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Abstract—Superseding HTTP/1.1, the dominating web pro-
tocol, HTTP/2 promises to make web applications faster and
safer by introducing many new features, such as multiplexing,
header compression, request priority, server push, etc. Although
a few recent studies examined the adoption of HTTP/2 and
evaluated its impacts, little is known about whether the popular
HTTP/2 servers have correctly realized the new features and
how the deployed servers use these features. To fill in the gap,
in this paper, we conduct the first systematic investigation by
inspecting six popular implementations of HTTP/2 servers (i.e.,
Nginx, Apache, H2O, Lightspeed, nghttpd and Tengine) and
measuring the top 1 million Alexa web sites. In particular, we
propose new methods and develop a tool named H2Scope to
assess the new features in those servers. The results of the large-
scale measurement on HTTP/2 web sites reveal new observations
and insights. This study sheds light on the current status and the
future research of HTTP/2.

I. INTRODUCTION

To remedy the shortcomings in HTTP/1.1, the dominating
web protocol, IETF published the standard of HTTP/2 (i.e.,
RFC 7540 [1]) based on the SPDY [2] protocol proposed
by Google in 2015. HTTP/2 introduces a number of new
features that will lead to faster web applications, more efficient
transmissions, and better web security. In particular, HTTP/2
supports request multiplexing that permits sending multiple
HTTP requests over a single TCP connection, thus mitigating
the head-of-line blocking (HoLB) problem. In addition, the
client can prioritize the multiple HTTP requests to the same
domain and alleviate the effect of HoLB issue. Using binary
format instead of plain text, HTTP/2 simplifies the implemen-
tation. Furthermore, it can drastically reduce header size by
using header compression.

More and more web sites are adopting HTTP/2. A recent
measurement on the top 1 million Alexa web sites reported
the H2 announce rate increased by 50% from Nov. 2014 to
Aug. 2015 and HTTP/2 could reduce page load time [3]. They
further created a web [4] to show daily statistics about the
number of web sites supporting HTTP/2 and the reduction in
page load time due to HTTP/2.

Although these studies were based on the deployed HTTP/2
web servers, little is known about whether these servers have
carefully realized the new features in HTTP/2 and how the
servers use these features. In this paper, we conduct the
first systematic investigation to fill in the gap by inspecting
six popular implementations of HTTP/2 servers (i.e., Nginx,
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Apache, H2O, Lightspeed, nghttpd and Tengine) and measur-
ing the top 1 million Alexa web sites. More precisely, we
propose new methods to characterize how the servers support
six new features, including multiplexing, flow control, request
priority, server push, header compression, and HTTP/2 ping.
We have realized these methods in a tool named H2Scope
for conducting the large-scale measurement. The measurement
results uncover new observations and insights. For example,
not all implementations strictly follow RFC 7540 as shown
in Table III. Some new features, like server push and priority
mechanism, have not been well implemented and fully used
by web sites. One possible reason is that RFC 7540 does not
provide detailed instructions for realizing such features. More-
over, some features (e.g., flow control, priority mechanism,
etc.) may be exploited by adversaries to launch DoS attacks.
In summary, our major contributions are as follows:

1) To our best knowledge, we are the first to investigate
the new HTTP/2 features realized in servers.

2) We design a set of new methods to characterize how
these features are realized and used in HTTP/2 servers.

3) We not only examine six popular implementations of
HTTP/2 server (i.e., Nginx, Apache, H2O, Lightspeed,
nghttpd and Tengine) but also conduct a large scale
measurement on the top 1 million Alexa web sites with
new observations and insights.

The rest of this paper is organized as follows. Section
II introduces the background knowledge about HTTP/2 with
an emphasise on its new features. We detail our assessment
methods in Section III and the implementation in Section IV,
respectively. The extensive evaluation results are reported in
Section V. After introducing the related work in Section VII,
we conclude with future work in Section VIII.

II. BACKGROUND

In this section, we first introduce the basic concepts in
HTTP/2 (Section II-A), and then detail the new features under
examination (Section II-B - Section II-G).

A. Basic Concepts

HTTP/2 re-uses the same application semantics of
HTTP/1.1, such as, the HTTP methods, status codes, header
fields, etc., but changes the way how the requests and re-
sponses are formatted, transmitted, and processed [1], [5].

HTTP/2 adopts binary framing instead of delimited plain
text to delivery messages. A frame is the basic unit of
communication with a 9-byte frame header. There are ten types
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of frames serving different purposes. Each HTTP message,
including a request or a response, comprises one or more
frames. HTTP/2 introduces the concept of stream, which
could be regarded as a virtual channel carrying messages
exchanged between two ends. Each stream has an unique
identifier embedded in the frame header. A client and a server
establish one TCP connection shared by all streams.

B. Request Multiplexing

HTTP/2 achieves request multiplexing by having each
HTTP request and the corresponding response in one stream
and letting streams be independent of each other by default.
Hence, a blocked request or a stalled response will not impede
the progress of other streams. Since an endpoint may not be
able to handle many concurrent streams, HTTP/2 allows either
endpoint to adjust the SETTINGS MAX CONCURRENT
STREAMS parameter in the SETTINGS frames, which in-

dicates the maximum number of concurrent streams to be
supported by the sender.

C. Flow Control

Although request multiplexing allows the server to handle
requests simultaneously, multiple streams may cause con-
tention over the underlying TCP connection, thus leading
to blocked streams. HTTP/2 provides the flow control to
mitigate such effect by using the WINDOW UPDATE frame.
A receiver announces how many data they will receive in the
WINDOW UPDATE frame. Note that only DATA frames are
subject to the flow control according to RFC 7540. HTTP/2
applies the flow control to both individual streams and the
whole connection. For the former, the WINDOW UPDATE
frame’s stream identifier is set to the ID of the affected stream.
For the latter, the stream identifier is set to 0. The receiver of
the WINDOW UPDATE frame must respect the flow-control
limits set by the sender. Note that the initial window size for
the connection is 65,535 and it can only be changed by sending
WINDOW UPDATE frames according to RFC 7540.

