
Access Pattern Hidden Query over Encrypted Data
via Multi-cloud

Yi Dou, Henry C. B. Chan
Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Email: csydou@comp.polyu.edu.hk

Abstract—The searchable encryption is one of the solutions
supporting the untrusted third party directly searching over
the encrypted data. However, recent researches found that it is
vulnerable to attacks leveraging the retained statistical property
observed from encrypted query results. In this paper, we inves-
tigate the problem of the access pattern leakage attack to the
searchable encryption. We adopt the multiple cloud deployment
by distributing both database records and queries among differ-
ent cloud servers, so that none of the cloud servers access to the
entire database records and queries. To achieve the minimum the
query response time and information disclosures, we formulate
this record and query assignment as an optimization problem
and search for the optimal assignment by the minimum s − t
cut. The numerical results show that up to 32% access pattern
information can be saved by our assignment strategy, without
sacrificing the response time.

I. INTRODUCTION

How the cloud providers store and process their consumers’
sensitive data become the main concern of the cloud database.
Searchable encryption is one of the solutions, which allows
directly searching over the encrypted data. The data owner
associates each encrypted record with a number of secure
indexes. Each index is generated based on one of the plaintext
attribute value of the record. In the searching phase, the
data owner would transfer the query into a secure trapdoor
(encrypted query keywords). Then, the cloud server matches
the trapdoor with the indexes to locate the satisfied records.

Most existing searchable encryption schemes are based
on the security model defined by Curtmola et al.’s in [1].
However, this model only protects the confidentiality of data
at rest, while ignoring the information leakage during the
query process. Specifically, the cloud server learns whether
the query has been issued before by observing the repetition
of trapdoors, which is called as search pattern leakage. The
access pattern leakage means that the cloud server learns
which encrypted record is included in the result set of which
query trapdoor. When the query result sets of any two queries
have a large overlap, the cloud server naturally deduce the
probability of these two queries keywords appearing together
is high. For instance, the keywords ‘university’ and ‘education’
often appear together. With the help of probability distribution
of the publicly available plaintext datasets, the cloud server is
able to reveal the underlying keyword of the trapdoor [2].

Recent research [3] shows that the number of encrypted
query results also can be used to reveal the query keywords.
In some datasets, more than half of their keywords have unique

 Cloud 1

R1

Cloud 2

R2

Cloud k

Rk
R

q1,q2, qM

Fig. 1. Assigning records and queries among multiple clouds.

appearance frequencies [4]. Attackers can reveal the keyword
of trapdoor by matching the unique number of results with the
frequency of queried keywords in the plaintext dataset.

Most previous researches [5] against access pattern leakage
attack only discuss in the context of a single server. Similar
fragmentation based schemes [6] are proposed to break the
sensitive association among attributes and records, which
causes the multi-keywords query has to be executed across
servers with longer response time. Most of their cost models
are based on the assumption that server is alway idle that can
immediately process the queries while ignoring the features of
the database system and result transmission delay.

To avoid single datacenter outage, many database programs
support replication among different datacenters of the same
cloud provider [7]. However, the bandwidth between the data-
centers in different regions is large enough; even they belong
to the same cloud provider. Some cloud providers also have
the limitation on the number of replicas per primary database.
Hence, deploying database replicas among multiple clouds, but
in the same region is a better choice. This deployment has less
bandwidth cost and avoids vendor lock-in problem. There is
much lower probability for different clouds colluding together
to breach the privacy of their users.

To against the access pattern leakage attacks, in this paper,
we distribute both database records and queries among the
servers of different clouds. As shown in the Fig.1, each cloud
server performs independent searchable encryption scheme.
Since none of the cloud servers access to the entire database
records and queries, it is hard for them to launch the access
pattern leakage attack by matching the similar statistical
property in the plaintext database. We formulate the record and
query assignment as an optimization problem. The objective

The following publication Y. Dou and H. C. B. Chan, "Access Pattern Hidden Query over Encrypted Data through Multi-Clouds," GLOBECOM 2017 -
2017 IEEE Global Communications Conference, Singapore, 2017, pp. 1-6 is available at https://doi.org/10.1109/GLOCOM.2017.8253981.

