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Abstract—Link prediction is an important and interesting
application for social networks because it can infer potential
links among network participants. Existing approaches basically
work with the homophily principle, i.e., people of similar char-
acteristics tend to befriend each other. In this way, however, they
are not suitable for inferring negative links or hostile links, which
usually take place among people with different characteristics.
Moreover, negative links tend to couple with positive links to
form signed networks. In this paper, we thus study the problem
of disentangled link prediction (DLP) for signed networks,
which includes two separate tasks, i.e., inferring positive links
and inferring negative links. Recently, representation learning
methods have been proposed to solve the link prediction problem
because the entire network structure can be encoded in repre-
sentations. For the DLP problem, we thus propose to disentangle
a node representation into two representations, and use one for
positive link prediction and another for negative link prediction.
Experiments on three real-world signed networks demonstrate
the proposed disentangled representation learning (DRL) method
significantly outperforms alternatives in the DLP problem.

Index Terms—link prediction; signed social networks; repre-
sentation learning;

I. INTRODUCTION

It is common knowledge that human beings are social
animals, which explains why people are passionate about
participating in social networks. In recent years with highly
developed internet and web technologies, it is very convenient
for people to reach out and get connected to others. People’s
involvement in online social networks leaves tremendous so-
cial information, which enables data analytics for enhancing
user experience in return. Among many ways to enhance user
experience, recommending appropriate friends is an effective
one, and is widely studied as the link prediction [15] problem,
i.e., inferring potential friendships among users. Existing ap-
proaches to link prediction basically work with the homophily
principle [17] that people of similar characteristics tend to
befriend each other. In this way, however, they are not suitable
for inferring negative links or hostile links, which usually exist
among people with different characteristics.

Negative links are actually as common as positive links
due to a very simple fact that human beings are emotional,
and have loves and hates. Moreover, negative links tend to
couple with positive links to form signed social networks,

Fig. 1: A disentangled signed network, where green lines
denote positive edges while red lines denote negative edges

such as Epinion network with trust and distrust links and
Slashdot network with friend and foe links [14]. Hence, the
task of inferring negative links are naturally coupled with
the task of positive links, which suggests jointly learning for
positive link prediction task and negative link prediction task.
In this paper, we refer to such problem as disentangled link
prediction (DLP) problem for signed networks. The term
”disentangled” emphasizes that the link prediction for a signed
network actually consists of two tasks instead of one task.
There are two tasks because link prediction is formulated as
predicting whether or not a link would come into being by
following the conventional setting [15], and there are two type
of links.

Recently, representation learning methods have been pro-
posed to solve the link prediction problem [9], [29]. Sim-
ilarities measured on node representations perform better
than topological similarities, such as Common Neighbor and
Adamic/Adar [15], because node representations encode the
entire network structure instead of partial information utilized
in topological similarities. The basic idea of representation
learning in the network scenario is to enforce the similarities
of nodes connected by links to be large and those of nodes not
connected to be small. However, most existing representation
learning models are only designed for networks with exclu-
sively positive links. The problem with the application of them
on signed networks is that they would enforce the similarities
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of nodes with either positive links or negative links to be large.
To address this challenge, we thus propose to disentangle

a signed network into a positive sub-network and a negative
sub-network as illustrated by Fig. 1, and then learn positive
representations from the positive sub-network and negative
representations from the negative sub-network. In the rest of
the paper, we refer to this idea as disentangled representation
learning (DRL).

However, DRL imposes two challenges. Firstly, the idea
of existing representation learning models is not suitable for
the negative sub-network because it is not natural to enforce
nodes negatively connected to be similar. Even if the similarity
measured on negative representation is interpreted as negative
similarity, another problem comes up. The problem is that
nodes showing negative attitudes to a common node, e.g., node
1 and node 4 sharing a common negative neighbor node 3, may
also be negatively similar because both of them are enforced
to be negatively similar to the common neighbor. But they,
e.g., 1 and 4, may have positive relationships according to the
theory of weak structure balance [10], [6] that enemies of my
enemies are my friends. To validate the theory, the number of
triads consisting of one positive edge and two negative edges
is about 2 times more than the number of triads consisting of
three negative links in three real-world signed social networks
as presented in Table 1 in the evaluation section.