D. Stream Priority

The priority mechanism in HTTP/2 is designed for dis-
tributing more resources to important streams. For example,
the server can select streams for sending frames according
to the priority under limited transmission capacity. Note that
priority is just a suggestion to the server that will determine
the processing and the transmission order of all streams.

A client can add the prioritization information in the HEAD-
ERS frame when opening a stream or use the PRIORITY
frame to modify a stream’s priority. There are two approaches
for a client to prioritize a stream. One is to let the stream
be dependent on another stream, which is called the parent
stream. In this case, the parent stream will be given more
resource. The other one is to assign a relative weight to streams
that are dependent on the same parent stream. In this case,
the resources will be allocated proportionally according to
the weights of streams having the same parent stream. The
PRIORITY frame can be used to change the stream priorities.

Based on the prioritization information, the client can
construct a prioritization tree indicating how it would like to
receive the responses. The server will generate the same tree
and then use this information to allocate resources, such as
CPU, memory, etc.

E. Server Push

HTTP/2 proposes server push to enable a server to specula-
tively send data to its clients, which is expected to be requested
by the client. This mechanism could reduce the potential
latency on the cost of some network usage. For example,
after receiving and processing a request from a client, the
server may infer that the client will also need some additional
resources (e.g., figures), and therefore send them to the client.

The server will first send a PUSH PROMISE frame to
the client, which includes a header block with a complete
set of request header fields. Moreover, the PUSH PROMISE
frame also includes the promised stream identifier for a
new stream, through which the server will push the data
to the client. The client can refuse the pushed response by
sending a RST STREAM frame or prevent the server from
creating a stream for pushed data by advertising a SET-
TING MAX CONCURRENT STREAMS with value zero.

F. Header Compression

HTTP/2 uses HTTP header compression (HPACK) [6] to
compress header fields and pack them into HEADERS or
PUSH PROMISE frames for reducing the overhead and im-
proving performance. Two techniques are adopted to compress
the header fields. One uses the Huffman code to encode
the header fields that have not been seen before. The other
one helps the client and the server maintain and update a
compression context that records previously seen header fields.
Then, the compression context is employed as a reference to
encode and reconstruct header keys and values. In particular,
HTTP/2 defines a static table listing common HTTP header
fields. Moreover, both ends maintain a dynamic table that is
initially empty and updated according to the exchanged data
within the entire connection. The data that are already in the
static or dynamic tables will be replaced with the table indexes.

G. HTTP/2 PING

HTTP/2 proposes the PING frame, a new type of frame for
measuring the round trip time (RTT) and conducting liveness
checks. Either ends can send a PING frame without ACK flag,
and the other end must reply a PING frame with ACK flag and
identical payload. Moreover, HTTP/2 suggests giving PING
response higher priority than any other frames. The payload
size of PING frame is fixed to 8 bytes.

III. MEASUREMENT METHODOLOGY

It is worth noting that RFC 7540 neither describes how to
determine whether a server supports these new features nor
details how to implement them. We design measurement ap-
proaches, detailed in the following subsections, to characterize
how remote servers realize the new HTTP/2 features.



A. Testing Request Multiplexing

1) Multiple Requests: HTTP/2 empowers the server to
process multiple requests at the same time. To verify this
feature, H2Scope will send N requests to the server simul-
taneously, each of which will download a large file to be
carried by several DATA frames. Note that N is less than
the value of SETTINGS MAX CONCURRENT STREAMS
announced by the server. If the server handles these requests
in parallel, we will observe interleaved responses from N
streams. Otherwise, we will receive all response frames for
the ith request before getting response frames for the (i+1)th
request. This approach may not work for the servers that do
not have large web objects or can quickly finish processing
each request. The reason is if the server quickly processes
each request and sends back the responses (e.g., the requested
web object is small), we will observe that the response frames
follow the same sequence as the requests even if the server
supports request multiplexing. Therefore, we only conduct
such experiments in the testbed where large web objects are
located in the HTTP/2 server.

2) Maximum Concurrent Streams: Both the server and
the client can limit the number of concurrent streams us-
ing the SETTINGS MAX CONCURRENT STREAMS pa-
rameter in the SETTINGS frame. RFC 7540 suggests that
this value should not to be smaller than 100. The ratio-
nal is that a limited number of streams may delay the
downloading of web objects because it is very common
that a web page contains tens of embedded web objects.
Therefore, in the measurement, we will record the value of
SETTINGS MAX CONCURRENT STREAMS in the SET-
TINGS frame from servers.
B. Checking Flow Control

While flow control is designed for preventing one end from
overwhelming the other end, an adversary could exploit such
features to launch Denial-of-Service (DoS) attacks on the other
end, such as preventing the other end from sending back the
responses in order to consume its memory. We test whether a
client can control the DATA frames and the HEADERS frames
from a server and set incorrect values into window update.

1) Controlling DATA Frames: HTTP/2 employs connec-
tion level and stream level flow-control window and the
WINDOW UPDATE frame to realize the flow control. We
verify whether a server will adjust the frame size according
to the flow-control window. More precisely, we change the
initial window size of each stream to a small value, denoted
as Sframe, by setting the value of SETTINGS INITIAL
WINDOW SIZE in the SETTINGS frame. Then, we send

requests and check whether the payload size of the response
is equal to Sframe. Note that if a server allows a client to limit
its frame size to a very small value, the server is vulnerable
to DoS attacks.

