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Abstract—With the introduction of the Bluetooth 4.0 and
Bluetooth Low Energy (BLE) standard, it greatly facilitates the
development of Internet of Things (IoT) applications. Most of
these applications require a positioning mechanism to detect
the position of both people and objects. While BLE is a key
enabling technology, it is relatively new as compared to Wi-Fi
and RFID. Hence there is a need to conduct more studies on BLE-
based positioning methods. In general, positioning methods based
on signal propagation and fingerprint are commonly used in
wireless networking. These methods have their own limitations in
terms of practical use and ease of implementation. In this paper,
we present an innovative BLE-based positioning methodology
called BluePrint which makes use of a detection mechanism
called NUFO (Near, Uncertain, Far and Out). It combines a
simple fingerprint-like method with a rule-based algorithm to
estimate positions. Experimental results show that Blueprint with
NUFO detection can achieve good performance as compared to
other methods. Furthermore, its implementation is simple and
practical.

I. INTRODUCTION

Location-based applications, such as finding point of in-

terests and nearby friends are commonly used today. While

Global Positioning System (GPS) is the key enabling tech-

nology for these applications, it cannot be used effectively

in an indoor environment. Researchers have been trying to

extend location-based applications into an indoor environment,

using different wireless techniques such as Wi-Fi, RFID, etc.

An overview of these techniques can be found in [1] [2]. In

general, these wireless-based positioning techniques rely on

using the received signal strength indicator (RSSI) to estimate

positions.

In recent years, there has been considerable interest in

developing IoT applications. Among the applications, many

of them are supported by Bluetooth in general and Blue-

tooth Low Energy (BLE) in particular (e.g., Apple’s iBeacon

technology for indoor localization). With the advent of BLE,

indoor positioning applications have become more popular.

Studying BLE for localization purposes has also become an

important research topic.

Despite Wi-Fi-based [3] and RFID-based [4] positioning

techniques have been extensively studied for indoor applica-

tions, many researchers and developers think that BLE-based

positioning techniques provide a promising alternative due to

its low cost and low energy advantages. [5] presents a BLE-

based positioning method based on the fingerprint approach.

A signal (fingerprint) map is generated in advance (e.g.,

during a training phase). Positions are estimated by comparing

signals detected by a mobile phone with the signal map using

Euclidean distance and Bayesian estimator. Advantages for

using BLE-based positioning techniques include fast scan-

ning/response time (i.e., better responsiveness), high avail-

ability and compatibility, low power consumption of mobile

terminals, and ease of implementation when compared to Wi-

Fi-based techniques. According to [5] and [6], for generating

a fingerprint map, accuracy can be enhanced based on the

channel information for similarity measurements. [7] proposes

an inverse fingerprinting method. Instead of collecting signals

generated by the target node, sniffers (or reference nodes)

collect signals emitted by the target node and determine the

positions. Although the inverse fingerprint method can achieve

similar accuracy as the conventional fingerprint method, the

practicality should be considered. Generally, the limitations of

the fingerprint-based positioning are that it requires extensive

efforts on constructing the signal map. There is a need to

regenerate a signal map whenever the locations of the beacons

are changed, thus resulting in low scalability.

The signal propagation model approach provides higher

scalability. However the positioning accuracy depends heavily

on the training of the parameters of the model. The logarithmic

attenuation model is commonly used for distance estimation

purposes. [8] introduces a BLE signal propagation based

positioning method with several optimizations and filtering

methods (e.g., Gaussian filter and triangle trilateral relations

theorem filter) to enhance positioning accuracy. [9] presents an

online self-calibration technique to update the model parame-

ters regularly and dynamically over time to enhance position-

ing accuracy. To address attenuation and noise problems, [10]

proposes a weighted centroid localization (WCL) scheme with

a Kalman filter. Positions are estimated by taking weightings

assigned to the beacons based on the signal strengths into

consideration. However, in general, positioning accuracy will

be affected by signal reflection, diffraction and scattering.