This is the Pre-Published Version.

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

is to minimize both the entire query response time and
information disclosures. We adopt the minimum s − t cut to
search for the optimal assignment. In the experiments, we
evaluate the assignment strategy output from our approach
with the real world dataset. The numerical results indicate
that up to 32% access pattern information can be saved by
our assignment strategy, without sacrificing the response time.
And our algorithm is scalable under different realistic settings.

The rest of the paper is organized as follows. Section II
presents the security problem and strategies. Section III formu-
lates our proposed record and query assignment model. Section
IV describes how to search the optimal assignment strategy by
solving the assignment optimization. The experiment results
and conclusion are shown in Section V and VI.

II. SECURITY STRATEGIES

In this section, we are going to explain the reason for
distributing both records and queries among multiple clouds
by reviewing the previous access pattern leakage attacks.

A. security problems

1) IKK Attack: Islam, Kuzu, and Kantarcioglu (IKK) pro-
posed an attack to recover the keyword of trapdoor in the
SSE (searchable symmetric encryption) schemes [2]. It makes
use of the unique co-occurrence probability among keywords.
The attacker has two matrixes Mp and Mc, Mp is obtained
from the public plaintext datasets before the searching, Mc

is built by observing the trapdoors Tq (encrypted keywords),
and their corresponding query results Rq (encrypted records)
during the SSE searching. Hence, the process of revealing the
keywords of observed trapdoors is to find matching elements
between these two matrixes. Each matrix element is a co-
occurrence probability of any two keywords or trapdoors
appears in the same record. For instance, (i, j)th element in
Mc is Mc(i, j) =

|Rqi
∩Rqj

|
N , where N is the total number of

encrypted records and |Rqi∩Rqj | is the number of elements in
the intersection between result sets of query qi and qj . When
the difference between Mc(i, j) and Mp(u, v) is close to zero,
the attacker can map the the ith and jthe trapdoors in Mc to
the plaintext keywords of the uth and vthe queries in Mp.

2) Count Attack: After IKK attack, Cash et al. [3] proposed
another efficient attack to recover the keyword of a trapdoor.
Since some keywords have the unique frequency in the dataset,
the attacker exploits this property to map the trapdoors to
their plaintext keywords as long as the attacker have the entire
encrypted records. Firstly, the attacker calculates the frequency
of each keyword w in the publicly plaintext dataset, that is
count(w). Secondly, the server counts the number of records
in each trapdoor query result during the SSE searching, which
is also the frequency of trapdoor keyword in the encrypted
dataset, that is count(Rq). When there are any keywords in
the plaintext dataset has the same unique frequency as the
trapdoor in SSE, that is count(w) = count(Rq), the attacker
can directly associate the keyword w with the trapdoor Tq .

B. Security Strategies

Both IKK and count attack highly relies on the accuracy
of background knowledge extracted from plaintext dataset
[8]. The successful recovery rate would decline quickly, if
the attacker only obtains a fraction of plaintext dataset [3].
Conversely, when the server only observes partial information
on the encrypted dataset, it also can prevent the above attacks,
even with the complete knowledge in plaintext dataset.

1) Record Fragmentation: Both matrix element Mc(i, j)
and count(Rq) are computed from the trapdoor query result
set Rq . When the server is unable to access the correct
query results of trapdoors, the attacker is hard to deduce their
keywords by matching their frequencies. Padding is one of
the approaches to hide actual query result by adding dummy
records and identifiers before building the secure indexes [2].
However, padding unsatisfied records cause the false positive
in the query results and bring extra communication overhead
[3], [8]. In this paper, we adopt the multiple cloud deploy-
ment. We are going to remove the records in the trapdoor
query results to other cloud servers, so that to make the co-
occurrence probability and keyword frequency observed by the
single server is incorrect. In other words, each server can only
return part of the correct query results. The same query need
be executed parallelly on multiple servers.