2) The Effect of Zero Initial Window on HEADERS Frames:
RFC 7540 specifies that only DATA frames are subject
to the flow control mechanism. In other words, the server
could still send back other frames. To check the com-

pliance of HTTP/2 servers, we first set the value SET-
TINGS INITIAL WINDOW SIZE to 0, and then send a
request through HEADERS frame to the server. If the server
follows RFC 7540, it will send back a HEADERS frame
without any DATA frames, showing that the request has been
processed but the data cannot be returned.

3) Zero Window Update: Since zero window size increment
is meaningless, the receiver of a WINDOW UPDATE with
value 0 should regard it as a stream error according to RFC
7540. We send such kind of frames to the server and check
whether it will reply with RST STREAM frame.

4) Large Window Update: Besides rejecting zero window
update, the sender should also prevent the flow-control window
from exceeding 231-1 bytes. If this happens, the sender must
terminate either the stream or the connection as suggested by
RFC 7540. To verify such behavior, we will send more than
one WINDOW UPDATE frames and let the summarization of
the window size increment be larger than 231-1.

C. Characterizing Priority Mechanism

1) Stream Priority: HTTP/2 provides the priority mecha-
nism for a client to suggest a server how to allocate resources
to concurrent streams. Since RFC 7540 does not specify how
to realize the priority mechanism, different servers may have
diverse strategies.

It is non-trivial to remotely infer whether or not the server
has realized the priority mechanism because we could only
observe the responses from the server and their order may
be affected by many factors (e.g., response size, flow control
mechanism, the dynamics of the dependency tree in the server,
etc.). For example, if stream A has higher priority than stream



B, stream A should be allocated more resource and hence its
packets will arrive at the client side before that from stream B.
However, if there is no enough stream window for stream A,
server will start to handle stream B instead of waiting for the
window update frames on stream A. In this case, we will first
observe packets from stream B instead of that from stream
A. To tackle this problem, we propose a novel measurement
approach, as shown in Algorithm 1, to determine whether a
remote server has realized the priority mechanism.

Our approach consists of three steps. First, we will prepare
the server’s context for the testing (line 6 - 21). Second,
we send M requests with stream priority information (e.g.,
stream dependencies, weights, etc.) to let the server build
the dependency tree for these requests (line 22 - 27). We
also send the PRIORITY frame to test the functionality of
reprioritization (line 28). Third, we allow the server to send
back the responses and analyze the order of HEADERS frame
or DATA frame to infer whether or not the server supports the
priority mechanism (line 30). We detail these steps as follows.

In the first step, we prepare the server’s context to avoid
the disturbance from the flow control mechanism and the
arrival sequence of requests. More precisely, the flow control
mechanism may let dependent streams be processed first. For
example, if the flow-control window of a parent stream has
been used up, this stream will be blocked, and the server
may first process its dependent streams that have enough
flow-control window. To address this issue, we set the value
of SETTINGS INITIAL WINDOW SIZE in the SETTINGS
frame to be a very large value(e.g. 231 - 1 ) so that each stream
has enough flow-control window to send data(line 2 - 6).

The second disturbance may come from the arrival sequence
of requests. Since the server usually adopts the first-come-first-
served (FCFS) policy to process requests, it may process the
requests one-by-one if it can quickly finish all of them. In
this case, we can neither check whether the server takes into
account the stream dependencies among requests nor verify
whether the server supports re-prioritization. To address this
issue, we first block all requests that are used for conduct-
ing the priority testing, and then change their dependencies
through the HEADERS frames and PRIORITY frames before
allowing the server to send back the response data.

We exploit the connection level flow control mechanism
to block all requests used for testing the priority mechanism.
According to RFC 7540, the initial window size for both
connection and stream level is 65,535, and the initial win-
dow size for new streams can be changed by setting SET-
TINGS INITIAL WINDOW SIZE in the SETTINGS frame.
However, the connection flow-control window can only be
adjusted by sending WINDOW UPDATE frames. Note that if
the connection flow-control window becomes zero, none of the
streams can send DATA frames even if the stream level flow-
control window is sufficient. Taking advantage of this feature,
we first deplete the initial HTTP/2 connection level window
(i.e., 65,535 octets) by downloading objects from the server
(line 15 - 16). We calculate how many streams are required in
the callback function (line 9 - 14). Once this window is used
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Fig. 1. Changing the stream dependency tree.
up, we reset these streams to avoid any interfere.

In the second step, we send M requests with pre-defined
stream dependencies to the server. Since the connection level
flow-control window has been drained, the server cannot send
back the corresponding DATA frames. Our measurement result
(Section V-D) shows that some servers even do not send back
the HEADERS frames if the connection level flow-control
window is zero. In the mean time, the server will build up the
dependency tree for these streams. To check the functionality
of re-prioritization, we send the PRIORITY frames to change
the dependency tree.

One example is demonstrated in Figure 1. The original
dependency tree is shown in the sub-figure (1). Stream A is
the parent stream of streams B, C, and D. Streams E and F are
the dependent stream of streams B and D, respectively. The
server will construct such a dependency tree after we send the
frames according to the information in Table I. If we send a
PRIORITY frame to the server, the dependency tree will be
changed. For example, if the PRIORITY frame follows the
information in the first row of Table II (i.e., exclusive flag is
set to true), the dependency tree will become the one shown in
the sub-figure (2). If the PRIORITY frame uses the setting in
the second row of Table II (i.e., exclusive flag is set to false),
the dependency tree will become the one shown in the sub-
figure (3). The major difference between these two dependency
trees is the new parent stream of stream B. If the PRIORITY
frame has the exclusive flag, stream A will become the sole
dependency of its parent stream (i.e., stream B), and other
dependent streams become the dependencies of stream A.

TABLE I
STREAM DEPENDENCIES.

Stream Parent Stream Weight Exclusive
A 0 1 false
B A 1 false
C A 1 false
D A 1 false
E B 1 false
F D 1 false

TABLE II
SETTINGS OF THE PRIORITY FRAME FOR THE EXAMPLE IN FIG.1.