Inspired by the aforementioned positioning techniques, this

paper presents a BLE-based positioning technique called

BluePrint that combines a simple fingerprint-like method and

a rule-based algorithm for indoor positioning estimation. The

rest of the paper is organized as follows. Section II introduces

the BluePrint with NUFO detection techniques. Section III

presents the experimentation setup and results. We also discuss

the general factors affecting the positioning accuracy. Section

IV concludes our work.
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(a) Near, 1.5m (b) Middle, 3m (c) Out, 4.5m

Fig. 1: Distribution of RSSI at 1.5m, 3m and 4.5m

II. POSITIONING ALGORITHMS

We seek to develop a simple method with reasonable posi-

tioning accuracy. First, RSSI measurement will be converted

into proximity zone, namely Near, Uncertain (or Middle), Far

and Out. In order to convert the RSSI effectively, fingerprint

sampling will be taken at different distances. This produces

a reference signal-bucket map and a rule-based system to

determine the estimated distance. This signal map is different

from a traditional fingerprint map. A traditional fingerprint

map is constructed at the entire testing area; while we assume

that the RSSI is similar at the same distance in any direction,

a signal map is constructed only at a specific distance, namely

Near, Middle, and Far (as shown in Fig.1). Finally, the location

is estimated by combining the signal label and calculating the

overlapping area of circles. In the following, several methods

are introduced to tackle the above-mentioned positioning

problems in order to increase positioning accuracy.

A. Multiple readings

In a noisy environment, using signal strength to estimate

distance or position is likely to suffer from errors. A common

and simple way to tackle noise issue is to take multiple

readings in one positioning calculation. This is because when

a receiver reads only one signal, this measurement might be

a noise. If more than one measurements are taken, there is a

greater chance for the receiver to measure higher quality data,

by eliminating noise with multiple data.

While the broadcast interval of a reference node can nor-

mally be customized, it is correlated to the length of the

scanning window and the positioning resolution. An one-

second scanning window is generally effective, according

to [5]. Based on this setting, the broadcast interval of the

reference node will affect the number of readings in one

window.

The number of measurements read by a target node depends

on the broadcasting interval and the window length. At the

same time the drop rate should also be taken into considera-

tion. Based on experimentations, we observed that normally

there is around a 20% drop rate when a receiver tries to detect

a signal. The relationship is expressed as follows:

R =
W

I
×ReceiveRate (1)

where R is the number of reading, W is the length of the

window in millisecond, I is the broadcast interval of reference

node in millisecond, ReceiveRate is the observed received

rate.

If we want to obtain multiple readings in an one-second

scanning window, it is safer to shorten the broadcast interval

so that all target devices can receive enough measurements to

filter the noise. During the experiment, we found that there

will be a 70% drop rate on some devices, therefore a 100ms

interval was adopted, so that at worse three readings can be

obtained in one scanning window.

B. Noise Filtering

To obtain a representative value from multiple readings,

commonly used technique is to find the average of multiple

data in one scanning window. However, if there is highly fluc-

tuated data, the mean of the data will be affected by the noise.

Using mean is only effective when there is a large amount of

data. However, if more data are required, it prolongs the length

of the scanning window and thus decreases the responsiveness

of the system. For example, if 30 measurements are needed,

given that the reference nodes broadcast at a 100ms interval

and at best 80% of the measurement can be received, the user

may need to wait 3.75 seconds for the device to calculate a

position.

Instead of using the mean and median, we suggest to use the

mode (i.e., highest frequency). Given that multiple readings

are obtained in one scanning window, the mode value is

used to represent one set of measurements. Our positioning

technique is designed specifically based on the use of the mode

value.

C. RSSI Conversions

The inherent instability of signal strength measurement

always causes difficulties in estimating physical distance and

location by wireless means. In the past, there have been

different approaches using wireless signal strength to estimate

distance, for example continuous training on signal propaga-

tion modal, but the effect of noise is still difficult to eliminate.

To minimize its effect on the estimation accuracy, we suggest

that signal measurements be converted into discrete values

(e.g., Near and Far), and to produce a rule-based system to

estimate locations.



Fig. 2: Cumulative distribution of training data

1) Discretization: We propose that the RSSI be discretized

into different proximity buckets. For example, buckets can be

Near, Uncertain (Middle), Far, Out or S = {N,U, F,O}. (The

name Uncertain means that it is uncertain whether it is near or

far.) A general example can be: RSSI below -70dbm is defined

as Far, and greater than -60dbm is Near. However, the signal

and distance cannot be discretized arbitrarily. The question

that needs to be addressed is that: Given an RSSI, which

bucket does it belong to? And how to define the distance

(dS) threshold for each bucket? In this work, we conducted

measurements and trainings at different distances and recorded

the occurrence of RSSI to determine the threshold of the

buckets.