The second the challenge is how to jointly learn the two
representations, which is suggested for the DPL problem. The
two representations should be better jointly learned in that
although the positive links and negative links are previously
disentangled for the purpose of not mixing up opposite rela-
tionships, the two types of links are generated in the same
signed network. Hence, the joint representation learning can
make the representations learned from a single sub-network
comprehensive and complete.

To address the first challenge imposed by DRL, we propose
to learn negative representations by enforcing nodes connected
by negative links to be different instead of being similar. With
respect to the second challenge, we propose to jointly learn
the two representations by rendering the two representations
of the same node somehow similar. The intuition behind
this mechanism is that the same node would agree with
itself positive attributes exposed in the positive sub-network
and negative attitudes exposed in the negative sub-network.
To render the two representation similar, each representation
would bear some properties of the other one. In this way,
each representation may have complete information of the
original signed network. We name the process of making each
representation have complete information as refinement of rep-
resentations. The contributions of this paper are summarized
as follows:

• To our best knowledge, this is the first attempt to solve the
disentangled link prediction problem for signed networks,
which requires jointly learning for positive link prediction
task and negative link prediction task.

• We propose an idea of disentangled representation learn-
ing, which jointly learns two types of representations

from a disentangled signed network by rendering the two
representations of each node similar.

• We instantiate the proposed DRL in two different mod-
els employing different representation refinement mech-
anisms.

• We conduct experiments on three real-world signed net-
works to demonstrate that the proposed models signifi-
cantly outperform alternatives, and show clear evidence
why the proposed models have the superior performance.

The rest of the paper is organized as follows. Section 2
presents related work. We develop the proposed models in
section 3. In section 4, we present the empirical evaluation. In
section 5, we conclude and introduce our future work.

II. RELATED WORK

Because of its importance, the link prediction problem
has been widely studied in the data mining and machine
learning community [15] [19] [16] [1] [3] [28] [29]. The major
stream of existing approaches to link prediction basically
work with the homophily principle [17], i.e., similarity breeds
connection. Previously, similarities are directly measured on
network links, such Common Neighbors, Adamic/Adar [15],
and Katz [11]. These similarity measurements are effective
and generic. However, they only utilize partial information of
the network structure.

Recently, methods utilize the entire network structure
have been proposed basically by learning low-rank or low-
dimensional latent representations. Low-rank representation
learning methods usually refer to matrix or tensor factorization
[18] [7] while low-dimensional representation learning meth-
ods usually refer to network embedding [21] [24] [9] [20] [30]
[31]. Matrix or tensor factorization learns representations by
approximating the adjacency matrix of network structure while
network embedding explicitly encodes the network structure
in representations.

Other methods even utilize side information, such as node
attributes [12] [8] [3] [27] and auxiliary networks [22] [12],
which can provide complementary information to the network
structure.

However, none of previous methods are designed for neg-
ative link prediction. Moreover, they are not suitable for
negative link prediction because the homophily principle are
not applicable any more. Although a few studies [25] address
a similar problem, they rely on user-generated content, such
as posts and comments. In our problem setting, there is only
network structure information.

The negative link prediction problem is usually coupled with
positive link prediction in signed networks. We thus study the
two link prediction problems simultaneously for the first time.
Although a few studies utilize negative links in the positive
link prediction [23], there are no studies doing the other way
around.

III. METHODOLOGY

A. Preliminaries
DEFINITION 1. A signed social network is denoted as
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into two sub-networks, i.e., the positive sub-network G(V,E

+
)

and the negative sub-network G(V,E

�
).

To learn positive representations from the positive sub-
network G(V,E

+
), the proposed DRL enforces nodes con-

nected by edges to be similar by following the homophily
principle, where the similarity is defined as follows:

DEFINITION 2. The similarity of two nodes measured by
positive representations is defined as the inner product of two
representations normalized by sigmoid function, which can be
formulated into the following equation:

p(v+
i ,v

+
j ) =

1

1 + exp{�(v+
i )

>v+
j }

, (1)

where v+
i 2 RD+

and v+
j 2 RD+

are positive representations
of node i and node j, respectively, and D

+ is the dimension
of the positive representation.

