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Abstract—One critical issue in SDN is to reduce the com-
munication overhead between the switches and the controller.
Such overhead is mainly caused by handling miss-match packets,
because for each miss-match packet, a switch will send a request
to the controller asking for forwarding rule. Existing approaches
to address this problem generally need to deploy intermediate
proxy or authority switches to hold rule copies, so as to reduce
the number of requests sent to the controller. In this paper,
we argue that using the intrinsic buffer in a SDN switch can
also greatly reduce the communication overhead without using
additional devices. If a switch buffers each miss-match packet,
only a few header fields instead of the entire packet are required
to be sent to the controller. Experiment results show that this
can reduce 78.7% control traffic and 37% controller overhead
at the cost of increasing only 5.6% switch overhead on average.
If the proposed flow-granularity buffer mechanism is adopted,
only one request message needs to be sent to the controller for a
new flow with many arrival packets. Thus the control traffic and
controller overhead can be further reduced by 64% and 35.7%
respectively on average without increasing the switch overhead.

I. INTRODUCTION

SDN enhances network flexibility and scalability by sepa-
rating control plane from data plane. It is progressively domi-
nating the dynamic management for timely network trouble
shooting and fine grained traffic scheduling in data center
networks [1-3]. One critical issue in SDN is to reduce the com-
munication overhead between the switches and the controller.
Such overhead is mainly caused by miss-match packets that
cannot match any forwarding rules of the flow tables. For each
miss-match packet, the switch will generate a request message
and send it to the controller. After the controller decides how
to forward the packet, it will send operation messages back to
the switch. According to these operation messages, the miss-
match packet and the subsequently arrival packets of this flow
can be forwarded. If many new flows arrive simultaneously,
they may introduce massive miss-match packets, which will
trigger the corresponding number of request messages sent to
the controller. The overhead, including the transmission load
on the control path and the computation load on the controller
will inflate quickly.

Existing studies have tried to reduce the communication
overhead by cloning more forwarding rules in intermediate
proxy [4] or authority devices [5], which in partly take
responsibility of the controller. The switch first requests the

intermediate devices for how to forward the miss-match pack-
ets, and will not request the controller unless the devices
fail to give a response. Although these methods reduce the
requests sent to the controller, they don’t reduce the requests
generated by the switches. Furthermore, additional devices will
increase the overall budget. Different from previous works,
we utilize the intrinsic buffer of SDN switches to reduce both
the size and the number of the request messages generated
by the switches. Our methods can substantially reduce the
communication overhead and will make a supplement to ex-
isting approaches. To our best knowledge, we conduct a first-
ever study on reducing the switch-controller communication
overhead through SDN switch buffer. The main contributions
of this paper are summarized as follows.

(1) We investigate the benefits of adopting SDN switch
buffer. Without the buffer, each miss-match packet is entirely
included in the request message sent to the controller, while
if adopting the buffer, only several header fields are involved,
which will shrink the request message size. Experiment results
reveal that the switch buffer can reduce 78.7% control path
load and 37% controller overhead at the cost of increasing
only 5.6% switch overhead on average.

(2) We propose a flow-granularity buffer mechanism for
SDN switches. With the default buffer mechanism, every
miss-match packet will trigger a request message sent to the
controller. While using the proposed buffer mechanism, only
one request message is sent to the controller for all the miss-
match packets of a flow, which will reduce the number of the
request messages. Experiment results show that the proposed
buffer mechanism can further reduce 64% control path load
and 35.7% controller overhead on average without increasing
the switch overhead.

According to OpenFlow switch specifications [6], the buffer
is not used by default under the assumption that a flow
sets up beginning with several small packets negotiating first.
For example, a TCP connection starts with the three-way
handshake, which only needs three small packets to establish
the connection. In this case, the buffer is not necessary indeed.
However, for an UDP connection, one communication end
may suddenly send massive packets to another end without
negotiation, in which case, buffer becomes inevitable. In
addition, forwarding rule of a TCP flow may be kicked out
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from the size limited flow table, occurring during the short
time period of data transmission interruption. Large volume of
data may be transmitted after that transient time period because
the TCP connection is not terminated in actual. Therefore,
buffer is also useful for such kind of TCP connections.