Index Stream Parent Stream Weight Exclusive
1 A B 1 true
2 A B 1 false

In the last step, we send a WINDOW UPDATE frame to
increase the connection level flow-control window to a very



large value (e.g., 231 − 1) so that the DATA frames in all
streams can be sent back. By analyzing the DATA frames and
HEADERs frames if any, we could infer whether the server
has supported the priority mechanism.

2) Depending on Itself: A stream should not depend on
itself. RFC 7540 suggests that an endpoint must treat such
dependency as a stream error and reply with RST STREAM.
To check whether a remote server is compliant to the standard,
we send a PRIORITY frame to make a stream depend on itself,
which is named as self-dependent stream, and then observe the
server’s response.

D. Measuring Server Push

Since server push is optional, when scanning a web
site, we first enable this functionality by setting the value
of SETTINGS ENABLE PUSH in the SETTINGS frame
to 1, and then browse different pages. If we receive the
PUSH PROMISE frame, the server will start server push.

E. Assessing Header Compression

HTTP/2 adopts HPACK to compress headers for decreasing
the transmission time. Besides the static table, both endpoints
will maintain the same dynamic table for tracking and record-
ing previously seen key-value pairs. For a HEADERS frame,
if a value is in the static or dynamic table, it will be replaced
by the corresponding table index.

Since the static table is fixed, we will check whether a
server properly realizes the dynamic table. More precisely,
we send H identical request headers to the server. Since both
endpoints will learn and index the values from previously seen
HEADERS frames, the HEADERS frame of the first response
should be usually larger than that of the following responses
because the repeated values are replaced by indexes.

We define a compression ratio to evaluate the HPACK
mechanism realized by a server as follows:

r =

∑H
i=1 S

i
header

S1
header ×H

, (1)

where H is the number of response HEADERS frames and
Si
header denotes the size of ith response HEADERS frame. If

the server carefully implements HPACK, r should be small.
Otherwise, the value will be large and even around 1.

F. Evaluating HTTP/2 PING

HTTP/2 proposes the PING frame to measure the round-
trip time (RTT). Either endpoint can send a PING frame to
the other end, and the receiver sends back a PING frame with
the same payload. However, little is known about the accuracy
of the RTT measurement. We compare the values measured by
HTTP/2 PING with the results from three other measurement
approaches. One employs the ICMP Ping tool to collect the
RTT samples. The other one exploits the packet exchange in
TCP three-way handshaking to estimate the RTT (i.e, from
sending a TCP SYN packet to receiving a TCP SYN/ACK
packet [7], [8]. The third one uses the interval between
sending an HTTP/1.1 request and receiving the corresponding
HTTP/1.1 response to estimate RTT [9].

IV. IMPLEMENTATION

We implement the measurement methods described in Sec-
tion III in a tool named H2Scope. It consists of two major
components. One is to determine whether a web site supports
HTTP/2 and establish a TLS connection with the web site if
it supports HTTP/2 (Section IV-A). The other one is to send
customized frames over the TLS connection and make decision
after receiving the response frames (Section IV-B).

A. Establishing HTTP/2 Connection

Although HTTP/2 does not require encryption, the majority
of browsers only support HTTP/2 over an encrypted connec-
tion [10], [11]. When using an unencrypted connection, the
client can send an HTTP/1.1 request with Upgrade header field
and the h2c value to the server. If the server supports HTTP/2
and accepts the upgrade, it will send back a 101 response (i.e.,
switching protocols), and then start sending HTTP/2 frames.

If TLS is used to establish an encrypted connection, we
could use either ALPN (Application Layer Protocol Nego-
tiation) [12] or NPN (Next Protocol Negotiation) [13] to
determine whether or not the server supports HTTP/2, be-
cause HTTPs, SPDY, and HTTP/2 are all listening on port
443. NPN is a TLS extension for application layer protocol
negotiation, and is used for SPDY. It is being replaced by
ALPN for HTTP/2 because of security consideration. The
main difference between NPN and ALPN is that using ALPN
the client will send a list of supported application protocols to
the server in the ClientHello message and waits for the server’s
selection in the ServerHello message whereas NPN asks the
server to send a list of supported protocols for the client to
select. H2Scope uses both NPN and ALPN to negotiate the
application layer protocol with server.

B. Sending and Receiving HTTP/2 Frames

We use Nghttp/2 C library [14] to construct and re-
ceive HTTP/2 frames because it provides well-documented
APIs. If the server supports HTTP/2, we will use
nghttp2 session callbacks set on frame send callback() and
nghttp2 session callbacks set on frame recv callback() to
set the callbacks so that we can know when a frame is sent
and received in order to trigger other activities.

Then, we send customized SETTINGS frame and HEAD-
ERS frame to the server according to different purposes, and
wait for the frames from the server. We leverage an event
loop through poll() to get notified of receiving and sending
data. When a request is replied by the server, we will store
the request and the response into a database for further study.
To speed up the scanning, we construct a thread pool with
configurable number of threads, each of which will test a web
site. After a thread finishes one site, it will check next one.

V. MEASUREMENT RESULTS

We first characterize six popular HTTP/2 web servers,
including Nginx (v1.9.15) [15], LiteSpeed (v5.0.11) [16], H2O
(v1.6.2) [17], nghttpd (v1.12.0) [14] , Tengine (v2.1.2) [18]
and Apache (v2.4.23) [19] in our testbed (Section V-A). We



have conducted the measurement on the top 1 million web
sites twice to determine whether they support HTTP/2 (Section
V-B) and characterize the changes. One measurement was
conducted in Jul. 2016 (i.e., the first experiment) and the other
one was performed in Jan. 2017 (i.e., the second experiment).
For those HTTP/2 servers, we report their settings and features
in Section V-C - Section V-H.