2) Query Distribution: Since IKK attack is based on the
entire matrix Mc, the order of different query pairs co-
occurrence probability can be used for keyword recovery
attack. Apart from disturbing each query result set, hiding
the differences between different Mc(i, j) is also necessary.
We adopt the same strategy proposed in [2]. Instead of using
the padding approach, we are going to distribute queries with
similar results on the same server, so that to make the query
result of trapdoors on the same cloud server to be as similar
as possible.

III. ASSIGNMENT STRATEGY

The multiple cloud deployment shown in Fig.1 often follows
the problem about “which” record and query should be placed
on “which” cloud server. In this section, we are going to
introduce the strategy of record and query assignment, so that
to satisfy above introduced the security requirements.

Let R = {r1, ..., rN} denote a set of database records with
several attributes. Let Q = {q1, ..., qM} denote a sequence of
queries each of which has different combinations of keywords
to be searched on R. In addition, let S = {S1, ..., Sk} denote
a group of cloud servers which are going to be assigned both
records and query tasks. Before distribution, we build a matrix
B to describe the query results of all the queries, in which the
rows represent the record set and columns represent the query
set. Each element br,q ∈ B is set to 1, if record r ∈ R satisfies
query q ∈ Q. The qth column vector of B denote the query
result of q, that is Bq .

br,q =

{
0, if r /∈ Result(q)
1, if r ∈ Result(q)

(1)

A. Record and Query Assignment

To prevent the aforementioned attacks, our scheme would
assign both records and queries among cloud servers. We
assume that the partial records and queries on single cloud
server cannot reveal the statistical property of the original
access pattern.

Definition 1: Record and Query Assignment: We define A
as an assignment of records R and queries Q to a set of cloud
servers S, which is a process of horizontally and vertically
partitioning the elements of matrix B into |S| blocks. Finally,
each cloud server obtains a sub-matrix of B with a subset of
records and queries. To avoid the repetition of the returned
results, each element br,q ∈ B will be assigned to one of the
cloud servers.

B =

q1 q2 . . . qM

0 1 . . . 0 r1
1 0 . . . 1 r2
1 1 . . . 0 r3
...

...
. . .

...
...

0 1 . . . 1 rN

→

q1 q2 . . . qM

0 1 . . . 0
1 0 . . . 1
1 1 . . . 0
...

...
. . .

...
0 1 . . . 1

(2)
To formulate the cost of an assignment A, we use matrix

AR and AQ to describe the placement of records and queries
on cloud servers, respectively. Each element xr,s ∈ AR is set
to 1, if record r ∈ R is assigned to cloud server s ∈ S. Since
each record is assigned to at least one cloud server, AR has
no no zero row, that is

∑s=k
s=1 xr,s ≥ 1.

AR =

S1 . . . As
R . . . Sk x1,1 . . . x1,s . . . x1,|S| r1

...
. . .

...
. . .

...
...

x|R|,1 . . . x|R|,s . . . x|R|,|S| rN

(3)

Each element yq,s ∈ AQ is set to 1, if query q ∈ Q is
distributed to cloud server s ∈ S. Each row vector of AQ

represents an assignment of a query among the cloud servers,
that is Aq

Q = [yq,1, ..., yq,|S|]. Since each query has to be
distributed to at least one cloud server, AQ has no no zero
row, that is

∑s=k
s=1 yq,s ≥ 1.

AQ =

S1 . . . As
Q . . . Sk

y1,1 . . . y1,s . . . y1,|S| q1

...
. . .

...
. . .

...
...

yq,1 . . . yq,s . . . yq,|S| Aq
Q

...
. . .

...
. . .

