This is the Pre-Published Version.

The following publication E. Wen, W. K. G. Seah, B. Ng, X. Liu, J. Cao and X. Liu, "GBooster: Towards Acceleration of GPU-Intensive Mobile
Applications," 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 2017, pp. 1408-1418

is available at https://doi.org/10.1109/ICDCS.2017.73.

GBooster: Towards Acceleration of GPU-intensive
Mobile Applications

Elliott Wen', Winston K.G. Seah!, Bryan Ng', Xue Liu?, Jiannong Cao® and Xuefeng Liu*

Victoria University of Wellington
2McGill University
3The Hong Kong Polytechnic University
“Huazhong University of Science and Technology

Abstract—The performance of GPUs on mobile devices is
generally the bottleneck of multimedia mobile applications (e.g.,
3D games and virtual reality). Previous attempts to tackle the
issue mainly migrate GPU computation to servers residing in
remote cloud centers. However, the costly network delay is espe-
cially undesirable for highly-interactive multimedia applications
since a fast response time is critical for user experience. In this
paper, we propose GBooster, a system that accelerates multime-
dia mobile applications by transparently offloading GPU tasks
onto neighboring multimedia devices such as Smart TVs and
Gaming Consoles. Specifically, GBooster intercepts and redirects
system graphics calls by utilizing the Dynamic Linker Hooking
technique, which requires no modification of the applications and
the mobile systems. In addition, a major concern for offloading is
the high energy consumption incurred by network transmissions.
To address this concern, GBooster is designed to intelligently
switch between the low-power Bluetooth and the high-throughput
WiFi based on the traffic demand. We implement GBooster on
the Android system and evaluate its performance. The results
demonstrate that it can boost applications’ frame rates by up to
85%. In terms of power consumption, GBooster can preserve up
to 70% energy compared with local execution.

I. INTRODUCTION

Multimedia applications such as 3D games and augmented
reality are proliferating in mobile devices nowadays. As cur-
rent devices are still facing constraints of processing capa-
bilities and battery power, the resource-hungry multimedia
applications are inevitably pushing the limit of the devices,
causing the applications’ running at a low frame rate and
leading to short battery lifetime.

A great number of research works such as MAUI [1] and
CloneCloud [2] attempt to alleviate these issues by offloading
CPU computation to cloud. However, these systems are not
effective for the multimedia applications as a majority of
them are GPU-intensive (see Section. IT). To bridge the gap, a
small number of studies focusing on offloading GPU tasks
have been carried out. For instance, OnLive [3] and G-
Cluster {4] feature a remote-rendering architecture, in which,
multimedia applications run in virtual machines residing in
cloud servers and the screen-shots of the applications are

_delivered to users through the Internet. Meanwhile, the users’
control inputs are transmitted and replayed in the servers.
Recently, a more sophisticated component-based offloading
architecture has been proposed in [5]. Instead of executing an

entire application in cloud servers, it distributes the applica-
tion’s independent components to either cloud servers or local
devices for execution, as determined by the devices’ current
workload and their network connectivities.

Despite the promising results obtained, these systems pos-
sess certain limitations. Specifically, they require an Internet
connection with huge bandwidth, which is not always avail-
able for users. Moreover, as the cloud servers tend to be
remotely located, the network delay incurred by transferring
screen-shot frames in the remote-rendering architecture can be
fairly costly. This is especially undesirable for some highly-
interactive applications such as first person shooter games,
where a fast response time is critical to the user experience.
Though the component-based architecture may alleviate the
latency issue by avoiding screen-shot transmissions, it causes
unbearable burden to the developers as they are required to
modify and recompile source codes for the legacy software.

To tackle these issues, we introduce GBooster, a system that
accelerates GPU-intensive multimedia mobile applications by
seamlessly leveraging ambient graphics processing capacities.
Specifically, without modification of the applications and the
mobile operating systems, GBooster offloads GPU tasks onto
neighboring multimedia devices such as gaming consoles,
personal computers, and Smart TVs. Since these devices are
connected with high speed local area networks (e.g., WiFi) and
located at close physical proximity to users, the connections
have much higher bandwidth and smaller communication
latency compared with the Internet. It thereby guarantees the
user experience for highly-interactive applications.

Since the neighboring multimedia devices tend to have
heterogeneous hardware architectures and operating systems,
it is almost infeasible to adapt the existing solutions that
are dedicatedly designed for cloud servers. In this paper, we
propose a novel GPU-task offloading approach and take the
following challenges into consideration. First of all, mobile
applications may be implemented using different graphics
engines or even different programming languages, it is con-
sidered to be challenging to propose a universal offloading
technique that supports all the applications without modify-
ing them. Besides, though offloading compute-intensive GPU
tasks saves considerable amounts of power, it also incurs
extra network transmissions, which may result in high energy

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

consumption. How to reduce the energy overhead without
degrading system performance remains a non-trivial issue.
Finally, it is rather common that there exist multiple offloading
destinations (i.e., multimedia devices) within a network, how
to aggregate the distributed computation capacities to improve
the system performance is not a simple task.

In this paper, we develop practical solutions to cope with
the above challenges. To enable offloading for unmodified
multimedia applications, we intercept system graphics calls
and redirect them to nearby devices by utilizing the Dynamic
Linker Hooking technique. To lower down the energy overhead
of network transmission, GBooster is designed to intelligently
switch between the high-throughput high-power WiFi and
the low-throughput low-power Bluetooth based on the traf-
fic volume. To harness the processing power from multiple
offloading destinations, GBooster parallelizes and dispatches
an application’s GPU tasks to different devices as determined
by their workload and capabilities.

We consolidate the above techniques and implement a
prototype system in the Android platform. We evaluate the
prototype in-terms of application acceleration and energy sav-
ing by carrying out experiments on 6 popular mobile games.
The results show that GBooster can successfully accelerate the
applications’ frame rates by up to 85% and save up to 70%
energy compared with local execution.

To the best of our knowledge, GBooster is the first system
that is able to accelerate all GPU-intensive mobile applications
with the help of neighboring multimedia devices. The main
contributions of this paper are as follows:

1) We exploit the graphics processing power of ambient
multimedia devices via a novel GPU-computation of-
floading technique, which requires no modification of
the existing applications.

2) We propose an approach to reduce energy overhead of
offloading by intelligently switching between the high-
throughput WiFi and low-power Bluetooth.

3) We conduct experiments to confirm the effectiveness
of our prototype for application acceleration and power
saving.

