will jump

significantly when walking through a physical boundary

point, we utilize the fluctuation of RSS values in a small
time window to identify physical boundary points. For-

mally, given a WiFi RSS trace L =< o1, ..., oi, ..., oT >,

we define V ar(ti, τ) to represent the RSS fluctuation in

time window (ti− τ/2, ti + τ/2), as shown in Equation.

5.

V ar(ti, τ) =
1

K

K∑
i=1

V ar(api) (5)

Where K is the number of WiFi APs, V ar(api) is

the variation of RSS values from api during the time

window, as calculated in Equation. 6.

V ar(api) =
1

τ − 1

ti+τ/2∑
j=ti−τ/2

(rij − ri)2 (6)

Where ri is the average RSS values from api in time

window (ti − τ/2, ti + τ/2) , rij is the RSS value from

api at time tj .

If the RSS fluctuation in time window (ti−τ/2, ti+
τ/2) is significantly higher than average, we can infer

the user is walking through a physical boundary point

at time ti. Formally, we use variation coefficient α to

quantify the degree of RSS ”jump”, as shown in Equa-

tion. 7.

α =
τ × V ar(ti, τ)∑ti+τ/2
j=ti−τ/2 V ar(tj , τ)

(7)

For example, set time window size τ = 5 and varia-

tion coefficient as α = 1.3, the variation of RSS values

from three APs in Figure 3b is calculated as shown

in Table 3. We further calculate the RSS fluctuation:

V = {36.97, 34.6, 48.4, 78.67, 96.4, 86.8, 49.27, 30.77} as

shown in Figure 3c, and infer the user is passing a phys-

ical boundary point in time {t6, t7, t8}.
Remove False Identification. As mentioned above,

we identify physical boundary points according to the

RSS ”jump” characteristic. However, this method may

bring some false positives, since other factors (e.g., crowd

passing and furniture layout change, etc.) may create

similar RSS ”jump”. However, subarea fingerprint us-

ing RSS histogram is stable and robust according to the

first observation. On the basis, we remove false positives

based on the similarity of subarea fingerprint.

Formally, after obtaining time setΩ = {tp, tp+1, ..., tq}
that users may walk through physical boundary points

according to RSS ”jump” characteristic, we partition

RSS trace L into a subsequence set L = {o(t1 : tp), o(tp :

tp+1), ..., o(tq−1 : tq), o(tq : tT )}, o(tp : tp+1) is the

RSS subsequence collected from tp to tp+1. Then, we

calculate the fingerprint of each RSS subsequence as

denote by F = {fp, fp+1, ..., fq}, fp represents the fin-

gerprint of RSS subsequence o(t1 : tp). Finally, we use

a threshold-based approach to remove false positives,

which means tp+1 is a false positive if the fingerprint

similarity between fp and fp+1 is greater than a thresh-

old δ, as shown in Equation. 8.

Sim(fp, fp+1) > δ (8)

Construct Virtual Trajectory. After removing

false identification of physical boundary points, we repar-

tition the RSS trace L into a subsequence set L =

{o(t1 : tp), o(tp : tp+1), ...} and map each RSS subse-

quence o(tp : tp+1) to a virtual subarea νp+1. A virtual

subarea is a container which consists of fingerprint with

high similarity. Finally, we construct the virtual trajec-

tory of RSS trace L as traj(L) =< νp → νp+1 → ... >,

as shown in Figure. 4.

Generate Logical Floor Graph. After construct-

ing virtual trajectory for each RSS trace, we generate
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Table 3: The variation of RSS values from three WiFi APs

time window (t1, t5) (t2, t6) (t3, t7) (t4, t8) (t5, t9) (t6, t10) (t7, t11) (t8, t12)

AP1 46.5 31.8 42.3 137.5 162.7 143.5 80.8 18.7
AP2 14.7 10.3 36.7 40.3 48.7 20.2 11.7 42.3
AP3 49.7 61.7 66.3 58.2 77.8 96.7 55.3 31.3

logical floor graph Gf (Vf , Ef ) by merging all virtual

trajectories {traj(L1), traj(L2), ..., traj(LM )}. Specifi-

cally, the merge process consists of two steps:

– Step1: using K-means algorithm to cluster all ele-

ments of virtual trajectories {traj(L1), traj(L2), ...