...
...

y|Q|,1 . . . y|Q|,s . . . y|Q|,|S| qM

(4)

We define the assignment on each cloud server s as As,
which is a tuple of two column vectors, that is As =
(As

R,As
Q). Specifically, As

R = [x1,s, ..., x|R|,s]
ᵀ and As

Q =
[y1,s, ..., y|Q|,s]

ᵀ correspond to the sth column in matrix AR

and AQ, respectively. It also means that each cloud server only
obtains a subset of records and queries.

After applying the horizontal and vertical partition on matrix
B, we need to ensure records duplicated into multiple cloud
servers cannot be associated together. So, each cloud server
reassigns different record IDs and uses different keys to en-
crypt records and their attribute names. Accordingly, different
trapdoors are generated for the same query sent to different
clouds. Finally, the independent searchable encryption scheme
is applied within each cloud server.

B. Information Disclosure

In this subsection, we are going to clearly identify the
information disclosure from the assignment A to the cloud
server set S. We assume that different cloud servers will not
collude together after applying different searchable encryption
schemes. We firstly analyse the information disclosure on each
single cloud server. By observing the response results of all
the queries, each cloud server s can rebuild another matrix
Bs to describe the query results on its own. That is, for each
∀xr,s ∈ As

R = 1 and ∀yq,s ∈ As
Q = 1, the corresponding row

and column vector in B is chosen to form Bs (B which is
a sub-matrix of B. The qth column vector of Bs denote the
query result of q on the cloud s, that is Bsq .

As
Q y1,s y2,s . . . yM,s = 1 As

R

0 1 . . . 0 x1,s
1 0 . . . 1 x2,s

Bs =
...

...
. . .

...
...

0 1 . . . 1 xN,s = 1

(5)

Definition 2: Information Disclosure: We define the in-
formation disclosure from the assignment As on each cloud
server as a set of queries D(As) that is unsatisfied the
following constrains:

• Referring to the leakage definition proposed in [2], the
result differences between any two queries on each cloud
server s should be less than a threshold value 0 ≤ α ≤ 1.
We use the hamming distance between any two column
vectors in Bs for evaluation. For any two queries 1 ≤
∀q1, q2 ≤ cols(Bs), if the

Hamming(Bsq1 ,B
s
q2)

rows(Bs)
> α (6)

then q1 and q2 are regarded as insecure queries included
to set D(As), that is D(As) ∪ {q1, q2};

• None of the query on cloud server s should include the
entire query result, that is, for 1 ≤ ∀q ≤ cols(Bs), if
Bsq = Bq , then D(As) ∪ {q}.

We define the overall information disclosure of an assignment
A as the ratio of insecure queries to the total queries.

D(A) =

∣∣∣⋃s=k
s=1 D(As)

∣∣∣
|Q|

(7)

C. Query Response Time

We use the query response time observed by the data user
to evaluate the performance of records and queries distribution
across multiple cloud servers. We consider all the queries
q1, ..., qM have already been identified by the developers. And
each query has a corresponding execute frequency, denoted as
a vector F = [f1, ..., fM],

∑q=M
q=1 fq = 1. The response time

of each cloud server consists of two parts: local processing
time and result transmission time. Since queries sent to a
cloud server in sequential order, the local processing of each
cloud server can be modelled as a M/M/1 queue. The time
cost of query result transmission is a constant calculated
based on the result size and network bandwidth, that is
Tran(q, s) = Size(Bsq)/Net(s).

Obviously, the query arrival rate to each cloud server is
related to the queries assigned to it. For any query q with
executing frequency fq , cloud server will receive the requests
with the rate of fq , as long as it stores the records queried
by q. We consider the queries arrival rate follows the poisson
distribution. Since the additive property of poisson distribution,
the arrival rate of any cloud server s is the summation
of all the execute frequencies of queries on them. Let θs
denote the mean query arrival rate of server s, such that
θs = F · As

Q = [f1, ..., fM] · [y1,s, ..., yM,s]
ᵀ. We assume that

the query processing time of each cloud’s database follows
the independent exponential distribution. Then we use µs to
denote the mean query process rate of server s.