JI. MOTIVATIONS

Though a multimedia mobile application generally involves
CPU and GPU computation, it is often the case that the GPU is
the bottleneck of the application due to its limited processing
power and high energy consumption. '

Limited GPU Capacities: Table. I demonstrates the rec-
ommended CPU/GPU requirements of the most demanding
games in recent years including Modern Combat 5: Black-
out [6] in 2014, GTA San Andreas [7] in 2015, and The
Walking Dead: Michonne [8] in 2016. The table also shows
the CPU/GPU capabilities of the mainstream smartphones in
those years including Samsung Galaxy S5 (2014), LG G4
(2015), and LG G5 (2016) respectively. Note that the CPU
and GPU capabilities are demonstrated in terms of CPU clock
rate and GPU fillrate (GPixel/s) respectively. It can be seen
that the devices’ CPU capacities are commonly beyond the

2014 2015 2016
CPU/GPU |1.5 GHz 1 GHz 1.2 GHz 2-Core
requirement|3.6 GP/s 4.8 GP/s 6.7 GP/S
CPU/GPU |2.5 GHz 4-Core|1.8 GHz 6-Core|2.15 GHz 4-Core
capability |3.6 GP/s 4.8 GP/s 6.7 GP/s

TABLE I: Game Requirement versus Smartphone Capabil-
ity. The recommended requirements represent the capabilities
needed for running those games in the highest graphics seftings
and achieving a frame rate of at least 30 frames per second.

requirements of the most demanding games. On the other
hand, the games are pushing the limit of the devices’ GPUs,
which become the performance bottleneck. _

To make matters worse, the performance is usually down-
graded due to the overheating issue. Nowadays, GPUs tend
to create abundant heat energy when they are heavily uti-
lized. To prevent overheating, mobile device systems have
to reduce the GPU’s operating frequency and suppress its
performance when its temperature exceeds certain thresholds.
Fig. 1 demonstrates how the GPU frequency and temperature
changes with time when the device LG G4 is running the
game GTA San Andreas. The GPU frequency initial reaches
600Mhz and remains steady for the first 10 minutes. After that,
the GPU temperature meets the threshold and the operating
frequency drops drastically to 100Mhz. As a consequence,
the application’s performance is significantly downgraded,
resulting in an unacceptable user experience.

High Energy Consumption: Heavy GPU utilization also
leads to swift battery drain. To demonstrate this, we run a test
program [9] that renders a static triangle at a default frame
rate of the Android system, which is 60 frames per second
(FPS) on the three mobile devices mentioned above. We then
measure the energy consumption incurred by CPU and GPU
using approaches introduced in [10] and [11]. The results show
that the power usage for each GPU is approximately 3 W,
almost 5 times higher than the energy used by the CPU. As
the program only performs elementary GPU computation, the
power consumption of complex multimedia applications can
be far more than this result, which can significantly shorten
the battery lifetime.

Fig. 1: GPU frequency trace.

To alleviate these issues, conventional solutions typically
offload GPU tasks to remote cloud servers. However, these
cloud-based solutions usually require an Internet connection
with huge bandwidth, which is not always available for users.
Moreover, the long physical proximity of the cloud centers
usually leads to high network latency, which is undesirable
for highly-interactive multimedia applications.

Tn light of the above issues, we introduce GBooster, a novel
GPU-task offloading system that aims to meet the following
objectives.

High FPS, Low Latency, and No Requirement of the
Internet. GBooster enables smart devices to run a GPU-
intensive multimedia application at a high frame rate and low
latency without an Internet connection.

Extend Battery Life. GBooster reduces energy consump-
tion of multimedia applications and extends the battery life-
time. ‘

GBooster achieves these goals by exploiting the processing
power of neighboring multimedia devices including game
consoles, smart TVs, and PCs. These devices possess two
essential advantages compared with cloud servers. First, they
are prevalent and equipped with abundant processing power.
According to [12] and [13], 80% of U.S households own a
game console and half of them own a smart TV. All these
devices are usually equipped with powerful GPU chipsets. For
instance, the game console Nvidia Shield [14], is equipped
with a GPU with a fillrate up to 16 GP/s, making it an
ideal offloading destination. Besides, traditional PCs could be
another sound option as modern computers generally possess
GPUs that are 10 times more powerful than mobile devices’
[15]. Second, these devices are typically connected with a
local area network (e.g., in-home WiFi), which provides
significantly larger bandwidth and smaller latency compared
with an Internet connection.

GBooster works on every commercial Android device and
supports all multimedia applications without changing or
recompiling any source codes of the applications and the
Android operating system. Note that GPU is not only heavily
used by high-end 3D applications like games, but also widely
used for rendering 2D user interfaces for various non-gaming
applications. In this paper, we mainly focus on gaming appli-
cations, but we will show that non-gaming applications can
also benefit from our system.

Fig. 2: System Architecture

III. SYSTEM OVERVIEW

Fig. 2 depicts the system architecture, which contains the
essential procedures to migrate graphics computation from
a user mobile device to an offloading destination. In the
following sections, we refer to a user’s mobile device as a
User Device. Besides, we refer to an offloading destination as
a Service Device.

As shown in Fig. 2, GBooster first dynamically inserts
one wrapper layer to the user device while a multimedia
application starts running. The wrapper enables the system
to intercept all graphics commands from the application and
redirect them to a remote service device. Based on the re-
ceived commands, the service device conducts the graphics
computation using its own GPU. Once the computation is
done, the rendered results will be encoded and delivered to
the user device. Finally, the user device decodes and displays
the images on the device’s screen. We will describe the whole
process in details in Section IV.

In this architecture, the network communication between the
user device and service device plays an essential role. In order
to improve network performance and reduce energy consump-
tion, we propose an approach that eliminates redundant data
and intelligently switches among multiple wireless interfaces

based on the traffic volume. The details will be elaborated in
Section V.

Note that Fig 2 only depicts the scenario with one user
device and one service device for better demonstration pur-

“poses. In Section VI, we extend the system such that it

can aggregate distributed processing capabilities from multiple
service devices to obtain further performance improvement.

IV. ENABLE GPU TASK OFFLOADING

The Android system provides high performance graphics
processing support for multimedia applications with the help
of Open Graphics Library named OpenGL ES [16]. OpenGL
ES is a cross-platform graphics API that specifies a stan-
dard interface for GPU and the Android applications could
invoke the APIs to directly interact with the GPU. OpenGL
ES features a client-server model as shown in Fig. 3. The
application that invokes OpenGL ES APIs behaves as a client.
It keeps generating a series of graphics commands to the server
component. The server, which is typically executed in the
GPU, interprets the commands and performs the actual graphic
computation.