The remainder of this paper is organized as follows. Related
work is presented in Section II. Benefits of adopting SDN
switch buffer are analyzed in Section III. Section IV presents
and evaluates the proposed flow-granularity buffer mechanism.
We conclude the whole paper in Section V.

II. RELATED WORK

SDN has become a promising network technology and it
has been deployed in data center networks [1-3]. However,
there are still many issues need to be addressed for SDN.

One critical issue is to reduce the communication overhead
between the switches and the controller. In SDN, frequent
interactions between switches and controller are necessary for
miss-match packets. Kim et al [7] addressed the controller
overhead when packets cannot match any rule of the flow
tables. Curtis et al. [4] argued that fine-grained control of
SDN cannot meet the demands of high performance networks,
e.g., micro flows may create excessive load on the controller
and the switches. They decreased the communication overhead
between switches and controller by cloning forwarding rules
in intermediate proxy, which can reduce the need to invoke
the control plane for most flow setups. DIFANE [5] dis-
tributed necessary rules to the intermediate authority switches.
Forwarding rules are partly made in data plane, which can
reduce the flow setup latency and respond quickly to network
dynamics. Mazu [8] reduced the latency of generating request
messages by redirecting miss-matched packets to a fast proxy
that is tasked with generating the necessary messages for
the controller, while it reduces the latency of execution of
forwarding rules by enabling fast parallel execution of updates.
In summary, current studies reduce the requests on controller
through utilizing intermediate devices to play a part role of
controller. Different from previous works, this study takes full
utilization of SDN switch buffer to reduce the communication
overhead. Current works reduce the requests sent to the
controller, while we try to reduce the size and the number
of the requests generated by the switches. That is to say, our
method could also be utilized as a supplement to existing
approaches.

III. PROBLEM AND EXPERIMENT DESCRIPTION

A. Problem Description

A flow contains many packets of {p1, p2, ..., pn} arriving
at {t1, t2, ..., tn}. If p1 matches a rule of the flow table, it
will be forwarded at a line rate. Otherwise, the switch will
generate a pkt in message sent to the controller. After the
controller decides how to forward the packet, it will send a pair
of control operation messages (flow mod and pkt out) to the
switch: flow mod message carries the forwarding rule that will
be installed in the switch; pkt out message instructs to directly
forward the miss-match packet through a specified interface of

TABLE I
CONFIGURATIONS OF EXPERIMENTAL DEVICES

Device Name CPU Cores RAM NIC
Host1 3.3GHZ 4 4GB 1×100Mbps
Host2 3.3GHZ 4 4GB 1×100Mbps

Open vSwitch 3.3GHZ 4 4GB 3×100Mbps
Floodlight 3.3GHZ 4 4GB 1×100Mbps

Fig. 1. Topography of the Experimental Platform.

the switch. The time of the flow mod message taking effect is
te. If te > t2, p2 will trigger another pkt in message. In the
worst case, if te > tn, n pkt in messages will be triggered.
When massive packets fails to match any rules of the flow
tables simultaneously, a great deal of request messages will
be sent to the controller. Moreover, corresponding control
operation messages will be sent back to the switch. Such
communication overhead needs to be reduced by the following
three reasons.

1) Control path may share the same physical links with the
data path. When the physical links carry heavy data traffic,
control messages may be congested. 2) Even if we reserve the
bandwidth or increase the priority for control traffic, we still
have the requirements of reducing the control messages to
relieve the load on the centralized controller. 3) Concurrent
switch activities, i.e., generating control request messages
and handling control operation messages will increase the
communication delay between the switch and the controller
[9]. This is caused by the competition of the limited resources
of the switch. So it is important to keep the control traffic at
a low level.