, traj(LM )} into P classes, and mapping class cen-

ter πi of cluster Pi to vertex vi of logical floor graph,

as shown in Figure. 5b. Since traditional K-means

algorithm is sensitive to initial cluster centers, the

selection of initial cluster centers directly affects the

accuracy and stability of the clustering results. To

solve this problem, we utilize the elements density

distribution to optimize the selection of initial clus-

ter center.

Definition 8: Elements Distance. For two ele-

ments xi and xj of virtual trajectories, we calculate

their distance as:

d(xi, xj) = 1− Sim(fxi, fxj) (9)

where Sim(fxi, fxj) is calculated as Equation 2.

Definition 9: Element Density. For an element

xi, we select its k-nearest neighbor elements Ωi ac-

cording to elements distance. Then, we define the

density of xi as:

dens(xi) =
1

k

∑
xj∈Ωi

d(xi, xj) (10)

Algorithm 1 formally describes the framework of the

proposed method for selecting initial cluster center-

s of k-means. First, as shown in Lines 2 ∼ 5, we

calculate the density for all elements of virtual tra-

jectories and sort the elements according to element

density. Then, as depicted in Line 7 ∼ 12, we choose

a unvisited element with the highest density and

generate its k−nearest neighbors. Finally, we select

the gravity center of the k−nearest neighbors as a

cluster center. In the clustering process, we use the

fingerprint similarity (See in Definition 5) to mea-

sure the closeness of two elements.

– Step2: adding an edge between vi and vj if cluster

Pi and cluster Pj is reachable, which means that

there is at least one pair of adjacent virtual subareas

< νi → νj > for ∀νi ∈ Pi and ∀νj ∈ Pj , as shown in

Figure. 5c.
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Fig. 5: Construct logical floor graph

Algorithm 1 Density-based algorithm for selecting ini-

tial cluster centers of k-means

Require: 1) Element set of all virtual trajectories: X =
{x1, x2, ...}; 2) the number of local neighbors: K; 3) the
number of cluster centers: p

Ensure: The initial cluster centers: π = {π1,π2,...πk}
1: Label all elements of X as unvisited, π = ∅
2: for ∀xi ∈ X do
3: Select its k-nearest neighbor set Ωi according to ele-

ments distance.
4: Calculate the local density dens(xi) according to E-

quation. 10.
5: end for
6: Sort X according to the local density of element, denote

as X
′
.

7: while the number of π is less than p do
8: for ∀xj ∈ X

′
and xj is unvisited do

9: Calculate the cluster center: πj =
1

k

∑
xi∈Ωj

xi,

10: Label xj and elements of Ωj as visited, add πj to
π.

11: end for
12: end while
13: return cluster center set π.

3.2.3 Mapping Logical Floor Graph to Physical Floor

Graph

For automatically constructing fingerprint map, we need

to associate virtual subarea νi to the corresponding

subarea sj by mapping logical floor graph to physical

floor graph. Formally, given logical floor graph Gf =<

Vf , Ef > and physical floor graph Gp =< Vp, Ep >,

find a mapping function τ : Vf → Vp for ∀e(u, v) ∈
Ef , e(τ(u), τ(v)) ∈ Ep. Obviously, this is a subgraph

isomorphism problem and can be solved by Ullmann

algorithm [26].

Ullmann algorithm utilizes a depth-first search s-

trategy to enumerate all sub-graphs of Gf that match-

ing Gp. For ease of understanding, Figure 6c is the

search tree for mapping Gf (Figure 6a) to Gp (Figure

6b), the i-th layer of search tree represents mapping ui
of Gf to each node of Gp, a path from root node to leaf

u1 

v4 

v3 

(a) Logical floor graph:     

v1 

u3 

u2 

pG
fG (b) Physical floor graph: 

v2 

root 

u3 

u2 

u1 v4 v3 v2 v1 

v2 v4   v4 v1 v3 v2 

v4 v3 

(c) Search tree for mapping        to      fG pG

Fig. 6: Mapping logical floor graph to physical floor

graph

node represents a subgraph matching between Gp and

Gf . A subgraph matching is correct if the adjacency re-

lationship of ui in Gf is the same as its mapping node

vj in Gp.