Based on this model, we propose an offloading approach
that we intercept the command streams from a OpenGL client
and redirect them to a OpenGL ES server residing in a remote
machine. This approach contains two key advantages. First, it
works universally for every multimedia application regardless
of its implementation details (e.g., programming languages or
graphics engines), since all of them internally invoke OpenGL
ES calls. Besides, it requires no source code modification of
the legacy applications.

Fig. 3: The Client/Server Model of OpenGL ES.

A. Intercepting and Rewriting OpenGL ES Functions

Although this approach seems straightforward, implement-
ing it entails a challenging issue; the OpenGL implementation
in Android OS is closed-source and thus we cannot revise
it to add functionalities for interception and redirection. To
address this issue, we adopt a technique named Dynamic
Linker Hooking [17].

Specifically, hooking is the process of intercepting a pro-
gram’s execution at a specific point, typically entries of
functions, in order to alter or augment the program’s behavior.
The dynamic linker hooking technique enables hooking in the
runtime by forcing a program to load shared libraries specified
by the user instead of the original ones provided by operating
systems. In our case, rather than the genuine OpenGL ES
library provided by the Android multimedia framework, we
instruct the applications to load a wrapper library, which
intercepts all the graphics command calls.

In detail, we notice that an application could invoke the
OpenGL ES graphics APIs in three different ways:

1) An application may link to an OpenGL ES library so
that it can directly call the OpenGL ES APIs.

2) An application may utilize the eglGetProcAddress func-
tion to get pointers to the OpenGL ES APIs.

3) Less likely, an application uses system calls dlopen and
dlsym to dynamically load the OpenGL ES APIs.

Therefore, we have to intercept the OpenGL ES APIs in
all these situations. For the first case, we simply implement
wrapper functions for all the OpenGL ES APIs in our wrapper
library. We then force the application to use the wrapper library
by applying the Dynamic Linker Hooking technique. It is
worth to note that the hooking can be easily done by setting
the application’s LD_PRELOAD environment variable in the
Android system. Regarding the second case, we intercept and
rewrite the eglGetProcAddress function such that it directly re-
turns the pointers pointing to our wrapper functions. Similarly,
we handle the third case by rewriting the dlopen and dlsym
functions so that they load our wrapper library in preference
of the original OpenGL ES library.

B. Forwarding Graphics Commands

We are now able to capture the OpenGL commands and
ready to forward them to a remote service device. To fa-
cilitate network transmissions, we first need to serialize the
commands’ parameters.

OpenGL ES commands contain two types of parameters;
one is the basic data types (e.g., integer and string) and the
other one is the pointer type. It is straightforward to handle
basic data types as we can easily calculate the length of the
data. On the other hand, the situation becomes complicated
when dealing with pointers. A pointer parameter typically
refers to a sequence of data stored in RAM. Generally, the
length of the sequence is either provided as a parameter or
could be calculated with prior knowledge of its data structure
layout. However, a heavily-invoked function glVertexAttrib-
Pointer contains a pointer parameter whose size could not be
determined at the moment we intercept the function. Instead,
the actual length is only revealed in consecutive drawing
commands (e.g., giDrawElements) which render geometries
using the pointer. To enable correct serialization, our system
defers the transmission of the glVertexAttribPointer command
until the pointer size is obtained in the later calls. We found
that the reorder does not influence the final results so long as
glVertexAttribPointer appears before the drawing calls.

Once the serialization is done, we could start transmit-
ting the data over a network connection. Since the graphics
commands must be delivered to a remote service device in
a reliable and in-order manner, we may select TCP as the
transmission protocol. However, due to its complex retrans-
mission mechanism, TCP possesses an inherent delay, which
is approximately 40 ms in general settings [18] and could be
significantly higher under a poor network condition. To allevi-
ate the delay, instead of TCP, we select the UDP transportation
protocol to provide fast delivery of the graphics commands. To
prevent packet loss and out-of-order delivery, we implement
a light-weight and reliable transmission mechanism.in the
application layer [19].

C. Executing Commands and Retrieving Results

Upon receiving the graphics commands, the service device
delivers them to its local GPU for execution. Since GPUs in
the majority of multimedia devices provide native support for
OpenGL ES, the service device simply acts as a relay and
feeds the commands into the GPUs directly. Regarding a small
number of devices such as Mac OS X that lack support for
OpenGL ES, we could still bypass the restriction by utilizing
OpenGL ES emulators [20] that translate OpenGL ES API
calls to other natively graphics API calls.

When the computation is completed, the rendered images
are transmitted back to the user device for display purposes.
The display system of Android adopts a double-buffering
mechanism to reduce image flicker and tearing [21]. As a
sequence, when an application decides to redraw the screen,
it has to invoke a graphic API named SwapBuffer. The API
will notify the Android system to retrieve rendered images
from the GPU and draw them on the screen. However, in our
case, the rendered images are obtained from the network rather
than the local GPU. To tackle this issue, our system intercepts
and changes the behavior of the SwapBuffer command; upon
intercepting the command, our system directly forwards an
image received from network to the Android system for
display.

V. ENERGY-SAVING NETWORK TRANSMISSION

By offloading GPU tasks, GBooster reduces the power .
consumption of high-power GPUs. However, it comes at
the energy expense of network transmissions, which may
negatively impact the battery life. Considering that the energy
cost of a WiFi interface is nearly proportional to the traffic
load [22], we propose several approaches to reduce traffic
volume. Besides, we reveal the potential of the low-power low-
throughput BlueTooth interfaces to further suppress energy
consumption.

A. Eliminating Redundancy of Network Traffic

GBooster transmitting unoptimized traffic data consumes
enormous bandwidth (approximately 200 Mbps) even with
a low-quality graphics setting (i.e., a resolution of 600x480
with 25 FPS). We investigate this issue and notice that the
traffic data including graphics commands and rendered images
contains vast redundancy.

First, the sequences of graphics commands to generate con-
secutive frames tend to contain huge similarities. For example,
an application might draw a same object with two different
rotation angles, in which, the corresponding sequences may
only differ slightly in the rotation command. We eliminate
the redundancy by applying the LRU caching algorithm; the
system caches the latest and frequent commands on the user
device and the service device. Thereby, the user device can
skip transmitting the commands which are cached. Besides,
we further reduce the redundancy by using a light-weight
general stream compression algorithm named LZ4 [23], which
achieves a compression ratio of 70% while barely incurs extra
CPU workload.