B. Experiment Description

Fig. 1 shows our experiments setup. Open vSwitch(OVS)
[10] is an open source OpenFlow virtual switch. Floodlight
[11] is an open source SDN controller. We run OVS and
Floodlight on two commodity PCs respectively. Table I shows
the configurations of the experimental devices. Host1 and
Host2 connect to OVS with 100Mbps interfaces. We run
pktgen [12] on Host1 to generate traffic at rates of 5Mbps
- 100Mbps with the Ethernet frame size of 1000 Bytes. We
run tcpdump [13] to listen on the interfaces that are connected
to the hosts and the controller respectively.



IV. BENEFITS OF ADOPTING SWITCH BUFFER

Adopting the default buffer of OVS, the switch buffers each
miss-match packet, and lets only several header fields instead
of the entire miss-match packet include in the pkt in message.
In our experiment, the buffer is set to no-buffer, buffer-16
(storing at most 16 packets) and buffer-256 (storing at most
256 packets). As shown in Fig. 1, Host1 sends one packet
for each new flow to Host2. To generate new flows, we use
pktgen [12] to forge source IP addresses and generate 1000
flows (one packet for each flow) at each sending rate. We
repeat the experiments at each sending rate for 20 times.

A. Control Path Load

Control path load refers to the control traffic (i.e., pkt in
messages sent from the switch to the controller, flow mod
and pkt out messages sent from the controller to the switch)
on the control path. We analyze the control path load from
two directions respectively. As depicted in Fig. 2 (a), we find
that the control path load nearly presents a linear relation
to the sending rate when the buffer is not utilized. Without
buffer, the entire miss-match packet will be included in the
pkt in message, resulting in large packets sent to the controller.
When the buffer is used, only several bytes of each miss-
match packet are included in the pkt in message. Results show
that buffer-16 and buffer-256 limit the control path load under
40Mbps. Control path load of buffer-16 gradually increases
when the sending rate exceeds 35Mbps, while buffer-256 al-
ways generate less control traffic with the mean of 10.86Mbps
and the standard deviation of 6.05Mbps. Deep analysis results
reveal that using buffer-16, the buffer is exhausted around
the sending rate of 35Mbps. So once the buffer is adopted,
the buffer size should be correctly set according to the traffic
patterns. Fig. 2(b) shows the similar patterns to Fig. 2(a). A
pkt in message will introduce a pair of flow mod and pkt out
messages. Without buffer, the pkt out message includes the
entire miss-match packet, while it mainly contains a specific
port number when using buffer. In summary, providing enough
buffer space, we can reduce 78.7% of the control path load
of one direction on average and 96% on average for another
direction.

B. Controller Usages

We measure controller usages (i.e., CPU utilization of the
floodlight process) to evaluate the load on the controller.
As depicted in Fig. 3, controller usages present a gradual
growth when the sending rate is lower than 50Mbps. After that
point, controller usage of no-buffer is unstable and increases
quickly with a standard deviation of 33.41%. While controller
usages of buffer-16 (mean of 53.07% and standard deviation
of 16.62%) and buffer-256 (mean of 34.59% and standard
deviation of 9.87%) are relatively low and stable. Without
buffer, the controller needs to capture the header fields of
each miss-match packet from the pkt in messages. When
the sending rate becomes higher, the controller will handle
more concurrently arrival pkt in messages and require much
more computing resources as a result. If adopting buffer, the

Fig. 3. Controller Usages under Different Sending Rates.

pkt in message only contains the necessary header fields,
which simplifies the process of decision making. Due to
the exhaustion of the buffer space, buffer-16 shows a poor
performance when the sending rate is high. Note that since the
experimental devices are multi cores, controller usages exceed
100% sometimes. In summary, buffer can reduce 37% of the
controller overhead on average. And if we set the buffer with
enough space, we can keep the controller usages at a relatively
stable level.