A. Characterizing Popular HTTP/2 Servers

We install the six popular web servers on a PC in our
testbed, and use H2Scope to characterize their features. We
verify the measurement result by inspecting the code of
open-source servers (i.e., Nginx, Apache, H2O, nghttpd, and
Tengine). This manual verification assures that the measure-
ment result from H2Scope is correct, and then we apply
H2Scope to scan the top 1 million websites. Table III lists
the measurement results of different HTTP/2 servers.

Most servers support both ALPN and NPN for nego-
tiating HTTP/2 except that Apache doesn’t support NPN
over TLS. RFC 7540 says “implementations that support
HTTP/2 over TLS MUST use protocol negotiation in TLS
[TLS-ALPN]”. They also support request multiplexing. When
testing their flow control mechanisms, we observe that the
regulation on DATA frames is effective. In particular, when
we set SETTINGS INITIAL WINDOW SIZE to a small
value Sframe, the response DATA frame’s size is Sframe.
However, LiteSpeed also applies the regulation on HEADERS
frames and does not send back HEADERS frames if the
SETTINGS INITIAL WINDOW SIZE is set to 0. According
to RFC 7540 the flow control should only affect DATA frames.

By sending unexpected WINDOW UPDATE frame, we find
that Nginx and Tengine will ignore the zero window update
whereas Litespeed and H2O will send back RST STREAM
frame if the window is for stream as suggested by RFC
7540. Note that nghttpd and Apache send back GOAWAY
frame, which is used to shutdown the connection or signal
serious errors, even when the WINDOW UPDATE frame
is for stream. If we let the window increment exceed the
largest value, all servers will send back error messages. More
precisely, if the window increment is for the connection,
they reply with GOAWAY. Otherwise, they respond with the
RST STREAM frame.

Unfortunately, some useful mechanisms have not been re-
alized in popular web servers. For example, Nginx, Litespeed
and Tengine don’t support server push. H2O, nghttpd and
Apache have provided such functionalities. For the priority
mechanism, we examine the sequence of DATA frames re-
turned from server, and notice that only H2O, nghttpd and
Apache pass the testing of Algorithm 1. Note that RFC 7540
doesn’t clearly define what kind of resource will be allocated
for streams with high priority.

When sending streams that depend on itself, we find that
LiteSpeed will ignore it whereas H2O, nghttpd and Apache
regard it as a connection error and send back GOAWAR. Nginx
and Tengine follow RFC 7540 to send back RST STREAM.
Although all the servers support header compression, they do

not have the same efficiency. We observe that Nginx and
Tengine do not add the fields in the responses headers to
the dynamic table. A good news is that all these servers
have supported HTTP/2 PING. By leveraging this feature,
web applications can measure network performance and then
provide adaptive services.

Since Nginx and Tengine support adjusting the maximum
number of concurrent HTTP/2 streams, we set the value of
SETTINGS MAX CONCURRENT STREAMS to 0 or 1.
Both servers have the same result. When this value is set to
0, we receive the RST STREAM frame from the servers after
sending a new request to it. If this value is set to 1 and we send
two requests to the servers simultaneously, the second request
will trigger an RST STREAM frame from the servers.

B. Adoption

1) ALPN and NPN: In the first experiment, we find that
49,334 sites support establishing HTTP/2 connections through
NPN whereas 47,966 sites use ALPN for initializing HTTP/2
connections. This number increases to 78,714 and 70,859,
respectively, in the second experiment. Moreover, we receive
HEADERS frames from 44,390 sites in the first experiment,
and the number increases to 64,299 in the second experiment.
This observation indicates that more and more web sites adopt
HTTP/2. The other tests were conducted on the sites that return
HEADERS frames. We also find that more than one hundred
types of servers just speak NPN. It may be because ALPN is
not available until OPENSSL 1.0.2.

2) Server: We parse the HEADERS frame returned from
server to obtain the server name. According to this informa-
tion, we observe 223 and 345 different kinds of servers in
the first and the second experiments, respectively. Note that
since the information of server type can be set to an arbitrary
value by the web server, the obtained result may not be very
accurate. But it illustrates a big picture of server adoption.

Table IV lists seven servers that have been adopted by more
than 1,000 sites in each experiment. We can see that Litespeed,
Nginx and GSE are the most widely used web servers in both
two experiments, and more sites are using Nginx for HTTP/2
according to the result of the second experiments. GSE is
Google’s proprietary web server. Tengine and cloudflare-nginx
are variants of Nginx. A new server named Tengine/Aserver
appears in the second experiment. It is due to the fact that
sites in the domain of tmall.com change their original server
name from Tengine to Tengine/Aserver.

C. SETTINGS

The SETTINGS frame contains several important param-
eters, including SETTINGS HEADER TABLE SIZE with
default value 4,096 suggesting a peer the maximum size
of the header compression table, SETTINGS MAX CON
CURRENT STREAMS indicating the maximum number
of concurrent streams acceptable to the sender, SET-
TINGS INITIAL WINDOW SIZE with default value 65,535
denoting the sender’s initial window size for stream-level
flow control, SETTINGS MAX FRAME SIZE with default



TABLE III
CHARACTERIZING POPULAR HTTP/2 WEB SERVERS IN TESTBED. COLUMN RFC 7540 LISTS THE CORRESPONDING SPECIFICATION. SUPPORT*

REPRESENTS PARTIALLY SUPPORT.