Besides, the raw rendered images contain enormous redun-
dancy, since the consecutive frames are typically similar to
each other, especially when the images are static or barely
vary. One straightforward solution is to encode the images
into a video stream using the video encoder x264 [24], which
is considered the most efficient one. However, because the
majority of multimedia devices other than PCs are equipped
with ARM-based CPUs that the encoder is not optimized
for, the encoding process is unacceptably slow. The normal
speed is only around 1 MegaPixels/sec, far less than the speed
of 7 MegaPixel/sec in which the application generates raw
frames. Clearly, this approach fails to meet the requirement
of real-time encoding. Rather than using a video encoder, we
adopt a lightweight image encoding algorithm named Turbo
[25]. The image encoder eliminates the redundant data by
only transmitting incremental updates between consecutive
frames and utilizing the JPEG image compression algorithm.
It can provide a much more rapid encoding speed (up to
90MegaPixel/sec) and a high compression ratio (up to 25:1)
without incurring heavy CPU load.

B. Enabling Transmission via Low-Power Interfaces

Nowadays, mobile devices are typically equipped with
Bluetooth and WiFi. Wi-Fi interfaces offer a high-bandwidth
data-link (up to 450 Mbps) while at the cost of high energy
consumption (around 2 W when transmitting at the highest
rate) [22]. On the other hand, Bluetooth is an order of mag-
nitude more power efficient (less then 0.1 W) than WiFi, but
with an order of magnitude lower bandwidth (approximately
21 Mbps) [26]. This presents us a chance to reduce power
consumption by leveraging Bluetooth for network transmission
on the premise of meeting demand of network traffic. In our
system, we implement a mechanism that dynamically switches
between the Bluetooth and the WiFi to meet the traffic demand
while to preserve energy as much as possible.

However, implementing it entails a challenging issue re-
sulted from the latency of switching the state of the WiFi
interfaces [27]. Our preliminary experiments show that it takes
at least 100 ms to wake up a disabled WiFi -interface. More
frequently, the interface has to re-associate with its access
point after being in sleep mode awhile, making the wakeup
time much longer (more than 500 ms). Consider a scenario
that a system is transmitting data via its Bluetooth interface.
If the increasing traffic load exceeds the throughput of the
Bluetooth interface, the system has to enable the WiFi interface
immediately in order to meet the demand. As the WiFi
interface can not be fully functional instantly, the exceeding
packets may be lost and retransmitting them will result in high
network latency and frame jitter.

We address this issue by applying time-series analysis
techniques, which enable us to foresee the escalating traffic
trend and to turn on the WiFi interface beforehand. In other
word, our objective is to predict traffic volume yr,; given
the information available at time T for h > 0. Mathematically
speaking, we would like to obtain a forecast:

Y14 = E@rinlyr, - yr), 0y

such that yr,p)7 has minimum mean square forecast error
(MSFE). To achieve this purpose, we first attempt to model the
traffic volume with the widely-used Auto Regressive Moving
Average (ARMA) model [28]. Specifically, ARM A(p, q) with
p autoregressive terms and ¢ moving average terms can be
described as follows:

P q
=+ oty e, 0)
i=1 i=1

where ¢, are white noise terms and ¢; % Normal (0,02), ¢;
and 6; are parameters for this model.

We conduct preliminary experiments to measure the pre-
diction performance including False Negative (FN) rate and
False Positive (FP) rate. The FNs refer to the scenarios that
the model fails to predict a soaring traffic demand that exceeds

_ BlueTooth throughput. Conversely, FPs describe the cases that

the model wrongly forecasts a traffic demand overpassing
the Bluetooth throughput. Clearly, a small FN rate is more
important to the system compared with a small FP rate,
because a FN case results in elevated network latency while a
FP scenario just causes slight increase in energy consumption.

-Our experiments show that the ARMA model provides a FP

rate of 23.7% and a FN rate of 35.1%.

We notice that the FN rate is rather high and negatively
impacts the system performance. We investigate the cause
and realize that ARMA attempts to recognize and fit the time
series pattern solely based on historic traffic data. However,
the pattern beneath the traffic demand of our system is
also affected by other exogenous factors. For instance, burst
touching events from users may lead to drastic changes in
game scenes and transmitting the varying scenes may escalate
the network traffic. However, this abrupt change caused by
external factors may not be modeled by the ARMA instantly,
resulting in a FN scenario.

To tackle this issue, we adopt the Auto Regressive Moving
Average with Exogenous Inputs model (ARMAX). Specif-
ically, the ARMAX (p,q,b) with extra b exogenous input
terms can be formulated as:

P q b
Xi=e+ Z piXi—i+ Zoift—i + Z nidi—i, (3)
i=1 i=1 i=1
where 71, . . ., 7 are the parameters of the exogenous input d;.
The model enables us to model deterministic and stochastic
parts of the system independently. Thereby, we now can take
some external inputs of the system into consideration and
achieve better prediction performance.

To fit the traffic data in the ARMAX model, we first need to
identify the effective exogenous input attributes for our system.
We have examined the following potential attributes:

1) Touchstroke frequency: As we mention above, the touch-
stroke information may be informative. We could obtain
the touchstroke information from a system file which is
located in /proc/interrupts.

2) Length of graphics command sequences for each frame.
A frame composed by a large number of commands

likely has a complicated scene. It generates more traffic
when delivering the frame.

3) Number of textures used in each frame. A frame filled
out with a great number of textures tends to have a
complicated scene. Transmitting it may consume more
bandwidth.

4) Number of different graphics commands between two
consecutive frames. If the command sequences compos-
ing two consecutive frames have immense difference,
the scenes of the frames tend to vary significantly.
Transmitting them may request more bandwidth.

We evaluate the qualities of the models consisted of differ-
ent combinations of attributes by accessing the Raw Akaike
Information Criteria (AIC) [29]. The results show that the best
approximating model for the traffic is the one with the attribute
1 and 3.

In our implementation, we apply a recursive algorithm [30]
for online estimating and updating the order (i.e., p, ¢, and
b) and the corresponding parameters (i.e., @;, 8;, and 7;) of
the model. We forecast traffic demand for 500 ms and the
experiment results show that the model could achieve a FP rate
of 23% and a FN rate of 17%, outweighing the conventional
ARMA model. When a soaring traffic trend that will exceed
the Bluetooth throughput is predicted, our system turns on the
WiFi interface and then configures the default route to direct
the traffic through the interface. This process is performed
smoothly and barely incurs packet loss.