To learn negative representations from the negative sub-
network G(V,E

�
), the proposed DRL enforces nodes con-

nected by edges to be different from each other instead of
being similar so as not to violate the theory of weak structure
balance as introduced in the introduction. Nevertheless, we can
define the similarity measured by negative representations in
the same way as that measured by positive representations.

As discussed before, positive representation learning and
negative representation learning are jointly performed by
rendering the two representations of each node somehow
similar, which is to make representations learned from a
single sub-network comprehensive and complete. In this paper,
two mechanisms are proposed to achieve the refinement of
representations.

In the first mechanism, the two representations of the
same are enforced to be similar like the proposed positive
representation learning idea but with a slightly different sim-
ilarity definition. The inter-network similarity can be defined
similarly to intra-network similarity because each node can
be reviewed as implicitly connected to its counterpart in
the other sub-network as illustrated in Fig. 1. The implicit
edge is established because the same node would agree with
itself positive attributes exposed in the positive sub-network
and negative attitudes exposed in the negative sub-network.
The model working with this mechanism is further named
as DRL-C. In the second mechanism, co-regularization is
enforced on the two representations of the same node learned
from different sub-networks. We further name the model with
this mechanism as DRL-R. More details are presented in
corresponding sections.

B. The DRL-C Model

Appropriate positive representations should encode the en-
tire network structure. Hence, besides pairs of nodes connected
by an edge are enforced to be similar, those not connected are
enforced to be different from each other. According to the
definition of similarity in Definition 1, the proposed structure
preserving mechanism can be achieved by penalizing small
similarities of pairs of nodes connected and large similarities
of those pairs not connected. We employ the logistic loss
to perform the penalty. Hence, the loss function for positive
representation learning can be quantified as follows: l(V +

) =

�
X

(i,j)2E+

w

+
ij log(p(v

+
i ,v

+
j ))�

X

(h,k)/2E+

log(1� p(v+
h ,v

+
k ))

+ �||V +||2F ,
(2)

where V + 2 RN⇥D+

is the matrix of positive representations,
and N = |V |, w+

ij is the weight of the positive edge e

+
ij to

reflect the relationship strength, (h, k) is a randomly-sampled
pair of nodes not connected, || · ||2F is the square of F2-norm
used as regularization.

The loss function l(V �
) for negative representation learning

is similar to l(V +
) expect that pairs of nodes connected by

an edge are enforced to be different and those not connected
to be similar, where V � 2 RN⇥D�

and D

� is the dimension
of negative representations..

To jointly perform positive representation learning and
negative representation learning, DRL-C enforces the two
representations of the same node to be similar in the existence
of the implicit edge between the same node across the positive
sub-network and the negative sub-network. Analogous to the
similarity defined in Definition 1, the similarity between the
representation of the same node can be quantified as follows:

p(v+
i ,v

�
i ) =

1

1 + exp{�(v+
i )

>Pv�
i }

, (3)

where P 2 RD+⇥D�
is a reconciling matrix. By penalizing

small values of p(v+
i ,v

�
i ), the positive representation and

the negative representation of the same node are enforced
to be similar to each other with the help of the reconciling
matrix P . The reconciling matrix is introduced because pos-
itive representations are not directly comparable to negative
representations. For the two representations to be similar, the
positive representation should bear some information of the
negative representation so as to be similar to the negative
representation, and vice versa. In this way, DRL-C achieves
the task of making representations learned from either sub-
network have a complete information of the original signed
network.

And similar to embed explicit edges, the logistic loss is
employed to perform the penalty for the implicit edges. Hence
combining the loss of learning representations from G(V,E

+
)



and G(V,E
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), the overall loss formulated in the DRL-C

model is quantified as follows: C(V +
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The L(V +
,M ,V �

) is not jointly convex on the three vari-
ables, i.e., V +, P and V �. But we may solve it alternatingly,
and obtain a local optimal. And if the initialization point is
appropriately located, the local optimal may performs alike
the global optimal.