Since each query is forwarded to more than one cloud server
and processed parallelly, based on the row vector Aq

Q, the final
mean response time of each query q equals to the maximum
mean response time of all the execute cloud servers, as follows.

T (q,A) = max
yq,s∈Aq

Q,yq,s=1

{
θs

µs − θs
+ Tran(q, s)

}
(8)

Thus, for an assignment A and a sequence of queries Q =
{q1, ..., qM}, the mean response time is shown as follows.

T (Q,A) =
∑
q∈Q

T (q,A) · fq (9)

Definition 3: Optimal Assignment: Given a matrix B built
to represent the query result of a sequence of queries Q on a
set of database record R. We use the following optimization
problem to find an optimal assignment A of all the elements in
B to the cloud servers in S that minimizes both the total query
response time T (Q,A) and information disclosure D(A).

G(A) = min
A∈(B×S)

T (Q,A) +D(A) (10)

IV. ASSIGNMENT OPTIMIZATION

In this section, we describe how to find a record and
query assignment with the minimal query response time and
information disclosure. The optimization problem formulated
in equation (10) is NP-hard to solve. We present the following
heuristic algorithm to find an approximate optimal assignment.

A. Algorithm Overview

The challenge of solving the optimizing problem (10) lies
in the mutual affection between record and query placements.
When any record in the result set of a query q is assigned to a
cloud server s, then query q also need to be sent to the same
cloud in order to return the entire query result. The response
time of query q is reduced, but the workload and information
leakage on server s is increased. Hence, instead of determining
the placement of record and query separately, we take each
element br,q ∈ B as a decision unit. Thus, the optimization
problem (10) equals to find an assignment of elements in B =
{b1,1, ..., b1,M ; ...; bN,1, ..., bN,M} to one of the cloud servers
S1, ..., Sk, such that the objective function G(·) is minimized.

Input: matrix B; set of cloud servers S; empty
assignment A; objective function G(·)

Output: assignment A: G(A) is minimal
Initialization: A ← an arbitrary assignment ;
do

Stop← 0;
forall pairs of cloud servers {s, t} ∈ S do
A′

= EXCHANGE(s, t,A);
if G(A′

) < G(A) then
A = A′

;
Stop← 1;

end
end

while Stop = 1;
return A;

Algorithm 1: Optimal assignment search algorithm.

s ts t

s

t

h

(a) (b) (c)

Fig. 2. Search for optimal assignment of elements to a pair of cloud servers
via minimum cut.

B. Assignment Minimization via Minimum Cut

The structure of our algorithm is shown in Algorithm 1.
Referring to the idea in [9], [10], the algorithm repeatedly
executes the for-loop until the first for-loop that doesn’t
change the variable “Stop” to 1. In the for-loop, the algorithm
performs the same iteration (EXCHANGE) for each pair
of cloud servers. The output of each EXCHANGE is an
optimal assignment of input elements to one pair of cloud
servers. The variable “Stop” will be set to 1, if the output of
any EXCHANGE is an assignment A′

with lower objective
function value. Once any for-loop cannot make any adjustment
to the current assignment A, the algorithm outputs A.

Fig.2 depicts how to solve EXCHANGE via the minimum
s− t cut. We first construct a graph by considering two cloud
servers as terminal nodes (s, t) and all the elements in B as
the middle nodes connecting s and t. In the initial phase of the
Algorithm 1, each element in B is arbitrarily connected to one
of the cloud servers in S. Given the input of a cloud server
pair and an assignment A to be updated, the algorithm adds
edges from both servers to all the elements that was linked to
one of the two servers, as shown in Fig.2(a)). The weight of
the edge between an element and a terminal node represents
the cost of assigning an element to cloud server s or t, which
includes the additional information leakage and the response
time change of all the queries placed on that server (caused
by increased arrival rate and result size).