VI. HARNESSING CAPACITIES FROM MULTIPLE SERVICE
DEVICES

As it is fairly common that there exist multiple service
devices within a network, we may naturally raise a question:
whether it is feasible to hamness capacities from a cluster
of service devices? Specifically, whether it is possible to
parallelize and distribute GPU tasks to multiple service devices
such that we can obtain a further speedup (i.e., a higher FPS)?
The answer turns out to be positive.

- Fig. 4: Distributed Computation of GPU Tasks.

A. Parallelizing GPU Computation

The key of parallelization lies in the OpenGL ES internal
mechanism for handling rendering requests. A rendering re-
quest is defined as a sequence of graphics commands for ren-
dering a frame and will be executed in a non-preemptive way
according to the modern GPU architecture [31]. Generally,
OpenGL ES handles rendering requests in an asynchronous
manner. In other words, when an application issues a request
to initiate rendering, it is not guaranteed that the rendering
request is delivered to GPU and executed right away. Instead,
the request may be buffered by the OpenGL ES client to
optimize system performance, since it avoids frequent time-
consuming input/output operations between CPU and GPU.
We take advantage of this mechanism and achieve distributed
computation as shown in Fig. 4; whenever there are multiple

pending requests in the internal buffer, we distribute and
simultaneously execute them in different machines so that we
could obtain a higher FPS.

However, in reality an application, after submitting a ren-
dering request, tends to issue a SwapBuffer command. The
command halts the application and waits for the results from
the GPU. In this way, the application forces the GPU to
execute its requests immediately and a new rendering request
will be issued only if the preceding one is finished. As a
consequence, there is at most one request in the internal buffer,
rendering the parallelization infeasible. '

We overcome this problem by altering the behavior of
the SwapBuffer command. Invoking the modified command
returns immediately and does not halt the application. In this
manner, the application will generate rendering requests at its
quickest rate and multiple requests could be buffered. '

B. Maintaining State Consistency among Devices

To enable distributed computation, we have to overcome
another technique hitch due to the stateful nature of OpenGL
ES APIs. All OpenGL ES calls are implicitly associated
with an OpenGL context parameter, which is essentially a
state machine that stores all data related to the rendering
process such as the cached textures and vertex programs.
Invoking an OpenGL API call on different contexts likely
generates different results or even leads to unexpected errors.
Since each service device possesses its own OpenGL context,
simply distributing requests to them does not guarantee the
correctness of the distributed computation.

To ensure the correctness, we have to maintain the consis-
tency of the states among different service devices. We achieve
this by first identifying the graphics commands which may
alter the OpenGL states. Upon intercepting such commands,
we replicate and deliver them to all service devices such
that the states are consistent among all the devices. As we
need to transmit duplicated data to multiple devices, a unicast
connection is not an optimal option since it could result in
waste of network bandwidth and limited system scalability.

" Instead, we take advantage of the multi-cast capability of

UDP, which allows a stream of data to be sent to multiple
destinations with a single transmission operation to reduce
network traffic.

C. Assigning Requests to Devices

The last question left is which service device a request
should be assigned to. Clearly, our objective is to assign each
request to a service device that can deliver the result in the
least time. Mathematically speaking, considering there exist
N service devices, we dispatch each request to a node n that
satisfies the following criterion:

n=argmin(w’ +r)/d +V, forj€[1,..,N], @
j

where the workload of the request is denoted as r and the
computation capability of the service device n is denoted as
¢™. Besides, we let [™ denote the round-trip delay time between
the user device and the service device n and let w™ be the

Genre Package Size
G1: GTA San Andreas [7] | Action 241 GB
G2: Modern Combat [6] Action 0.89 GB
G3: Star Wars [32] Role playing | 2.4 GB
G4: Final Fantasy [33] Role playing | 3.05 GB
G5: Candy Crush [34] Puzzle 0.17 GB
G6: Cut the Rope [35] Puzzle 0.12 GB

TABLE II: Games for experiments and their package size.

workload of preceding tasks in its service queue. Note that
the workload of each graphics command is profiled using the
approach in [31] beforehand.

As this mechanism does not guarantee that a preceding
request is finished earlier than a subsequent request, our
system keeps track of the sequence numbers of the requests,
such that we can display their results in a proper order.

VII. SYSTEM EVALUATION

In this section, we provide the detailed performance evalu-
ation on GBooster.

A. Sample Games and Devices

Applications: We select six popular mobile games spanning
three major game genres as shown in Table. II. The majority
of them have a large installation package size (above 500 MB)
and a high requirement for graphics processing power.

User Devices: We run these applications on a set of
smartphones including LG Nexus 5 (2013) and LG G5 (2016),
which correspond to old-generation and latest device models
respectively. These smartphones are installed with different
versions of Android, demonstrating that our system has good
system compatibility.

Service Devices: We deploy and test our prototype on
different types of multimedia appliances including a game
console (Nvidia Shield), a smart TV box (Minix Neo Ui),
a ladtop (Dell M4600), and desktop computers (Dell Optiplex
9010 with Nvidia GTX 750 Ti GPUs). All these service
devices and smartphones are fully connected via a TP-Link
WR802 router providing a 150 Mbps 802.11n WiFi network.
To simplify the evaluation process, only one service device
(the game console) is utilized in the following experiments
for application acceleration and power saving. The PCs are
only used in the evaluation for the scenarios with multiple
service devices. :

B. Application Acceleration

We first evaluate the effectiveness of application accelera-
tion. In our experiment, we choose two FPS metrics that are
widely used for measuring user experience of gameplay [36].
The first one is median FPS that represents the commonest
frame rate experienced in the game and broadly correlates
to what the player observes as graphical smoothness. A key
advantage of using the median FPS that it naturally omits
fringe results, for instance, 0 FPS or 60 FPS which commonly
occur during a game’s loading screens and menus. Besides,
we are also interested in the FPS stability which is defined
as how much of a game session is played within a 20 percent

range of median FPS. If the stability is low, it can serve as
an indicator that gameplay is prone to frequent occurrence of

- FPS jitters, which typically lead to poor gaming experience.

Apart from the FPS metrics, another essential factor that
affects the gaming experience is the average response time.
This metric £, represents the average timespan between the
moment a rendering request is issued and the time its result
is displayed on its screen. Clearly, when the application is
executed locally, this metric is equal to the reciprocal of the
FPS (i.e., t, = 1000/FPS). If the computation is offloaded,
the metric also includes the time %, spent on the offloading
intermediate steps such as network transmissions and image
encoding. In other words, this metric can be represented as:

t, = 1000/FPS +tp. o)

We conduct the experiments in controlled conditions that
we play a game for 15 minutes with the same graphical
settings (where configurable) and on the same levels (where
there is a choice), meanwhile shutting down other applications
on the phone. For comparison purposes, the experiments are
conducted twice; one is with our system enabled while the
other is not. The results are demonstrated in Fig. 5.