2) Training: Occurrence of RSSI: The frequency of oc-

currence of RSSI is recorded at different distances from the

beacon. Fig.1 shows the distribution of RSSI at a distance

of 1.5 meters, 3 meters and 4.5 meters. As there is noise,

results show that there is about ±10 dbm variations even if the

receivers and beacons do not move. For example, if the device

is placed at the 1.5 meters apart from the beacon, the RSSI

value ranges from -51 to -63, while at 3 meters RSSI ranges

from -60 to -79. Although the range overlaps, the distributions

of the RSSI are different. Therefore, measurement frequency

is taken into consideration. Based on the training data, if we

look at the 10th percentile to 90th percentile of measurements

taken at 3 meters, they are from -64 to -67.

Fig.2 shows the cumulative distribution function of RSSI

at 1.5 meters, 3 meters and 4.5 meters. This cumulative

graph helps to effectively distinguish the signal range at

different distances. The vertical dotted lines help to identify

the effective range of the discrete values based on frequency.

For example, at a range of -62 to -67, most of the data are

measured at 3 meters.

Based on cumulative frequency, rules can be summarized

as follows and in Table I:

• If RSSI is larger than -62, it is certain that the distance

is within 1.5 meters; If it is within 1.5 meters, it is in the

Near category.

• If RSSI smaller than -67, it is certain that the distance is

greater than 4.5 meters.

TABLE I: Summary of rules

RSSI Bucket Distance

RSSI >-62 Near 1.5m

-67 <RSSI <-62 Uncertain 1.5m - 4.5m

RSSI <-67 Far 4.5m

Fig. 3: Region of buckets (assuming signal is equally trans-

mitted in omni-direction)

• Otherwise (-62 to -67), it falls into the middle category.

D. Region of Buckets

The training data and the cumulative graph provide infor-

mation for the estimation of position. Assume that the signal

of beacons is emitted omni-directionally, the coverage area of

the signal of each bucket can be defined by the radius of each

area and the equation of a circle:

(x− bx)
2 + (y − by)

2 = ds
2 (2)

where ds is the radius for that zone as defined by the rules, bx
and by is the x and y coordinate of the beacon. To determine if

a point p falls within the Near zone for example, px, py can be

put into equation 2. If the result of distance dp is smaller than

ds, (i.e., dp < ds), p locates within the zone. For instance, if

a beacon is placed at (0,0), and the ‘Near’ radius is 1, for a

point (2, 2), r is 2.83, which means this point is not located

inside ‘Near’ region. For a point (0.5, 0.5), r is 0.71, which is

inside N . Fig.3 illustrates an example of the proximity zone

with equation 2.

E. Placement of beacon

The training data also help to define rules for placing the

beacons at appropriate locations. Ideally, beacon placement

should be separated at a certain distance, so that the signals

will not interfere with each other. The distance between

beacons can be determined by the training method stated

in Section II-C. The ideal distance should be the distance

between the Middle and Far buckets. For example, given the

defined buckets: dN= 0m - 1.5m; dM : 1.5m - 3m; dF : 3m

- 4.5m; and dO: > 4.5m, the beacons should be separated

at three meters, so that a meaningful overlapping area is

produced. At the same time this method can also help to

distinguish abnormal data. We will explain this later.



(a) Near (b) Uncertain (c) Far

Fig. 4: Near, Uncertain, Far proximity zones

F. Location Estimation

Location estimation is based on the calculation of coverage

area of a circle. The input will be the array of beacon-

proximity pair (e.g., { B1:Near, B2:Far }). The location

estimation model is constructed based on three elements:

the known location of reference nodes, the radius of each

proximity zone and equation 2.

The Near zone N of beacon Bi, namely BiN is defined as:

(x−Bix)
2 + (y −Biy)

2 ≤ dN
2 (3)

The Uncertain zone U of Bi, or BiU , is the relative

complement of Near zone in Uncertain zone:

dN
2 ≤ (x−Bix)

2 + (y −Biy)
2 ≤ dU

2
(4)

The Far zone F of Bi, expressed as BiF , would be the

absolute complement of BiU and BiN , or [BiU +BiN ]c:

(x−Bix)
2 + (y −Biy)

2 > dU
2 (5)

The graphical representation of equation 3, 4 and 5 are

illustrated in Fig.4.

Based on the above equations, the overlapping area of

the cells (i.e., intersection of circles) generates new cells as

defined in equation 6.

BiS ∩BjS
(6)

To calculate the position, given the input array of beacon-

zone pair, first we need to sort the array based on the RSSI

in descending order. The ‘Near’ data will be put into highest

order as there is less fluctuation and thus higher accuracy when

the distance is closer (i.e., signal strength is stronger). After

converting RSSI into the discrete value, if there is only one

Near value, the estimated location will be the location of the

beacon emitting the ‘Near’ signal. If there is no ‘Near’ bucket

inside the input array, calculation of the overlapping area is

required.