The derivative w.r.t v+
i for minimizing Eq. (4) is quantified

as follows:
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The derivative w.r.t v�
i is quantified as follows:
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The derivative w.r.t P is quantified as follows:
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C. The DRL-R Model
DRL-R is similar to DRL-C except for the refinement

mechanism. Specifically, DRL-R enforces a co-regularization
on the two representations of the same node, where the co-
regularization can be achieved by employing a reconciling
matrix as follows:

min
V +,V �

||V +M � V �||2F , (8)

where M 2 RD+⇥D�
. The intuition behind the co-

regularization is that the difference between the positive rep-
resentation and the negative representation of the same node
should be minimized with help of the reconciling matrix M .
To minimize the difference, the positive representation should
bear some information of the negative representation, and vice
versa. In this way, both positive representations and negative

representations can be more comprehensive and complete.
With the reconciling matrix, the two representations do not
need to be exactly the same. And the two representations
should better not be the same because they are learned from
two networks with edges different in nature.

Combining the loss of learning representations from the
network structure and the co-regularization loss, the overall
loss can be quantified as follows:

L(V +,M ,V �) =l(V +) + ||V +M � V �||2F + l(V �)

+ �||V +||2F + �||M ||2F + �||V �||2F ,
(9)

where �, �, and � 2 R are regularization coefficients.
The derivative w.r.t v+

i for minimizing Eq. (9) is quantified
as follows:
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The derivative w.r.t v�
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For the reconciling matrix M , the problem turns into

solving the following minimization:

min
M

||V +M � V �||2F + �||M ||2F , (12)

which is convex. Hence, the optimal M can be obtained by
setting the derivative of Eq. (7) w.r.t M to zero. After easy
calculations, the optimal M is as follows:

M =

⇥
(V +

)

TV +
+ �I

⇤�1
(V +

)

TV �
, (13)

where I 2 RD+⇥D+

is an identity matrix

D. The Optimization Algorithm

The optimization problem of both the DRL-C model and
the DRL-R model is a joint minimization problem over three
variables, i.e., positive representation, reconciling matrix, and
negative representation. Hence, we replace it with a sequence
of easier sub-problems by an alternating optimization algo-
rithm [5]. More specifically, the joint minimization problem is
alternatingly solved with respect of one of the three variables
at a time with other variables fixed. For each variable, we
then solve it according to the corresponding problem. In our
case, the sub-problems of DRL-C with respect to all the
variables can be solved by gradient-based algorithms, e.g.,



Algorithm 1: The optimization algorithm
Input : G(V,E

+
, E

�
), D+, D�, negative ratio, �, �, �

Output: V +, V �

Pre-training V + and V �;
while (not converge) do

Fixing V + and V �, find the optimal M with Eq.
(8), or find the optimal P with gradient descent;

Fixing V �, and M or P , find the optimal V + with
gradient descent;

Fixing V +, and M or P , find the optimal V � with
gradient descent;

return V +, V �

steepest descent or L-BFGS. The updating rule for positive
representation is illustrated as follows:

(v+
i )

p+1
= (v+

i )
p � d

p+1 ⇥ @C(V +
,P ,V �

)

@v+
i

, (14)

where p denotes the p-th iteration, d 2 R is the descent rate.
Updating rules for other variables are similar and thus omitted.
For all gradient descent algorithms, the descent rate in each
iteration is obtained by backtracking line search [2].

The sub-problems of DRL-R with respect to positive repre-
sentation and negative representation can be solved similarly
to those of DRL-C. But the sub-problem w.r.t the reconciling
matrix M can be directly solved by Eq. (13). The optimization
algorithm for solving the DRL-C model and the DRL-R model
is similar, and we thus present a unified one for both of them.
The psuedo-codes of the proposed alternating optimization
algorithm are presented in Algorithm 1.

The optimization algorithm starts with pre-training V + and
V �, which is performed to assign appropriate initialization
values to V + and V � so as to obtain a good local optimal.
The details of pre-training are presented in the following
paragraphs. The parameter negative ratio is the ratio of the
number of e

+
hk to that of e

+
ij , and the number of e

�
hk to that

of e�ij . The negative ratio is introduced because the number of
pairs of nodes not connected by an edge grows at a quadratic
speed when the number of nodes grows. And hence it may
not be efficient to apply the proposed algorithm to large-scale
networks. To compromise, the number of e+hk is set to several
times larger than that of e+ij . It is observed that the algorithm
works well with this parameter in the experiments.