Since we have mapped each virtual subarea νi to the

corresponding physical subarea sj , we further compute

the fingerprint of sj according to Equation. 1. Then, we

construct subarea fingerprint map with associating sj
to the calculated fingerprint.

3.3 Online Localization

At the online localization part, user sends localization

request with submitting the scanned RSS record o(u, t, R),

R = {r1, r2, ..., rK}, our method estimates the subarea

of his/her current location using a Bayesian approach.

According to Bayesian inference, the posterior proba-

bility P (si|R) can be calculated as Equation. 11.
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P (si|R) =
P (R|si)P (si)

P (R)
(11)

Since the prior probability that user is located in

each subarea is equal and the RSS values from different

WiFi APs are independent, the posterior probability

P (si|R) can further be simplified as Equation. 12.

P (si|R) ∝
K∏
j=1

P (rj |si) (12)

For a given subarea si, the prior probability P (rj |si)
can be calculated by the normalized histogram of apj in

this subarea. We partitioned the RSS values range into

H bins when constructing fingerprint map, suppose rj

belongs to the h-th bin, P (rj |si) is equal to fsi(h, j).

Then, the localization result for RSS record o(u, t, R),

R = {r1, r2, ..., rK} can be estimated by Equation. 13.

ŝ = argMax
si∈S

K∏
j=1

fsi(h, j) (13)

Algorithm 2 formally describes the framework of our

proposed method for indoor subarea localization. First,

as shown in Lines 2 ∼ 3, we first cluster the RSS records

to the same floor. Then, we generate the logical floor

graph based on two unexploited RSS characteristics in

indoor space as shown in Lines 5 ∼ 10. Finally, as de-

picted in Line 11 ∼ 12, we construct subarea finger-

print map by mapping logical floor graph to physical

floor graph. At the online localization part, we calcu-

late the posterior probability for each subarea based by

Bayesian inference, as shown in Line 14 ∼ 17. Final-

ly, we select the subarea with the maximum posterior

probability as the localization result.

4 Experiment Evaluation

In this section, we first describe the experimental set-

ting and dataset for evaluation. Then, we report the

results of a series of experiments conducted to evalu-

ate the performance of our proposed method for indoor

subarea localization, follow by discussions.

4.1 Experimental Datasets

Our experimental environment is a large indoor shop-

ping mall with four floors and each floor is about 55m×
30m.

Algorithm 2 Graph-based method for indoor subarea

localization

Require: 1) The RSS traces set D = {L1, L2, ..., LM}; 2)
Subarea set S = {s1, s2, ..., sN}; 3) The number of floors:
F ; 4) Physical floor graph Gp; 5) user-specific threshold:
τ, α, δ, d; 6)The RSS record of user’s localization request:
o < u, t, R > and R = {r1, r2, ..., rK}.

Ensure: The subarea su of user’s current location
1: ∗ ∗ ∗Phase 1: Cluster RSS Records∗ ∗ ∗
2: reduce the RSS values d-dimension vector by Laplacian

Eigenmaps.
3: cluster the d-dimension vectors to F classes by k-means

algorithm.
4: ∗ ∗ ∗Phase 2: Construct Fingerprint Map∗ ∗ ∗
5: for ∀Li ∈ D do
6: Identify physical boundary points according to Equa-

tion. 7.
7: Remove false identification according to Equation. 8.
8: Construct virtual trajectory traj(Li).
9: end for

10: Generate logical floor graph Gf by merging virtual tra-
jectories {traj(L1), traj(L2), ..., traj(LM )}.

11: Map logical floor graph Gf to physical floor graph Gp.
12: Construct subarea fingerprint map Y =
{(s1, fs1, ..., (si, fsi), ..., (sN , fsN ))}.

13: ∗ ∗ ∗Phase 3: online localization∗ ∗ ∗
14: for ∀(si, fsi) ∈ Y do
15: Otain the histogram bin h that rj belongs to.
16: Calculate the probability P (si|R) =

∏K
j=1 fsi(h, j)

17: end for
18: return su=arg Max

si∈S
P (si|R).