Nginx LiteSpeed H2O nghttpd Tengine Apache RFC 7540
ALPN support support support support support support support
NPN support support support support support no support does not require

Request Multiplexing support support support support support support support
Flow Control on DATA Frames yes yes yes yes yes yes yes

Flow Control on HEADERS Frames no yes no no no no no
Zero Window Update on stream ignore RST STREAM RST STREAM GOAWAY ignore GOAWAY RST STREAM

Zero Window Update on connection ignore GOAWAY GOAWAY GOAWAY ignore GOAWAY GOAWAY
Large Window Update (Connection) GOAWAY GOAWAY GOAWAY GOAWAY GOAWAY GOAWAY GOAWAY

Large Window Update (Stream) RST STREAM RST STREAM RST STREAM RST STREAM RST STREAM RST STREAM RST STREAM
Server Push no no yes yes no yes yes

Priority Mechanism Testing (Algorithm 1) fail fail pass pass fail pass pass
Self-dependent Stream RST STREAM ignore GOAWAY GOAWAY RST STREAM GOAWAY RST STREAM
Header Compression support* support support support support* support support

HTTP/2 PING support support support support support support support

TABLE IV
SERVERS THAT HAVE BEEN USED BY MORE THAN 1,000 SITES IN THE

FIRST (I.E., 1ST EXP.) AND THE SECOND (I.E., 2ND EXP.)
MEASUREMENTS.

Server name Num. in 1st Exp. Num. in 2nd Exp.
Litespeed 12,637 13,626

Nginx 11,293 27,394
GSE 9,928 9,929

Tengine 2,535 674
cloudflare-nginx 1,197 1,766

IdeaWebServer/v0.80 1,128 1,261
Tengine/Aserver 0 2,620
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Fig. 2. The distribution of SETTINGS MAX CONCURRENT STREAMS.

value 16,384 indicating the maximum payload size acceptable
to the sender, and SETTINGS MAX HEADER LIST SIZE
notifying the remote endpoint the maximum size of header list
acceptable to the sender.

The measurement results show that all servers use the
default value of SETTINGS HEADER TABLE SIZE. This
is reasonable since large table size may consume more sys-
tem resource if an attacker keeps sending different head-
ers to exhaust the available dynamic table size. For SET-
TINGS MAX CONCURRENT STREAMS, RFC 7540 sug-
gests that it should not be smaller than 100. As shown in
Figure 2, 100 and 128 are popular values selected by the web
sites in two experiments, and the majority of web sites use a
value larger than or equal to 100.

Table V lists the values of initial window size. It is interest-
ing to see that some servers (e.g., Nginx) set the initial window
size to 0 and then immediately send WINDOW UPDATE
frames to increase the window size. We further verify Nginx
in the testbed, and have the same observation. Table VI

TABLE V
THE DISTRIBUTION OF THE VALUES OF

SETTINGS INITIAL WINDOW SIZE OBTAINED IN THE FIRST (I.E.,
1ST EXP.) AND THE SECOND (I.E., 2ND EXP.) EXPERIMENTS. NULL

MEANS THAT THE SETTINGS FRAME DOES NOT CONTAIN THIS ITEM.

SETTINGS INITIAL WINDOW SIZE 1st Exp. 2nd Exp.
NULL 1,050 1,015

0 3,072 7,499
32,768 3 59
65,535 49 106
65,536 20,477 40,612
131,072 1 1
262,144 1 1

1,048,576 10,799 10,929
16,777,216 11 15
20,000,000 1 0

2,147,483,647 8,926 4,062

TABLE VI
THE DISTRIBUTION OF THE VALUES OF

SETTINGS MAX FRAME SIZE OBTAINED IN THE FIRST (I.E., 1ST
EXP.) AND THE SECOND (I.E., 2ND EXP.) EXPERIMENTS.

Maximum Frame Size 1st Exp. 2nd Exp.
NULL 1,050 1,015
16,384 24,781 25,987

1,048,576 27 81
16,777,215 18,532 37,216

TABLE VII
THE DISTRIBUTION OF THE VALUES OF

SETTINGS MAX HEADER LIST SIZE OBTAINED IN THE FIRST (I.E.,
1ST EXP.) AND THE SECOND (I.E., 2ND EXP.) EXPERIMENTS.

Maximum Header List Size 1st Exp. 2nd Exp.
NULL 1,050 1,015

unlimited 32,568 52,311
16,384 10,717 10,806
32,768 3 59
81,920 2 3
131,072 24 25

1,048,896 26 80

lists the values of maximum frame size. More than half
of the servers adopt the default value (i.e., 16,384) in the
first experiment while more sites adopt a larger value (i.e.,
1,048,576 or 16,777,215) in the second experiment. More-
over, Table VII lists the distribution of the values of SET-
TINGS MAX HEADER LIST SIZE. It shows that 73.4%



sites in the first experiment and 81.3% sites in the second
experiment use the suggested value (i.e., unlimited).

D. Flow Control

1) Controlling DATA Frames: We let the value of SET-
TINGS INITIAL WINDOW SIZE be 1 to test whether it
can control DATA frames. The result shows that 37,525
sites in the first experiment and 44,204 sites in the second
experiment sent back DATA frames with 1-byte payload,
meaning that these servers follow RFC 7540. 2,433 sites in
the first experiment and 8,056 sites in second experiment
return DATA frames of zero length. Moreover, 4,432 sites
did not send back any response. This number increases to
12,039 in the second experiment and 10,472 sites among them
are using LiteSpeed. It is worth noting an adversary could
launch DoS attacks like malicious TCP receiver [20] by setting
SETTINGS INITIAL WINDOW SIZE to a small value so
that the server cannot quickly send out the response frames
and release the corresponding memory.

2) The Effect of Zero Initial Window on
HEADERS Frames: After we set the value of
SETTINGS INITIAL WINDOW SIZE to zero, the server
should return HEADERS frames on the receipt of new
requests without sending back the DATA frames. However,
we only received HEADERS frames from 17,191 sites in the
first experiment and 23,834 sites in the second experiment.
The remaining sites do not follow RFC 7540 and applied
flow control to the HEADERS frames mistakenly.