Therefore, the output of a minimum s− t cut on the above
constructed graph is an edge set (hit by the dashed lines in
Fig.2(b)) with the minimal cost value to separate terminal node
s and t, which is also a new assignment A′

from elements to
cloud servers. Some elements previously assigned to server s
in A are now assigned to server t in A′

, and vice versa. The
assignment of the rest cloud servers h 6= s, t ∈ S are the same
in the two assignments Ah = A′h. The algorithm repeatedly
chooses another pair of cloud servers (s, h), links the elements
of s and h with each others, and finds the minimum cut set,
as shown in Fig.2(c).

V. PERFORMANCE EVALUATION

In this section, we conduct experiments to analyse the
performance of the assignment strategy output from Algorithm
1. In particular, we demonstrate that our assignment strategy
resists access pattern attack, offers high query efficiency and
scalable under different realistic settings.

A. Experimental Settings

1) Dataset R and queries Q: We adopt the Enron email
dataset for evaluation, which is a set of email documents
of 150 Enron corporation employees sent during 2000 to
2002 [4]. This dataset has 30,109 email documents with
77,000 unique keywords after removing the stopwords [5]. We
consider each document as a record and generate queries by
uniformly choosing them from the most frequent keywords.
The documents that contain a certain keyword means the doc-
ument is the result of the query with that keyword. Since the
query frequency does not influence the information disclosure,
we assume the frequencies of all the queries are equal and their
sum is 1. So the query arrival rate θs of each cloud server is
related to the total number of queries assigned to it.

Fig. No. of Q No. of S α
3(a),3(b) 500 [1,10] 0.5
4(a),4(b) [100,1000] 10 0.5

5(a) 500 10 0.5
5(b) 500 5, 10 [0,1]

TABLE I
PARAMETER SETTINGS FOR FIGURES

2) Cloud Servers S: Since the service rate of cloud
database service is dynamic and hard to control, we evaluate
the performance of our assignment approach via the numerical
experiments. We assume that the service rate µs of all the
cloud servers are equal to 1 in the following experiments. The
time cost of transmitting back each single record is assumed
to be 1 ms. So the bandwidth cost equals to the number of
query result on each cloud server. We use the gco-v3.0 library
[11] to implement the minimum cut algorithm and obtains our
assignment policies based on the different parameter settings.
Table I indicates the specific parameter settings of each figure.

B. Experimental Results

1) What are the benefits of our assignment?: We com-
pare the record and query assignment strategy designed by
our approach with the record placement policies in the dis-
tributed databases. The usual placement policies in the NoSQL
database (e.g., MongoDB) are Range-based and Hash-based.
In the Range-based policy, records are divided into different
chunks based on the shard key values. Each chunk is then
placed at one of the cloud servers. Records with “closer” shard
key values are stored on the same server. In the Hash-based
policy, records with “closer” shard key values are placed on
the different servers. It distributes the records evenly among
cloud server by computing the hash of shard key values.

Fig.3(a) shows the information disclosure of three data
assignment policies with the growing number of cloud servers.
The leakage always declines as a greater number of servers,
since fewer access patterns are observed by each cloud server.
Range-based policy leaks more information than Hash-based,
because the records assigned based on hash value can disasso-
ciate the connection between records. Our assignment strategy
discloses the lowest percentage of information over other two.
Compared with Hash-based policy, our approach saves 10.67%
disclosures on the queries with insecure hamming distances
and 21.3% of the insecure queries with original frequency.
Compared with Range-based policy, our approach can save
more disclosures. The benefits of our assignment over other
policies increases with the greater number of cloud servers.
This is because our approach achieves better assignment
solutions with more cloud servers.

Fig.3(b) depicts the response time of three placement strate-
gies. The Range-based policy has less query response time

(a) Information disclosure (b) Response time

Fig. 3. Benefit of our assignment strategy on information disclosure and
query response time

(a) Information disclosure (b) Response time

Fig. 4. Influence of number of queries on the benefits of our assignment

than Hash-based, because records of the same query are
scattered among different cloud servers. However, in these
two partitioning policies, the amount of queries on each cloud
server has not been considered. In our assignment strategy,
using the access pattern as input leads to faster query response
time which saves 12% response time than other two polices.