Table 4: Dataset for floor clustering

floor1 floor2 floor3 floor4

# of RSS records 1005 1471 760 712
# of different WiFi APs 81 72 56 66

4.1.1 Dataset for Floor Clustering

To evaluate the method for clustering the RSS records

to the same floor, we need to label the floor that the

RSS record is collected. Finally, we collect 3948 RSS

records with floor information with a sampling rate of

1 Hz in total, more details about this dataset are shown

in Table 4. After the analysis, there are 275 different

WiFi APs, then we extend each RSS sample to a 275

dimensional vectors and set -110 dBm as default value

for WiFi AP without collecting RSS values.

4.1.2 Dataset for Subarea Localization

We evaluate the proposed subarea localization algorith-

m at one floor with 26 shops and 7 corridors. Each shop

is regarded as a subarea and corridors are partitioned

to 16 subareas, so there are 42 subareas in total. The

floor plan and subarea partition is shown in Figure 2.
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To evaluate our subarea localization method, we

need to record two labeled information: the subarea

and whether the location is a physical boundary point

of each WiFi RSS record. We develop a mobile applica-

tion to collect WiFi RSS samples with a sampling rate

of 1 Hz, each sample is represented by a tuple: < L, o >.

Specifically, L = {si, 0|1} is the label information: floor,

subarea and whether is a physical boundary point, o is

the scanned RSS record from surround WiFi APs and

represented by a triple (M, t,< r1, r2, ..., rK >), M is

the MAC address of collection device and t is the collec-

tion time, r1 is the scanned RSS values from AP1. Note

that we collect RSS information with a sampling rate

of 1 Hz at the offline phase for constructing fingerprint

map, users only need to submit the single RSS sample

in online localization without continuously submitting

RSS information.

We collect 117 WiFi RSS traces for experiment eval-

uation by 25 participants (including students and shop

workers) over 33 days, in which one RSS trace includes

an average of 10 subareas and 1532 RSS records, and

each subarea has been visited by at least three partic-

ipants. Statistically, there are 123 different WiFi APs

and 179241 WiFi records. For constructing subarea fin-

gerprint and calculating fingerprint similarity, we ex-

tent each RSS sample to a 127 dimensional vectors, as

shown in Table 5. For WiFi AP without collecting RSS

values, we set -110 dBm as default value, one example

of RSS samples is shown in Table 6.

4.2 Experimental results

4.2.1 Cluster RSS Records

We use Fowlkes-Mallows index [27] to evaluate the per-

formance of cluster algorithm. Let TP denote the num-

ber of true positives, FP denote the number of false

positives, and FN denote the number of false negatives,

the Fowlkes-Mallows index (FMI) is calculated by:

FMI =

√
TP

TP + FP
· TP

TP + FN
(14)

Tuning parameters of cluster algorithm, such as the

number of clusters and the dimension of RSS records

after reduction, are critical to the performance of clus-

tering RSS records to the same floor. Figure 7a reports

the clustering performance (FMI) with different num-

ber of clusters and different dimensions of RSS record-

s. From this figure, we observe: 1) the best clustering

performance is achieved when setting the number of

clusters equal to 4, which is the number of floors. For

example, the FMI is 43.6% using the raw RSS records

when the number of clusters equal to 4; 2) the clus-

tering performance using low dimension vectors after

reducing have an obvious improvement compare to use

the raw RSS records, showing the advantages of using

Laplacian Eigenmaps to reduce the raw RSS records

to low dimension vector. For instance, the best clus-

tering performance is achieved when reducing the raw

RSS records to three-dimensional vector and setting the

number of clusters equal to 4. The reason is dimension

reduction based on Laplacian Eigenmaps can find the

manifold structure of raw RSS records.

In Figure 7b, we compare the clustering time of us-

ing raw RSS records and low dimension vectors after

reducing, the clustering time is obtained after repeat-

ing the experiments 10 times on Intels Core i5 based

computer. It can be seen from this figure that clustering

with raw RSS records consume much more time than

with low dimension vectors after reducing. The reason

is large indoor space with multi-floor usually has hun-

dreds available WiFi APs (e.g., there are 275 WiFi APs

in our experiment), thus dimension reduction based on

Laplacian Eigenmaps can effectively reduce the cluster-

ing time.

4.2.2 Identify Physical Boundary Points

Three parameters in our algorithm need to be deter-

mined for identifying physical boundary points: time

windows size τ , variation coefficient α for recognition

boundary points, user-specific threshold δ for remov-

ing false identification. The three parameters direct-

ly impact the accuracy of identifying physical bound-

ary points. We use a cluster-based method to select δ.