Effectiveness on Old-Generation Devices: One first ob-
servation from Fig. 5 (a) and Fig. 5 (b) is that the system
boosts the median FPS and increases the FPS stability for
each game on the old-generation device Nexus 5. In particular,
the performance improvement for the action game G1 and G2
is rather significant. The median FPS drastically rises from
23 and 22 to 37 and 40 respectively. Generally speaking, a
minimum standard for good playability is a median frame
rate of 24 FPS, as this means that most of the game is
played at a frame rate similar to a standard animation or film.
However, action games such as shooting games tend to have
a slightly higher FPS requirement (usually above 30 FPS)
in order to display smooth motion of onscreen objects and
maintain the illusion of being real for players [37]. Our results
indicate that with the help of our system, the players now can
enjoy decent playability of the two action games. We also
notice that although the remaining games receive performance
improvement as well, it is somewhat less significant than the
action games. Specifically, the median FPS of the puzzle game
G5 merely improves from 50 FPS to 52 FPS. It may be due
to that the puzzle games, which contain only a small amount
of animation, are less GPU-intensive than the action games.
Thus, the local GPU can handle the computation efficiently
and the benefits of remote execution are less obvious.

Regarding the FPS stability, we can spot similar patterns
as the median FPS. The system improves the FPS stability
for all the games. In particular, the FPS stability for the two
action games soars form 60% and 55% to 75% and 74%
respectively. This phenomenon can be explained by the better
overheating-proof design of the service device. As described
in the Section. II, one major reason that results in unstable
FPS is the GPU overheating. Since the GPU in the service
device is usually equipped with cooling fans, it is less prone

Fig. 5: Median FPS and FPS stability.

to overheating issue and can deliver stable processing power
for the applications.

We now turn our attention to the average response time.
It can be seen in Fig. 5 (c) that the response time for all
the games is below 36 ms. As the average response time
for human being is generally above 100 ms [38], the result
indicates that the players can barely perceive any response lag
when running an application with our system enabled. Another
interesting observation is that the impact on response time
varies according to the genres of the games. The response
time for the action games drops approximately 10 ms, while
the time only decreases around 2 ms for the role-playing
games. Conversely, the response time for the puzzle games
increases 4 ms. The phenomenon can be explained by the
trade-off between the gain of FPS and the extra time ¢, for
the offloading intermediate steps as described in Equation. 5.
For the action games, the gain of FPS is significant, thus the
drop of response time largely outweighs the ¢,. Regarding the
role-playing games, the FPS gain seems to neutralize the time
tp, barely causing any change in the response time. In contrast,
there is bare FPS gain for the puzzle games, in which case,
the ¢, is largely attributed to the increase of the response time.

Effectiveness on New-Generation Devices: It can be seen
in Fig. 5 (d) and Fig. 5 (e) that our prototype barely benefits
the two metrics when running in the new-generation device
LG GS. It is mainly due to that the device now possesses an
powerful GPU and can efficiently handle all the computation
tasks locally. Even for the GPU-intensive action games, the
device can achieve a considerable frame rate of 40 FPS, which
is approximately 2 times higher than that on the Nexus 5.
Therefore, there is little room for performance improvement
via remote execution. The tiny gain of FPS then results in the
increase of the response time for all the games.

C. Power Saving

We evaluate how much power can be saved with the help of
our prototype. Specifically, we run the sample games on the
two smartphones mentioned above and measure the system
power using a tool introduced in [10]. To obtain accurate
results, we first turn the phone into airplane mode, reduce the
backlight brightness to 50%, and shutdown other background
activities. We also cool down the phones before each test to
make sure that the GPU can keep working at a stable frequency
during the experiment. We select a specific repeatable scene
as the test case and each is repeated for five times. In order to
conveniently demonstrate the effectiveness of energy saving
for different games, we normalize the results to the case of
local execution. '

Fig. 6 (a) shows the experiment results. One major observa-
tion is that the prototype reduces the power consumption for
all the games and smartphones. It is expected since offioading
avoids the heavy utilization of high-power GPUs. Clearly, the
more intensive the GPU tasks are, the more benefits we can

obtain from the offloading. It explains the phenomenon that
the GPU-intensive action game G2 could achieve a normalized
energy saving of around 70%, while the energy-saving for the
puzzle game G6 is less effective, which is approximately 30%.

In addition, to demonstrate the effectiveness of the energy-
saving interface switching mechanism, we also measure the
power consumption with the optimization disabled. As shown
in Fig. 6 (b), the overall system power significantly increases.
In particular, the power consumption of the G1 soars from
around 40% to 65%. It indicates that the system could preserve
considerable amounts of energy by leveraging the low-power
Bluetooth interface for network transmissions.

Fig. 6: Normalized Energy Consumption for Different Games.

D. Multiple Devices

We now evaluate the system performance when multiple
service devices are available. Specifically, we measure the FPS
performance metrics of the action game G1 on the Nexus
5 Meanwhile, we gradually increase the number of service
devices.

Fig. 7 demonstrates the experiment results. When the device
number is zero, the game is executed locally. As the device
number changes to one, the game obtains the most FPS im-
provement owning to the offloading. When two more devices
are available, the FPS gains a significant increment from 40
to 51 by taking advantage of the distributed computation.
However, the FPS barely increases and remains stable when
more than 3 devices are available.

We examine the cause and notice that the internal buffer
possesses at most 3 requests most of the time. Therefore, hav-
ing more than 3 devices barely benefits the performance. The
limited number of requests is possibly due to two reasons. First
of all, most of graphics engines have a mechanism to ensure
that the FPS does not exceed the device’s maximum frame
rate (60FPS). Thus, the speed of generating rendering requests
may be limited. Besides, generating the requests consumes
CPU resources and the number may also be constrained by
the CPU.

In terms of FPS stability, it shows a similar pattern as
the FPS metrics; the stability increases steadily as the device
number is less than 3, and remains stable after that.

E. Performance on non-gaming apps

Although we mainly focus on GPU-intensive mobile games
in this work, we also evaluate what non-gaming applications
can benefit from our prototype. We measure the effectiveness
of application acceleration and power saving of three popular
non-gaming applications including Ebook Reader [39], Yahoo

Fig. 7: FPS Metrics with Multiple Service Devices.