3) Zero Window Update: We get diverse responses after
sending a WINDOW UPDATE frame with value 0. 23,673
sites in the first experiment and 26,156 sites in the second
experiment sent back RST STREAM frames whereas 20,717
sites and 38,143 sites in the two experiments did not regard
zero window update as a stream error. We also find that 31
sites and 162 sites in the two experiments consider it as a
connection error and send back GOAWAY frames. Moreover,
26 sites in the first experiment and 42 sites in the second
experiment sent us clear error information (i.e., the window
update shouldn’t be zero in the additional debug data field).
We also conduct the measurement on the connection level, and
find that nearly all the websites return connection error.

4) Large Window Update: When sending two WIN-
DOW UPDATE frames for the entire connection and let
the summarization of their window size increment be larger
than 231-1, we received GOAWAY frames from 40,567 sites
and 62,668 sites in the two experiments, respectively. When
sending the same large window update for the streams, we got
36,619 and 44,057 RST STREAM frames in the first and the
second experiments, individually. 7,771 sites and 20,242 sites
in the two experiments did not send back the RST STREAM
frames, individually.

E. Priority Mechanism

1) Stream Priority: Since the priority mechanism pro-
vides a server suggestions on resource allocation for different
streams, RFC 7540 neither defines how to realize it nor
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Fig. 3. The Page Load Time when server push is enabled and disabled

provides criteria for assessing the mechanism. Therefore, we
use the sequence order of the first and the last DATA frames
in each stream to infer the priority. More precisely, if a stream
has higher priority, the server should first send out its DATA
frames or finish sending all its DATA frames.

For the ease of explanation, we construct and send requests
following the example in the section 5.3.3 of RFC 7540. More
precisely, after receiving PRIORITY frames, the server will
let stream D be the parent stream of stream A, which is the
parent stream of streams B, C and F. Moreover, stream E
is the dependent stream of stream C. Therefore, we expect
to receiving DATA frames from stream D before the DATA
frames from other streams. Similarly, stream A’s DATA frames
should arrive at the client before the DATA frames from all
other streams except stream D. Moreover, the client should
receive the DATA frames from stream C before the DATA
frames from stream E.

If we use the sequence order of the last DATA frames in
each stream to infer the priority, we find that 1,147 sites
and 2,187 sites in the two measurements follow the above
rules. If we employ the order of the first DATA frames in
each stream to infer the priority, 46 sites and 117 sites in the
two experiments obey the rules, respectively. If we take into
account both the first and the last DATA frames to determine
the priority, 38 sites and 111 sites act as what we expect in
the two experiments. These results suggest that the priority
mechanism has not been well designed and deployed.

2) Depend on self: After sending a PRIORITY frame to let
a stream depend on itself, we received RST STREAM frames,
as suggested by RFC 7540, from 18,237 sites and 53,379 sites
in the two experiments, respectively. Other sites either sent
back GOAWAY or ignore the frames. It may suggest that the
servers are getting better implementation.

F. Server Push

When visiting the front page of those web sites, we only
received PUSH PROMISE frames from six sites in the first
experiment, and got PUSH PROMISE frames from additional
nine sites in the second experiment. They usually push objects
like javascript, css, figures, etc. When requesting URLs other
than the front page, we do not receive pushed objects. We
further measure and compare the performance when server
push is enabled and disabled. For a fair comparison, we visit
these sites for 30 times using Firefox, because it allows us to
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second experiment (Jan. 2017).

enable/disable server push through configuration, and collect
the page load time for comparison following [21]. Fig. 3 shows
the distribution of page load time when the server push is
enabled/disabled. It shows that enabling server push could
reduce the page load time in most cases.

G. HPACK

After sending identical requests H times in different
streams, we get the response and compute the HPACK com-
pression ratio (i.e., r) defined in Section III-E. We filter out
the data with r > 1, because a few web sites will insert new
cookies into the 2nd to the Hth HEADERS frames, making
S1
header < Si

header (i = 2, . . . ,H). Eventually, we collect
data from 37,849 sites in the first experiment, including 2,449
Tengine servers, 12,764 Nginx servers, 9,929 GSE servers,
873 IdeaWebServer and 11,834 litespeed servers while we
get 46,948 sites in second experiment, including 619 Tengine
servers, 22,548 Nginx servers, 9,925 GSE servers, 1,000
IdeaWebServer and 12,856 litespeed servers.

Figure 4 and 5 illustrate the HPACK compression ratio of
the top five popular HTTP/2 servers in the two experiments,
namely GSE, nginx, Tengine, litespeed, and ideaweb. We
can see that GSE achieves the best compression ratio, all
of which are less than 0.3. Nginx and IdeaWebServer have
the worst performance. In particular, the compression ratio of
93.5% Nginx servers is 1, meaning that all response headers
have the same size. By investigating the responses, we find
that Nginx only puts the fields in the request headers into
the dynamic table without storing the fields in the response
headers into the dynamic table. For LiteSpeed, 80% servers
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Fig. 6. RTT measured by ICMP, TCP, HTTP/1.1, and HTTP/2.

have HPACK compression ratios less than 0.3, indicating
effective compression. For Tengine, in the first experiment,
since sites in the domain of tmall.com may have similar
resources, their HPACK compression ratio are almost the
same. In the second experiment, since some sites changed their
original server names from Tengine to Tengine/Aserver, sites
using Tengine have diverse HPACK compression ratio.

H. HTTP/2 PING

To evaluate the accuracy of RTT measurement by HTTP/2
PING, we compare the results with that from three other meth-
ods, namely, ICMP ping, TCP based approach that exploits
its three-way handshaking, and HTTP/1.1 based method that
leverages the interval between HTTP request and response.

The measurement client runs in a machine with the OS
Ubuntu 14.04 in our campus, and we randomly select 10 sites
for each top popular servers. Figure 6 shows the CDF of RTT
values for the web sites. We can see that the RTT measured by
HTTP/2 PING frame and that by TCP three-way handshaking
are very close. The result obtained from ICMP is also similar
to that from HTTP/2 PING. However, the RTT measured by
HTTP/1.1 is longer than that from the other three methods.
The reason may be that the HTTP/1.1 server needs time to
handle the requests, generate the response and send it back.
By contrast, HTTP/2 PING can obtain quite accurate results.