Specifically, we first cluster all WiFi RSS records to N

classes by KNN, N is the number of subareas. Then, we

calculate the fingerprint of each class and further ob-

tain the similarity for each pair of fingerprints. Finally,

we select the average similarity as δ for removing false

identification.

For calculating the subarea fingerprint, we partition

the range of RSS values into 4 bins which is in line with

typical RSS quality partition [2, 20]: (1) bin-1, which

represents WiFi signal is excellent and the RSS values

are in range [-55,0]; (2) bin-2, which represents WiFi

signal is good and the RSS values are in range [-70,-

55); (3) bin-3, which represents WiFi signal is poor and

the RSS values are in range [-85,-70); (4) bin-4, which

represents WiFi signal is bad and the RSS values are in

range [-100,-85).

Table 7 shows the accuracy of identifying physical

boundary points with time window size τ and variation

coefficient α. From this table, we observe: 1) the accu-

racy drops sharply when the user-specific threshold of
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Table 5: The RSS sample format

001 002 ... 123 124 125 126 127

RSS value RSS value ... RSS value timestamp phone ID boundary point flag subarea ID

Table 6: One example of RSS sample

[001] [002] ... [123] [124] [125] [126] [127]

-73 -65 ... -87 2015-12-07 15:28:15 1 0 1

Table 7: The accuracy of identifying physical boundary

points with different time window sizes and variation

coefficients

α
τ

3 4 5 6 7 8

1.1 0.23 0.29 0.43 0.37 0.30 0.24
1.2 0.37 0.48 0.56 0.45 0.37 0.29
1.3 0.44 0.51 0.61 0.51 0.44 0.32
1.4 0.47 0.59 0.75 0.70 0.59 0.48
1.5 0.52 0.71 0.83 0.79 0.67 0.54
1.6 0.37 0.64 0.76 0.57 0.55 0.38
1.7 0.29 0.48 0.70 0.46 0.39 0.31
1.8 0.24 0.41 0.63 0.47 0.35 0.21
1.9 0.19 0.21 0.53 0.33 0.20 0.16

variation coefficient α is lower than 1.2 or greater than

1.5; 2) Set α = 1.3, the accuracy increases with time

window size increasing from 1 to 5, and slightly decrease

when the time window size is larger than 5 due to the

RSS fluctuation between physical boundary point and

other location will be smaller for a large time window

size. Finally, the best performance (83%) is achieved

when α = 1.3 and τ = 5.

Figure 8a and Figure 8b show the identification ac-

curacy as a function of variation coefficient and time

window size, respectively. From the two figures, we ob-

serve: 1) the method using subarea fingerprint similar-

ity can effectively remove false recognition; 2) Set the

time window size τ = 5, the accuracy declines sharply

when variation coefficient α is greater than 1.6 or lower

than 1.4, and achieve the best accuracy when α = 1.5;

3) Set α = 1.5, the identification accuracy increases

with the increasing number of time window size be-

tween 3 and 5, and slightly decrease when the time
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Fig. 10: The mapping accuracy with different RSS

records of per subarea

window size is larger than 5; 4) the performance of re-

moving false identification decreases slightly with in-

creasing time window size, due to the difference of RSS

fluctuation between physical boundary point and nor-

mal location will be smaller with increasing time win-

dow size.

4.2.3 Construct Fingerprint Map

We utilize mapping accuracy to evaluate the perfor-

mance for constructing fingerprint map. The mapping

accuracy (MA) is defined in Equation 15. We define si
as the ground truth subarea label of record oi, ŝi is the

mapping subarea label.

MA =

∑Te
i=1 I(si, ŝi)

Te
(15)

Where I(si, ŝi) is an indicator function that return

1 if ŝi = si, Te is the test RSS records for evaluation.