Application Name | FPS Boost | Energy Consumption
Ebook Reader 0 92.1%
Yahoo Weather 0 93.6%
Tumblr 0 93.3%

TABLE III: FPS Boost and Normalized Energy Consumption
for Non-gaming Applications.

Weather [40), and Tumblr [41]. We utilize MonkeyRunner [42]
to generate same sets of touch events for repeatable tests
including reading an article, viewing weather information, and
browsing a post for ten times.

Table. III demonstrates the experiment results. It can be
seen that our prototype provides tiny energy saving (7% on
average) and no FPS boost for the applications. It is expected
since these applications generate much less GPU workload,
compared to the games. However, The power saving is still
valuable, considering that battery resource is rather scarce on
smartphones.

F. Comparison with Cloud-based Solutions

For comparison purposes, we also evaluate the performance
of the most popular cloud-based solution OnLive [3]. Specif-
ically, we measure the median FPS and response time by
adopting the measurement method in [43]. It is worth to note
that unlike our system that universally supports all mobile
multimedia applications, the platform offers a limited number
of application choices. We conduct our tests on ten games
and report the average results: with an Internet connection
of 10 Mbps bandwidth, the platform can stream games at a
resolution of 1280 x 720 with a frame rate of 30 FPS and
average response time of approximately 150 ms. We notice
that the FPS is capped at 30 FPS because of the setting of the
video encoder used by the platform. Moreover, the average
response time is almost 5 times longer than our prototype’s
due to the long proximity to the cloud server.

G. System Overhead

Memory Overhead. Our system allocates extra memory in
user devices. To quantify the memory overhead, we measure
the extra memory consumption in the games shown in Ta-
ble. II. The experiment results show that the average memory
footprint is fairly small, which is 47.8 MB. Considering typical
smart devices are equipped with gigabytes of memory space,
the memory overhead is almost negligible.

CPU Overhead. Our system consumes extra CPU re-
sources for intermediate procedures of offloading such as
data compression and image decoding. We measure the extra
CPU usages on the Nexus 5 phone. The results show that
when running locally, the most compute-intensive application
G1 accounts for an average CPU usage of 68%. When the
offloading is enabled, the CPU load increases to 79%. Clearly,
the device’s CPU is still underutilized and the tiny increment
of CPU usage barely impacts the system performance.

VIII. FURTHER DISCUSSIONS

GBooster has made some advances towards acceleration
of GPU-intensive mobile applications. Still, it bears several
limitations that needs further improvement.

Scenarios without Available Devices Although GBooster
outweighs existing cloud-based solutions in terms of response
time and frame rate, it does not imply that GBooster can
take place of the cloud-based solutions. Under some rare
circumstances where there is no available multimedia device
nearby, the cloud-based platforms could still provide service
to users. :

Different Mobile Operating Systems. Our current proto-
type is only implemented on the Android operating systems.
We are investigating how to enable GBooster in other mobile
platforms such as iOS and Windows Phone. Since the iOS
utilizes OpenGL ES as the Android does, we may be able to
directly port GBooster to iOS. Although Windows Phone uses
a different graphics API named Direct X [44], we could still
utilize the same API hooking technique and implement the
corresponding wrapper library to support it.

Towards Multiple Users. The prototype is designed to
serve multiple users simultaneously. All the service devices
maintain a queue buffering the incoming requests and submit
them to GPU for execution in a First-Come-First-Served
(FCFS) manner. However, it takes no consideration of the
tasks’ priorities, which could be problematic for time-critical
applications. For instance, when an fast-paced shooting game
and a chess game that requests thoughtful consideration for
each movement are running simultaneously, requests from the
shooting game should receive higher processing priorities in
order to provide the player with a fast response time. We
plan to purpose sophisticated scheduling algorithms to meet
requirement from multiple users.

IX. RELATED WORK

Though last decade have witnessed tremendous performance
improvement on mobile devices, various novel applications
such as 3D mobile games and augmented reality are still over-
shadowed by the devices’ hardware constraints of processing
capabilities and battery power.

A considerable number of useful systems attempt to alle-
viate these issues by offloading CPU computation to cloud
servers. Specifically, they first partition a mobile applica-
tion into various sub-components. Then the compute-intensive
components will be migrated and executed in remote cloud
servers. These systems can be divided into different categories
based on the granularity of the components such as method-
based systems [1], class-based systems [45], thread-based
systems [2], and process-based systems [46].

However, despite the promising results obtained, these sys-
tems may not fully address the issues of mobile multimedia
applications due to lack of support for GPU task offloading.
To bridge the gap, several research works such as OnLive
[3] and Gaikai [47] propose a remote rendering architecture.
Specifically, the multimedia applications are executed in cloud
servers and the video frames are transmitted to users through

the Internet. At the same time, the players’ inputs are delivered
and relayed in the corresponding server. This approach enables
the players to run sophisticated applications regardless of their
restricted hardware. However, transmitting a huge volume of
video could consume a great amount of network bandwidth
and lead to high network latency. Though a great number of
works such as [48] and [49] attempt to alleviate the latency
issue by optimizing the parameters of video encoding and data
compression, the intrinsic delay imposed by the long-range
network connections is still non-negligible.

Recently, a component-based solution has been proposed
in [5). This approach partitions a game engine into several
independent components and dispatches the selected com-
ponents from cloud to players’ devices as determined by
devices’ workload and their network connectivity. Though the
architecture may alleviate the latency issue by avoiding video
transmission, it causes unbearable burden to game developers
who are now required to modify the source codes of the legacy
applications.

X. CONCLUSION

In this paper, we propose GBooster, a system that ac-
celerates GPU-intensive mobile applications by transparently
offloading GPU computation onto ambient multimedia de-
vices such as SmartTV and Gaming Consoles. We implement
GBooster on the Android platform and demonstrate that the
prototype can significantly increase applications’ frame rates
and reduce their energy consumption.

ACKNOWLEDGEMENT

The work of Elliott Wen, Winston K.G. Seah and Bryan
Ng was supported in part by Victoria University’s Huawei
NZ Research Programme, Software-Defined Green Internet of
Things project #E2881.

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. . ACM, 2010, pp. 49-62.

B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:

elastic execution between mobile device and cloud,” in Proceedings of

the sixth conference on Computer systems. ACM, 2011, pp. 301-314.