Pre-training is an important part of an optimization algo-
rithm as it can initialize a model to a point in parameter space
that renders the learning process more effective [4]. In our
case, to make the learning process more effective, V + should
be pre-trained to take values learned from the positive sub-
network, and V � should take values learned from the negative
sub-network. Representation learning from the positive sub-
network has been formulated into an optimization problem that
minimizes the loss indicated by l(V +

) in Eq. (2). Similarly,

Epinions Slashdot Wikipedia
Type unweighted, directed
# Nodes 19,714 30,556 5,569
# Edges 632,072 460,812 168,060
# + - - triads 446,728 73,667 109,052
# - - - triads 156,243 30,447 49,893
# + + - triads 436,244 57,609 248,515
# + + + triads 13,159,091 1,391,154 1,969,394

TABLE I: Network statistics

we solve it by gradient descent. The derivative is computed as
follows:
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Algorithm 1 is essentially a block-wise coordinate descent
algorithm [26] with positive representations and negative rep-
resentations as block variables. So convergence can be guar-
anteed based on the general proof of convergence for block-
wise coordinate descent. Moreover, we observe that Algorithm
1 converges very fast in terms of the outer iterations in our
experiments, which is presented in the evaluation section.

IV. EMPIRICAL EVALUATION

A. Datasets

We study three real-world signed social networks [14], [13]
as follows:

• Epinions network is a trust and dis-trust network among
users of the Epinions product review Web site. In our
experiments, we filter out inactive users by setting the
frequency of appearance in edges as 10.

• Slashdot network is a like and dis-like network among
users of the blog Slashdot social network. The dataset is
sampled up to the time of Feb. 21, 2009. Similar to the
Epinions network, the node frequency is set as 5.

• The Wikipedia voting network is a for-against network,
where a signed link indicates a positive or negative vote
by one user on the promotion to admin status of another.
In experiments, the node frequency is set as 5.

Statistics for all the three datasets are presented in Table 1.

B. Implementation Settings

For all the representation learning models, the dimension
of representations is set as 128 which are commonly used
in previous studies [21], [24], [9]. For the implementation
of Algorithm 1, negative ratio is set as 5 as used in LINE
[24], all the regularization coefficients are set as 1, commonly
used settings are used in backtracking line search [2], and
the relative loss that determines whether the gradient-based
descent algorithm converges is set as 0.001.



Positive Representation Distribution Negative Representation Distribution

Fig. 2: Visualization of selected nodes from Wikipedia network, where nodes in red are expected to be the centroids in each
figure because all the other nodes are selected according to whether they are connected to the red node or not. Specifically,
nodes in green are connected to the red node while nodes in blue are not.

C. Baselines
The proposed models are evaluated against one heuristic

similarity metric, one matrix factorizaiton model, and three
node representation learning models, which are listed as fol-
lows:

• TNS [23]: Transitive Node Similarity (TNS) is calculated
by the product of Jaccard Coefficient based similarities
between two nodes. Moreover, it can be modified to
take negative links into account. Other similarity metrics,
such as using Common Neighbors and Adamic/Adar,
are omitted in the comparison because they significantly
underperform node2vec as suggested in its paper [9].

• Matrix Factorization (MF) [18]: The model learns latent
features from the topological structure of a graph by
performing a matrix completion task.

• DeepWalk [21]: This model learns node representations
that encode structural information by using truncated
random walk as input.

• LINE [24]: This model learns node representations by
preserving first-order structural information or second-
order structural information.

• node2vec [9]: The representation learning process of this
model is similar to DeepWalk. But it employs a more
flexible definition of neighborhood to facilitate random
walks.

D. Experiment Settings
Because all the baseline representations models are only ap-

plicable to networks with one type of links, we thus apply them
to G(V,E

+
) and G(V,E

�
) to learn positive representations

and negative representations, respectively. In this way, both
G(V,E

+
) and G(V,E

�
) are treated as unsigned networks.

For the proposed DRL-C and DRL-R, positive representations
and negative representations are jointly learned as presented
before. Similarities measured on positive representations, i.e.,
positive similarities, are employed to infer positive links while

negative similarities are employed to infer negative links.
All the similarities are computed in Definition 1. Although
some baselines may not explicitly optimized for the defined
similarity, the inference of new links are performed based on
ranking similarities of candidate pairs of nodes. Thus, AUC
(ares under the curve), which is ranking-based, is employed as
the evaluation metric. For Transitive Node Similarity (TNS),
negative links are leveraged for positive link prediction while
only negative links are only utilized for the negative link
prediction because it does not specify how to incorporate
positive links for negative link prediction.