One parameter need to be determined for construct-

ing fingerprint map: the cluster number Kf for generat-

ing logical floor graph. Figure 9 reports the performance

of constructing fingerprint map with different cluster

numbers (Kf ), where Kf is in the range [30,33,...51]. In

this figure 9, we compare the performance of K-means

and the improved K-means (DBKM) when constructing

logical floor graph. As previously mentioned, DBKM u-

tilizes a density-based algorithm to select initial cluster

centers of k-means. From figure 9, we can see the pro-

posed clustering method (DBKM) always outperforms

K-means (for example, the FMI of DBKM for all subar-

eas is about 91.3% when Kf = 42, and the performance

is improved by 3% compare with k-means), showing

the advantages of selecting initial cluster centers using

density-based algorithm can achieve better clustering

performance.
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Fig. 11: The subarea localization accuracy

From the three figures (9a, 9b and 9c), we can see

that the mapping accuracy for rooms increases gradual-

ly whenKf increases from 30 to 42 and then drops when

Kf is greater than 42, the highest mapping accuracy of

DBKM is 94.1% when Kf equals to 42 (the number of

physical subareas). Another observation is the mapping

accuracy for subareas located in corridor is lower about

20 percent than rooms, which shows there no obvious

RSS ”jump” characteristic for two connected subareas

in corridor because there are no walls or physical bound-

ary points can significantly weakened the radio signal

strength.

Figure 10 reports the performance of constructing

fingerprint map as a function of number of WiFi RSS

records per subarea. We can see that the mapping ac-

curacy is relatively stable when RSS records of each

subarea is more than 400, which shows our algorith-

m for constructing the fingerprint map will converge

quickly and has a low crowdsourcing data requirement.

Moreover, the performance of constructing fingerprint

map will improve with increasing collected data.

4.2.4 Localization Accuracy

We evaluate the performance of the proposed localiza-

tion method by comparing with two well-known sub-

area localization methods. We first introduce the ex-

perimental dataset and parameters setting, then detail

the comparative localization techniques. Finally, we re-

port and discuss the experimental results.

Dataset. We randomly select 70% RSS records of

each subarea as training dataset to construct fingerprint

map, and the rest 30% as testing dataset for evaluation

localization accuracy.

Parameters Setting. Tuning algorithm parame-

ters, such as the time window size for identification

physical boundary points and the clusters for construct-

ing logical floor map, are critical to the performance of
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Fig. 9: The mapping accuracy with different virtual subareas

localization. According to the experience of previous ex-

periments, our algorithm empirically set parameters as:

{τ = 5, α = 1.5,Kf = 42}, for constructing fingerprint

map.

Comparative Methods. We compare our method

with the following two methods that have been widely

used in subarea localization: (1) RSS-NN [32], which

constructs fingerprint map by manual site survey and

estimates subarea using KNN classification; (2) RSS-

Bayesian [10], which also constructs fingerprint map by

site survey and estimates subarea using Bayesian infer-

ence.

Results and Analysis. Figure 11 shows the lo-

calization accuracy of the three methods. It can be

seen that the performance for open subarea (subareas

in the corridor) and closed subarea (room) are signif-

icantly different for all methods. As shown in Figure

11, the localization accuracy of rooms are more than

87% for the three methods, but lower than 85% for

open subareas in corridor, which shows RSS values of

two connected open subareas are too similar to distin-

guish. RSS-NN achieves the best performance for both

closed subarea(92%) and open subarea(83%). Another

observation is the average localization accuracy rate is

87.1% for our method, which is 1.9% less than RSS-NN.

Therefore, our method can obtain considerable perfor-

mance compared with previous methods with labor in-

tensive and time-consuming site survey.

5 Conclusion

This paper has proposed a ready-to-deploy method for

indoor subarea localization with zero-configuration, s-

ince the proposed method is infrastructure-free and does

not need time-consuming site survey. The main idea is

to generate logical floor graph based on two character-

istics of WiFi RSS in indoor space, and automatical-

ly construct fingerprint map by mapping logical floor

graph to physical floor graph. The proposed method

has been implemented and deployed in a real-world

shopping mall with an average localization accuracy of

87.1%, which is competitive to traditional approach-

es. For indoor space with multi-floors, the proposed

method firstly clusters RSS records to the same floor

using two steps: dimension reduction using laplacian

eigenmaps and clustering using k-means. The advan-

tages on infrastructure-free and automatically construct-

ing fingerprint map, make our method can be widely

used in indoor environment.

As future work, we plan to implement some valuable

indoor location-based services(e.g., indoor POI recom-

mendation or hotspot detecting, etc) based on the pro-

posed subarea localization method.