“OnLive.” [Online]. Available: http://www.onlive.com

M. Frauenfelder, “G-cluster makes games to go,” The Feature: It’s

All About the Mobile Internet, vol. 3, 2001. [Online]. Available:

http://www.thefeaturearchives.com/13267.html

W. Cai, C. Zhou, V. C. Leung, and M. Chen, “A cognitive platform

for mobile cloud gaming,” in Proceedings of the IEEE 5th International

Conference on Cloud Computing Technology and Science (CloudComy),

2013, pp. 72-79.

“Modemn Combat 5: Blackout.” [Online]. Available: https://goo.gl/gsYtsz

“GTA San Andreas.” [Online]. Available: https:/goo.gl/SzkfbR

[2]

(31
(4]

{51

[6]
(7]

[8] “The Walking Dead: Michonne.” [Online]. Available:
https://goo.gl/X0zgN1
[9] “OpenGL ES example program.” [Online]. Available:
https://goo.gl/Zrnez4
[10] M. Solutions, “Power monitor,” 2016.
[11] L. Ben-Zur, “Developer tool spotlight-using trepn profiler for power-
efficient apps,” 2011.
[12] “Million Americans play video games and 4 out of 5 households own

a gaming device.” [Online]. Available: https://goo.gl/OjMAAS

[13]
(141
[15]
{16]
171
[18]

{19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

271

[28]
[29]

[30]

[31]

[32]
[33]
(341
[35]
[36]

371

[38]
[39]
[40]
[41]
[42]
[43]

[44]

(45]

[46]

“One in two households with internet access has tv hooked up for
streaming.” [Online]. Available: https://goo.gl/5btqVW
“Specification of nvidia shield.” [Online].
https://goo.glivejzCK

“List of nvidia graphics processing units” [Online]. Available:
goo.gl/qcIgql

A. Munshi, D. Ginsburg, and D. Shreiner, OpenGL ES 2.0 programming
guide. Pearson Education, 2008.

“Dynamic linker hooking techniques” [Online].
http://man7.org/linux/man-pages/man8/ld.so.8.html

“How do 1 control TCP delayed ACK and delayed sending?” [Online].
Available: https://access.redhat.com/solutions/407743 .

Y. Gu and R. L. Grossman, “Udt: Udp-based data transfer for high-speed
wide area networks,” Computer Networks, vol. 51, no. 7, pp. 1777-1799,
2007.

Auvailable:

Available:

“ARM OpenGL ES emulator.” [Online]. Available:
http://malideveloper.arm.com/resources/tools/opengl-es-emulator/
“Opengl default framebuffer.” [Online]. Available:

https://www.opengl.org/wiki/default-framebuffer

D. Halperin, B. Greenstein, A. Sheth, and D. Wetherall, “Demystifying
802.11 n power consumption,” in Proceedings of the 2010 international
conference on Power aware computing and systems, 2010, p. 1.

Y. Collet. (2013) Lz4: Extremely fast compression algorithm. [Online].
Available: http:/1z4.github.io/lz4/

L. Aimar, L. Merritt, E. Petit, M. Chen, J. Clay, M. Rullgrd, C. Heine,
and A. Izvorski, “x264-a free h264/avc encoder,” 2005.

“‘From tight to tubo and back again: designing a
better encoding method for turbovnc” [Online]. Available:
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf

M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, profiling, and debugging the energy consumption of mobile
devices,” ACM Computing Surveys (CSUR), vol. 48, no. 3, p. 39, 2016.
S. Tang, H. Yomo, Y. Kondo, and S. Obana, “Wake-up receiver for
radio-on-demand wireless lans,” EURASIP Journal on Wireless Com-
munications and Networking, vol. 2012, no. 1, pp. 1-13, 2012.

J. D. Hamilton, Time series analysis. Princeton university press
Princeton, 1994, vol. 2.

H. Akaike, “Akaike’s information criterion,” in International Encyclo-
pedia of Statistical Science. Springer, 2011, pp. 25-25.

W. Luo and S. Billings, “Adaptive model selection and estimation for
nonlinear systems using a sliding data window,” Signal Processing,
vol. 46, no. 2, pp. 179-202, 1995.

S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” 2011.

“Star wars™: Kotor” [Online]. Available: https://goo.gl/25BScA
“Final fantasy.” [Online]. Available: https://goo.gl/Ekn6ec

“Candy crush.” [Online]. Available: http://candycrushsaga.com/en/
“Cut the rope.” [Online]. Available: http://www.cuttherope.net

S. Wang and S. Dey, “Modeling and characterizing user experience in
a cloud server based mobile gaming approach,” in Proceedings of the
IEEE Global Telecommunications Conference (GLOBECOM). IEEE,
2009, pp. 1-7.

“Understanding and optimizing video game frame rates”
[Online]. Available: hitps://www.lifewire.com/optimizing-video-game-
frame-rates-811784

“Human being response time benchmark.”
https://goo.gl/9TxS6J

“Ebook reader.” [Online]. Available: https:/goo.gl/5tVbvX

“Yahoo weather.” [Online]. Available: https://goo.gl/NOSmLVY
“Tamblr.” [Online]. Available: https://goo.gl/fLrSHY

A. Developers, “Monkeyrunner,” 2015.

S.-W. Chen, Y. Chang, P. Tseng, C. Hang, and C. Lei, “Cloud Gaming
Latency Analysis: OnLive and StreamMyGame Delay Measurement,” in
Proceedings of the 19th ACM International Conference on Multimedia,
2014, pp. 1269-1272.

F. Luna, Introduction to 3D game programming with DirectX 10. Jones
& Bartlett Publishers, 2008.

E. Abebe and C. Ryan, “A hybrid granularity graph for improving adap-
tive application partitioning efficacy in mobile computing environments,”
in Proceedings of the 10th IEEE International Symposium on Network
Computing and Applications (NCA), 2011, pp. 59-66.

M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, and
F. Zhao, “Energy-optimal software partitioning in heterogeneous multi-

[Online]. Available:

[47]
(48]

[49]

processor embedded systems,” in Proceedings of the 45th annual design
automation conference. ACM, 2008, pp. 191-196.

“Gaikai website.” [Online]. Available: https://www.gaikai.com/

S. Wang and S. Dey, “Rendering adaptation to address communication
and computation constraints in cloud mobile gaming,” in Proceedings
of the IEEE Global Telecommunications Conference (GLOBECOM).
IEEE, 2010, pp. 1-6.

——, “Addressing response time and video quality in remote server
based internet mobile gaming,” in 2010 IEEE Wireless Communication
and Networking Conference, April 2010, pp. 1-6.