VI. DISCUSSION

Based on the investigation of popular HTTP/2 implementa-
tions and the measurement of deployed HTTP/2 servers, we
have some concerns and suggestions about the development
and deployment of HTTP/2.

First, request multiplexing could address the head-of-line
blocking issue [22] because the server can process several
requests simultaneously and send back the response frames.
However, since HTTP/2 uses one TCP connection, its perfor-
mance may be significantly affected in a lossy environment
(e.g., mobile network), because the congestion window of the
TCP connection will be decreased in the presence of packet
losses and thus limit the throughput. Using more than one TCP
connection could mitigate such problem.

Second, while flow control can prevent the sender from
overwhelming the receiver, it could also be exploited by ad-
versaries to launch DoS attacks. For example, the TCP’s flow
control mechanism has been exploited by malicious receiver to



conduct various attacks [23]. One possible defense approach is
to define lower bounds for the values of SETTINGS INITIAL
WINDOW SIZE and WINDOW UPDATE. Moreover, al-

though RFC 7540 suggests that flow control should only
be applied to DATA frames, many servers also control the
HEADERS frames and may mislead HTTP/2 clients that are
expecting the HEADERS frames.

Third, although the priority mechanism is very useful, RFC
7540 does not suggest any algorithm for HTTP servers and
clients. Since the dependencies of web objects are com-
plex [24], [25], algorithms for servers and clients should be
carefully designed and evaluated. On one hand, server side
algorithms should take into account both performance and
security, because malicious clients may exploit this mechanism
to launch algorithmic complexity attacks [26] (e.g., force the
server to frequently reconstruct the dependency tree, etc.). On
the other hand, HTTP/2 clients may need more information
to better select the priorities and weights for streams. For
example, without knowing how much time or resource will
be needed by the server to process requests, the parameters
selected by the client may be ignored by the server.

Fourth, while server push could speed up the downloading
[27], [28], only a few web sites support it. Moreover, existing
HTTP/2 servers only allow users to statically list which
resources will be pushed. To further improve the performance,
new algorithms and the support from HTTP/2 servers are
desired to dynamically determine which resources should be
pushed (e.g., the most likely next page, etc.). A potential
issue with server push is the waste of network bandwidth.
For example, since a server can push web objects after
sending the PUSH PROMISE frame, if the client already
caches these web objects, the pushed data wastes the network
bandwidth. Moreover, if the client shutdowns the connection
before receiving the push data, such transmissions are useless.

Fifth, it is expected that header compression will reduce
the data exchanged between a server and a client. However,
Figure 4 and 5 show that it is not easy to correctly realize this
feature for improving the performance. Moreover, attackers
might exploit this feature to launch DoS attacks, such as setting
SETTINGS HEADER TABLE SIZE, which affects the size
of dynamic table, to a large value, and then using randomly-
generated headers to fill up the table, etc.

VII. RELATED WORK

Since HTTP/2 is a new protocol standardized in 2015, there
are not many studies on it yet. Varvello et al. reported their
regular measurement on top 1 million web sites to check
whether they support HTTP/2 or not [3]. However, they did
not examine whether or not those web sites support the new
features in HTTP/2.

Chowdhury et al. [29] and Saxce et al. [30] conducted mea-
surement to determine whether HTTP/2 will be more energy
efficient and faster than HTTP/1.1, respectively. Chowdhury et
al. [29] found that when RTT is above 30ms and TLS is used,
HTTP/2 saves energy. Saxce et al. [30] observed that packet
loss will significantly affect HTTP/2. Sanae et al. investigated

HTTP/2 Server Push in mobile networks [21], and found that
server push can improve performance, especially when latency
is high, because it saves one round-trip. Our observation is
in consistent with them. Kim et al. examined the impact of
HTTP/2 on the performance of three types of typical web sites
in Korea in different network environments [31]. The result
suggested that HTTP/2 doesn’t improve the performance be-
cause portal sites are already well-optimized. Another possible
reason is that sites with multiple domains will increase the time
spent on the establishment of HTTP/2 connection. Enrico et al.
compared the user experience between HTTP/2 and HTTP/1.1
and found that HTTP/2 is not better than HTTP/1.1 [32].

Adi et al. examined how to exploit some new frames in
HTTP/2 to conduct DDoS attacks [33]. Mi et al. proposed
SMig to allow a client or server to migrate an HTTP/2 stream
from one connection to another [34]. Han et al. proposed Meta-
Push that is cellular-friendly and has better performance [35].
They adopt server push to get the meta files containing the
resource URLs and use prefetch in the link header standardized
in HTML 5 to download all the resources in one round-
trip. Researchers have exploited the new features, especially
the server push mechanism, to improve the performance of
online streaming [36]–[41]. Since HTTP/2 roots from SPDY,
the performance of SPDY has also been studied [42], [43].

VIII. CONCLUSION

We conduct the first systematic investigation on whether
the popular HTTP/2 servers have correctly realized the new
features in HTTP/2 and how the deployed servers use these
features. We not only inspect six popular implementations
of HTTP/2 server but also propose new measurement meth-
ods to characterize HTTP/2 web sites. We realize the new
methods in a tool named H2Scope and conduct a large
scale measurement on the top 1 million Alexa web sites.
The results reveal new observations and insights. In short,
existing HTTP/2 web servers have not taken full advantage
of the new features in HTTP/2, and more research is de-
sired to leverage these features for better performance. To
foster the research, we will release H2Scope in this link
https://github.com/valour01/H2Scope. In future work, we will
perform regular scanning on popular web sites to characterize
how HTTP/2 and its features are adopted, and examine the
interaction between HTTP/2 and other protocols/techniques
(e.g., TCP, HTML5) and the usage [44].
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