Acknowledgements This work is sponsored by the Nation-
al Basic Research 973 Program of China (No. 2015CB352403),
the National Natural Science Foundation of China (NSFC)
(61261160502, 61272099), the Program for National Natural
Science Foundation of China / Research Grants Council (NS-
FC/RGC)(612191030), the Program for Changjiang Scholars
and Innovative Research Team in University (IRT1158, PC-
SIRT), the Scientific In-novation Act of STCSM (13511504200),
and EU FP7 CLIMBER project (PIRSES-GA-2012-318939).

References

1. Michael Angermann, Martin Frassl, Marek Doniec, Bri-
an J Julian, and Paul Robertson. Characterization of
the indoor magnetic field for applications in localization
and mapping. In Indoor Positioning and Indoor Navi-
gation (IPIN), 2012 International Conference on, pages
1–9. IEEE, 2012.

2. Alyaa Syaza Azini, Muhammad Ramlee Kamarudin, and
Muzammil Jusoh. Transparent antenna for wifi applica-
tion: Rssi and throughput performances at ism 2.4 ghz.
Telecommunication Systems, pages 1–9, 2015.



14 Yuanyi Chen et al.

3. Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps
and spectral techniques for embedding and clustering. In
NIPS, volume 14, pages 585–591, 2001.

4. Jacob T Biehl, Matthew Cooper, Gerry Filby, and Sven
Kratz. Loco: a ready-to-deploy framework for efficient
room localization using wi-fi. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pages 183–187. ACM, 2014.

5. Nico Castelli, Gunnar Stevens, Timo Jakobi, and Corinna
Ogonowski. Placing information at home: using room
context in domestic design. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct Publication, pages 919–
922. ACM, 2014.

6. Ruben De Francisco. Indoor channel measurements and
models at 2.4 ghz in a hospital. In Global Telecommu-
nications Conference (GLOBECOM 2010), 2010 IEEE,
pages 1–6. IEEE, 2010.

7. Yuhang Gao, Jianwei Niu, Ruogu Zhou, and Guoliang X-
ing. Zifind: Exploiting cross-technology interference sig-
natures for energy-efficient indoor localization. In INFO-
COM, 2013 Proceedings IEEE, pages 2940–2948. IEEE,
2013.

8. Kazuo Hida, Chen Bin, Yoshiro Hada, and Shinichiro
Mori. Evaluation of area detection method using ma-
chine learning. In Multimedia, Distributed, Cooperative,
and Mobile Symposium, 2014.

9. AKMM Hossain and Wee-Seng Soh. Cramer-rao bound
analysis of localization using signal strength difference
as location fingerprint. In INFOCOM, 2010 Proceedings
IEEE, pages 1–9. IEEE, 2010.

10. Seiji Hotta, Yasushi Hada, and Yoshinori Yaginuma. A
robust room-level localization method based on transi-
tion probability for indoor environments. In Indoor Po-
sitioning and Indoor Navigation (IPIN), 2012 Interna-
tional Conference on, pages 1–8. IEEE, 2012.

11. Yinan Hou, Yuankai Xue, Cao Chen, and Shilin Xiao. A
rss/aoa based indoor positioning system with a single led
lamp. In Wireless Communications & Signal Processing
(WCSP), 2015 International Conference on, pages 1–4.
IEEE, 2015.

12. Yifei Jiang, Yun Xiang, Xin Pan, Kun Li, Qin Lv,
Robert P Dick, Li Shang, and Michael Hannigan. Hall-
way based automatic indoor floorplan construction using
room fingerprints. In Proceedings of the 2013 ACM in-
ternational joint conference on Pervasive and ubiquitous
computing, pages 315–324. ACM, 2013.

13. Athanasios Kehagias, Geoffrey Hollinger, and Sanjiv
Singh. A graph search algorithm for indoor pur-
suit/evasion. Mathematical and Computer Modelling,
50(9):1305–1317, 2009.

14. Can Komar and Cem Ersoy. Location tracking and loca-
tion based service using ieee 802.11 wlan infrastructure.
In European Wireless, pages 24–27. Citeseer, 2004.

15. Erik Leitinger, Markus Fröhle, Paul L Meissner, and K-
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