In order to calculate the overlapping area in a more effective

way, we will generate a list of predefined known points K =
{k1, k2, · · · , kn}, for example at every 0.1 meter we define a

point (e.g., k1 = {1.0, 1.0}, k2 = {1.1, 1.0}, k3 = {1, 0, 1.1}
and so on). These known points will then be put into the

equations 3, 4 or 5 to check whether they fall into the signal

zone of those beacons. If those points are within the area,

these selected points will then be used for another iteration

until all known points are checked. The algorithm is written as

a recursive function as shown in algorithm 1. After checking

all points for all beacons in the input array, the resulting points

Fig. 5: Demonstration of iterative positioning algorithm

will be the estimation area. Fig.5 shows the process of the

iteration.

Algorithm 1 NUFO positioning

Input: Array of beacon-bucket pair (b : RSSI) B, Array of

known points K

Output: Array of result of estimated point R

1: b = B[0]

2: for all known points k in K do

3: if (Check within circle (k, b, RSSI)) then

4: Add k into R

5: end if

6: end for

7: Remove B[0]

8: if B.size == 0 then

9: return R

10: else

11: return NUFO positioning(B,R)

12: end if

Based on this approach, if beacons are properly placed,

i.e., the beacons are placed separately at a certain distance

as explained in Section II-E, the largest number of cells with

respect to the optimum number of beacons can be achieved.

G. Detection of abnormal data

If the input consists of more than one ‘Near’ value, ab-

normal data might exist. The benefit of using a rule-based

system is that it helps to define the placement of the reference

nodes, and thus the algorithm can detect abnormal data. Given

the measurement of RSSI at difference distances, and prior

knowledge of the reference node, it is able to determine if

a set of inputs is valid. For example, given an input [B1:N,

B2: N, B3:F], it indicates that the target node is locate within

1.5 meters from beacon B1, but also within 1.5 meters from

beacon B2. If the distance between B1 and B2 is larger than

1.5 meters, no point can exist within one meter from B1 and

B2, and thus there is abnormal data either from B1 or B2.

III. EXPERIMENTATION

A. Experimental Setup

The BluePrint method has been implemented as an Android

application for testing. The mobile application records the

RSSI signal from all reference nodes and calculates the

position. In the experiment, reference nodes include Android

devices, BLE beacons and BLE development boards.



BluePrint is compared with three baseline signal-based

positioning approaches, namely trilateration with centroid

estimation, least square of distance estimation and least square

of ratio estimation.

1) Trilateration with centroid: This is the most commonly

known localization technique. If there are at least three known

points, and the distances between known points and the target

point are known, the location of the testing point can be found

based on geometry. However, because the distances derived

from RSSI are not accurate, the position cannot merely be

calculated mathematically. In other words, the intersection of

circles can be an overlapping area rather than a point or there

is no intersection at all. Based on this property, the estimation

of location is calculated by the centroid of the intersection

area.

2) Least Square on distance: An alternative to centroid,

location can be determined by least square estimation. As

mentioned above, because the distance is not accurate, the

circle will not intersect well. Least square estimation can be

useful in this situation. By first generating a list of n known

points K , we can generate the vector of distance between

known points {k1, k2, · · · , kn} and each beacon b from 1

to j, namely Dki
= [dki,b1 ... dki,Bj

] where dki,b1 is

the physical distance between known point ki and beacon

b1. Note that the distance is not the measurement taken by

the device, but the Euclidean distance between two known

points. For each known point, there is a unique distance vector.

When estimating the position of the target, a distance vector is

produced by converting RSSI to distance. By calculating the

similarity between the known point distance vectors and the

target point vector, the position can be estimated. Similarity

measurements between vector can be calculated by Euclidean

distance.

3) Least Square on ratio: Similar to least square on dis-

tance, ratio can also be used. The same list of known point K

can be used. Rather than putting the distance into the vector,

the ratio of distance within the vector is calculated. For exam-

ple, the distance vector of point a is Da = [3.2 2.4 4.9],
the ratio vector will be Ra = [1 0.75 1.53].

B. Experimental Results

Comparing the positioning estimation results of trilater-

ation, least square on distance and least square on ratio,

our algorithm performs better. Fig.6 shows the cumulative

distribution functions of the error distances of over 200 testing

points. It shows that trilateration is not favorable in estimating

locations. This is because it requires a very accurate distance

measurement in order to calculate the position, but the distance

derived from RSSI is difficult to be accurate in a noisy

environment. Also, about 18% of the testing points, the phone

cannot calculate the location of it. This is because it requires at

least three beacons in order to estimate the location; however,

a mobile phone can sometimes only detect two beacons,

because the signal might be interfered with.