2) How does the number of queries influence the bene-
fits?: Fig.4(a) shows the information disclosure of three data
assignment policies with the different number of queries. The
access pattern leakage of Range-based and Hash-based policy
increases when the number of queries is too small and too
large, since when more queries are gathered in the same
cloud server and more access patterns are disclosed. Compared
with Hash-based policy, our approach saves 23.69% infor-
mation disclosures on the insecure queries. This is because
our approach optimizes the information disclosure. Fig.4(b)
illustrates the impact of the number of queries on the query
response time. Compared with the other two policies, our
approach has almost the same query efficiency. This result
indicates that our approach optimizes the information disclo-
sures than the query response time.

3) How fast does Algorithm 1 converge?: Fig.5(a) demon-
strates the comparison of converge speed between Algorithm 1
(minimum cut) and greedy randomized adaptive local search
procedure (GRASP) proposed in [12]. In the each iteration
of our algorithm, function EXCHANGE (minimum s− t cut)
is invoked once to find an optimal assignment of elements
to a pair of cloud servers. In the each iteration of GRASP
algorithm, function CONSTRUCTION is invoked once to
greedily find a new assignment with lower objective function
value. Fig.5(a) shows the cost of our algorithm drops quickly
in the first several iterations, which indicates that our approach
converges faster than the GRSAP algorithm. In the Fig.5(b),
we evaluate the cost to solve the optimal assignment by
varying the security threshold value α from 0.1 to 1. The
cost decreases with α approaches to 1, since fewer number of
queries are inserted into the set of insecure queries.

VI. CONCLUSION

This paper investigated the problem of the access pattern
leakage attack to the searchable encryption in the cloud
database. We adopt the multiple cloud deployment by distribut-
ing both database records and queries among different cloud
servers. To achieve the minimum the query response time and

(a) Converge speed (b) Influence of parameter α

Fig. 5. Evaluation of converge speed and influence of parameter α

information disclosures, we formulate this record and query
assignment as an optimization problem and search for the
optimal assignment by the minimum s− t cut. The numerical
results show that up to 32% access pattern information can
be saved by our assignment strategy, without sacrificing the
response time.

ACKNOWLEDGMENT

REFERENCES

[1] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

[2] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation.” in NDSS,
vol. 20, 2012, p. 12.

[3] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 668–679.

[4] Enron email dataset. [Online]. Available: http://www.cs.cmu.edu/ ./en-
ron/

[5] A. Degitz, J. Köhler, and H. Hartenstein, “Access pattern confidentiality-
preserving relational databases: Deployment concept and efficiency
evaluation.” in EDBT/ICDT Workshops, 2016.

[6] S. D. C. di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi,
and P. Samarati, “Fragmentation in presence of data dependencies,”
IEEE Transactions on Dependable and Secure Computing, vol. 11, no. 6,
pp. 510–523, 2014.

[7] Mongodb multi-data center deployments. [On-
line]. Available: http://s3.amazonaws.com/info-mongodb-
com/MongoDB Multi Data Center.pdf

[8] M. A. Abdelraheem, T. Andersson, and C. Gehrmann, “Inference and
record-injection attacks on searchable encrypted relational databases,”
Cryptology ePrint Archive, Report 2017/024, 2017.

[9] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[10] L. Jiao, J. Lit, W. Du, and X. Fu, “Multi-objective data placement for
multi-cloud socially aware services,” in INFOCOM, 2014 Proceedings
IEEE. IEEE, 2014, pp. 28–36.

[11] gco-v3.0 library. [Online]. Available: http://vision.csd.uwo.ca/code/gco-
v3.0.zip

[12] T. Rekatsinas, A. Deshpande, and A. Machanavajjhala, “Sparsi: parti-
tioning sensitive data amongst multiple adversaries,” Proceedings of the
VLDB Endowment, vol. 6, no. 13, pp. 1594–1605, 2013.