Another important setting is about how to perform negative
link prediction. Because all baselines are deigned based on the
homophily principle, the inference of negative links still rank
pairs of node with larger similarities in front of those with
smaller similarities. However, the proposed models enforce
nodes connected by negative links to be different. Hence, the
inference of negative links using representations learned by
the proposed models is done in the opposite way.

E. Case Study

Before evaluating the link prediction performance, this
section evaluates whether the proposed representation learn-
ing methods work as expected. If they indeed work, nodes
connected by positive edges should be more similar than
those not connected by positive edges when the similarity
is measured by positive representations. Moreover, nodes
connected by negative edges should be less similar than
those not connected by negative edges when the similarity is
measured by negative representations. To see whether these
two points hold, we select one node with user ID Triona
from Wikipedia network and visualize it together with nodes
positively connected to it, and select another node with user ID
Aitias from Wikipedia network and visualize it together with
nodes negatively connected to it. Moreover, the same number



Positive Link Prediction Negative Link Prediction
Dataset Model 20% 40% 60% 80% 20% 40% 60% 80%

Wikipedia

TNS 53.87 56.34 58.78 60.01 43.33 45.32 46.69 49.05
MF 61.35 65.66 68.89 71.76 50.16 53.05 55.08 55.89

DeepWalk 66.63 71.94 77.88 79.35 61.78 64.12 67.23 68.89
LINE(1st) 55.03 64.57 70.25 74.05 38.88 44.23 48.11 51.97
LINE(2nd) 61.70 68.66 71.27 72.62 51.63 55.20 55.88 57.46
node2vec 67.67 70.46 76.36 78.02 62.15 64.66 67.14 68.63
DRL-C 81.21 90.67 91.92 91.88 76.00 80.77 83.35 85.28
DRL-R 84.87 92.10 92.99 93.53 76.61 79.14 87.18 88.56

Epinion

TNS 65.18 69.89 73.66 75.18 47.67 49.86 52.13 53.36
MF 75.55 79.02 82.87 85.16 56.69 59.02 62.67 64.12

DeepWalk 83.36 87.93 89.82 91.21 65.75 69.75 72.23 73.92
LINE(1st) 67.89 75.52 79.91 82.66 33.53 36.01 38.11 39.69
LINE(2nd) 82.12 87.24 88.75 89.76 58.13 59.94 61.25 63.00
node2vec 82.45 86.92 88.99 90.02 66.24 71.23 71.92 72.95
DRL-C 84.52 90.46 92.68 92.99 88.90 91.87 93.19 93.89
DRL-R 84.93 90.69 91.50 93.90 88.14 93.85 94.85 95.05

Slashdot

TNS 54.32 56.24 58.10 58.91 46.66 49.32 51.56 53.10
MF 63.34 65.62 67.15 68.51 53.35 55.87 57.72 58.36

DeepWalk 68.10 71.11 73.23 74.56 63.17 69.13 71.32 75.38
LINE(1st) 47.28 51.41 54.45 57.74 34.96 35.43 39.86 41.73
LINE(2nd) 65.70 68.73 69.94 70.54 56.92 60.97 62.94 63.94
node2vec 67.08 70.61 72.85 73.13 65.16 67.61 71.15 72.10
DRL-C 70.89 73.69 72.78 81.10 79.80 88.61 90.32 90.97
DRL-R 71.20 74.18 74.81 82.28 81.67 89.40 91.42 92.65

TABLE II: AUC scores on link prediction when different percentages of links are used in the training phase.

of nodes not connected to each node are randomly sampled
and visualized. The results are presented in Fig. 2.

We can see from positive representation distribution that
nodes with positive links to the selected node are closer to the
selected node than those nodes not connected. When two nodes
are closer, the similarity of them is larger. Similarly, in negative
representation distribution, nodes with negative links to the
selected node are far away from the selected node while those
nodes not connected are close to the selected node. Hence, the
proposed representations learning methods work as expected.