In this regard, least square estimation provides a better way

than trilateration to estimate the position. Instead of relying

Fig. 6: CDF of location estimation error

TABLE II: Error distance in 25th,50th, 75th percentile and

average (Smaller is better)

Method 25
th

50
th

75
th Average

BluePrint with NUFO 0.003 1.659 2.198 1.536

Least Square (distance) 1.104 1.807 2.670 2.056

Least Square (ratio) 0.920 1.868 2.573 2.099

Trilateration 2.914 5.186 10.510 5.098

on geometry to estimate a location, the location can be found

based on the similarity of distance vectors. Among the least

square method, using ratios is a slightly better approach than

physical distance, because as mentioned above, the physical

distance derived from RSSI is not accurate. Even though

the calculated distance is not correct, the ratio would remain

similar.

Our algorithm performs better than other tested techniques.

About 18% of the results give zero error. 67% of the results

have an error below two meters. Table II shows that our al-

gorithm performs better at the 25th, 50th and 75th percentile,

and the average error distance is also smaller.

C. Factors affect accuracy

Based on numerous sets of observation and experimenta-

tion, we found that while the filtering techniques and esti-

mation algorithms affect the accuracy of positioning results,

the following factors also affect the accuracy no matter which

methods are used.

1) Multi-path fading: The signal propagation model as-

sumes a negative relationship between RSSI and physical

distance. When there is noise, this property remains true when

considering the global trend of the RSSI. However, in an

indoor environment, this property might not hold because of

the multi-path fading effect. In other words, in a certain area a

longer physical distance might give a slightly stronger signal

strength than at a closer distance. For example, as shown in

Fig.7d, occasionally the receiver measured signals of -55dbm,

which is as strong as the measurement at 1.5 meters. In this

regard, the use of signal propagation model cannot estimate

the physical distance accurately; while the fingerprint method

has its benefits, assuming the environment will not be changed



(a) Android phone at 1.5m (b) Cypress BLE board at 1.5m

(c) Android phone at 3.5m (d) Cypress BLE board at 3.5m

Fig. 7: RSSI broadcasted by different devices and distances

and the signal map remains the same over a long period of

time.

2) Difference between reference nodes: Comprehensive

training of a signal propagation model or signal fingerprint

will increase the positioning accuracy. However, even under

the same environment and same broadcast setting, a signal

emitted by different nodes will have different characteristics

as shown in Fig.7, which the broadcasting power of both

devices are set at 3dbm with 100ms interval. As a result, we

cannot assume that the trained model can be applied across

different reference nodes. One device might not be sufficient

when training the model or signal map, as also suggested by

[8]. As a result, the simplicity of training a model is sacrificed.

3) Difference between target nodes: Besides reference

nodes, there is a difference between target nodes. As men-

tioned, some devices might only have a 30% chance of

receiving a signal. For examples, in a 10-second scanning

period, given a broadcasting interval of 100 milliseconds, there

should have been 100 readings, or 10 readings per second.

Based on the experimental results, we found that most devices

can receive about 80% of the readings, as shown in Fig.8a.

However, some devices can only receive about 30% of the

readings, as shown in as Fig.8b. In other words, we cannot

assume that all messages broadcasted will be picked up by all

targets. This affects the filtered result in one scanning window,

as normally the more the measurements in one scanning

window, the greater the accuracy of the filter result, no matter

whether mean, mode or median is used. One can shorten the

broadcasting interval to increase the number of measurement

or prolong the measurement window, and thus decreasing the

battery life of reference nodes or reducing the responsiveness

of calculations, which are the respective results.

IV. CONCLUSION

BLE-based indoor positioning is promising due to low

cost, low energy and ease of implementation. In this paper, a

(a) 75 readings read by phone 1 (b) 26 readings read by phone 2

Fig. 8: Number of measurement in 10 seconds

BLE-based positioning technique called BluePrint with NUFO

detection has been proposed. In BluePrint, RSSI is discretized

into four buckets called NUFO for signal detection purposes.

Positions are estimated by using a simple fingerprint-like

method together with a rule-based algorithm. Experimental

results show that Blueprint with NUFO detection can perform

better than other methods (i.e., trilateration with centroid, least

square on distance and least square on ratio).
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