F. Prediction Performance Comparison

Table 2 presents AUC scores of 4 runs of experiments where
different percentage of links are used in the training process,
and remaining ones are used as test links. For the evaluation
purpose, the same number of non-existing links are randomly
sampled in each task. All the scores have been multiplied by
100%.

Table 2 shows that the proposed models consistently outper-
form all baselines on all datasets, and the advantage is signifi-
cant on negative link prediction. Generally, the reason behind
the superior performance of the proposed models over all
baselines is that the proposed models can utilize the complete
information of the signed networks while existing baselines
can only utilize partial information, i.e., either positive links
or negative links. This is also the reason that all representations
learning methods outperform TNS at most times. The reason
why network embedding models outperform matrix factoriza-
tion is that network embedding explicitly preserve the entire
network structure in representations while matrix factorization
only approximates the existing edges using representations.

When it comes to reasons why the complete information is
important, we put as follows. For positive link prediction, the
importance of information leveraged from the negative sub-
network is reflected in two folds. Firstly, nodes connected
by negative links would have small similarities enforced by
the negative representation learning, which can be transferred
to positive representations because positive representations
are made similar to negative representations. Secondly, nodes
not connected by negative links would have relatively large
similarities, and can be transferred to positive representations
as well. Both the small similarities of nodes connected by
negative links and relatively larger similarities of nodes not
connected by negative links are demonstrated in case study.
The case with negative link prediction is similar.

The poor performance of all the baselines on the negative
link prediction may be explained by the problem discussed
in the introduction, i.e., two nodes sharing a common nega-
tive neighbor may also be negatively close because both of
them are presented to be negatively close to the common
node, but they may have positive relationships according to
the theory of weak structure balance [10], [6]. To visually
demonstrate this point, we present the distribution of negative
closeness between the positively connected nodes in + - -
triads, and between nodes of test negative links in Fig. 3. The
results are obtained from the Wikipedia network when 90%
edges are used as training data. Similar results from other
two networks are omitted. In Fig.3, the negative closeness
of positive connected nodes tend to be larger than that of
negatively connected nodes produced by all the baselines. As a
result, the ranking-based AUC scores cannot be high. But the
proposed models can address this problem by presenting nodes
negatively connected to be apart. In this way, the negative
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Fig. 3: Distribution of negative closeness between the positively connected nodes in + - - triads, and between nodes of test
negative links, which are denoted in red line and blue line, respectively.
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Fig. 4: Convergence analysis
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closeness of positive connected nodes is expected to be larger
than that of negatively connected nodes, which is indeed the
case shown in Fig. 3.

G. Convergence Analysis

This section studies the convergence of the proposed alter-
nating algorithm as indicated in Algorithm 1. Specifically, we
study the performance of the algorithm on applications with
respect to the number of outer iterations. We only present
the performance on the link prediction task for Epinion when
80% of links used in the training phase in Fig. 4 because
other experiments show similar results. It shows that the
algorithm converges very fast and can usually converge to
stable performance after about 5 iterations.

H. Parameter Sensitivity

This section evaluates the performance w.r.t the dimension
in the positive link prediction tasks where 90% of links used
as training data. The experiment results are presented in Fig.
5. It is shown that the performance of the proposed models
on the two tasks is not much sensitive to the dimension of
representations as long as the dimension is not too small (e.g.,
32) or too large (e.g., 512).

V. CONCLUSION AND FUTURE WORK

This paper proposes two models, i.e., DRL-C and DRL-R, to
learn representations for disentangled link prediction problem.
Both the two models instantiate the idea of disentangled
representation learning, i.e., disentangling a signed network
into a positive sub-network and a negative sub-network, and
then jointly learning positive representations and negative
representations. The difference between the two models is
the mechanism for refining the positive representation and the
negative representation of the same node. The two representa-
tions should better be jointly learned because the positive sub-
network and the negative sub-network are originally generated
in the same signed network, and hence joint representation
learning can render representations have complete information
about the original network. Moreover, positive links have
inseparable relationships with negative links as suggested by
the theory of weak structural balance. Experiments on three
real-world signed social networks demonstrate that the two
models significantly outperform other representation learning
models that can only learn representations from unsigned
networks. In the future, we will explore other mechanisms
for jointly learning representations from the two sub-networks
of a signed network.
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