C. Switch Usages

We use switch usages (i.e., CPU utilization of the switch)
to evaluate the load on the switch. We should make sure how
much extra load will be added to switch when adopting buffer.
As depicted in Fig. 4, switch usages of no-buffer, buffer-16
and buffer-256 present similar patterns, increasing quickly at
the beginning, while slowly when the sending rate exceeds
40Mbps. During the whole testing process, buffer-256 (mean
of 274.64% and standard deviation of 44.62%) introduces
more load to switch than buffer-16 (mean of 263.84% and
standard deviation of 51.88%), which behaves similarly to no-
buffer (mean of 260.13% and standard deviation of 51.92%).
The reason is that buffer related operations cause higher switch
CPU utilization than no-buffer. Buffer-16 is exhausted when
the sending rate is high, so it performs similarly to no-buffer
after that point. In summary, buffer adoption complicates the
switch design and its packet process, but we find that it only
introduces 5.6% extra load to switch on average. This is a
positive indicator to adopt buffer in SDN switches.

V. FLOW-GRANULARITY BUFFER MECHANISM

The default buffer only reduces the size of the request
messages. It still requires to send pkt in messages for every
miss-match packet. We name the default buffer mechanism
packet-granularity. For a flow with many miss-match packets,
redundant pkt in messages will be sent to the controller.
Therefore, in addition to reducing the request message size,
we further aim to reduce the number of the request messages.



Fig. 2. Control Path Load under Different Sending Rates.

Fig. 4. Switch Usages under Different Sending Rates.

A. Mechanism Description

In this section, we present a flow-granularity buffer mech-
anism. It buffers all the miss-match packets of a flow and
lets only one request message send to the controller. After
a timeout period, if the switch doesn’t receive the control
operation messages, it will send another request message. The
flow-granularity buffer mechanism is divided into two parts as
depicted in Algorithm 1 and Algorithm 2.

Algorithm 1 describes how to buffer each miss-match
packet of a flow. A flow F with n packets arrives a switch.
Each packet pi of F will first match the flow table (line 2). If
pi matches a rule, it will be directly forwarded by the switch
(line 3). Otherwise, the switch will extract the buffer id for
pi (line 4∼5). If pi is the first arrival packet of the flow, the
switch cannot get the buffer id from the buffer id map (line
6). Then, the switch buffers pi and creates a buffer id for pi
(line 7). Note that all the miss-match packets of F share the
same buffer id. It is calculated based on the tuple of (src ip,
src port, dst ip, dst port, protocol), which is usually used to
identify a flow. The switch stores the buffer id for pi (line
8) and sends a pkt in message to the controller (line 9). The
pkt in message includes the header of pi and the buffer id. If
pi can get the buffer id from the buffer id map, it means pi is

not the first arrival packet of F , then the switch directly buffers
pi without triggering a pkt in message (line 10∼11). If the
controller doesn’t send back control operation messages after
a timeout period (line 12), the switch needs to send another
pkt in message to the controller (line 13).

Algorithm 1 Buffer Each Miss-match Packet
Input: a flow F with n packets arriving
Output: buffer each miss-match packet of F
1: for each arrival packet pi of F do
2: if pi matches a rule of flow table then
3: the switch forwards pi;
4: else
5: buffer id ← getBufferIdFromMap(pi);
6: if buffer id= −1 then
7: buffer id ← bufferFirstPacket(pi);
8: storeBufferIdIntoMap(pi, buffer id );
9: send a pkt in message including header of pi and buffer id;

10: else
11: bufferSubsequentPacket(pi, buffer id);
12: if timestamp expires then
13: send a pkt in message including header of pi and buffer id;
14: end if
15: end if
16: end if
17: end for

Algorithm 2 describes how to forward the buffered packets
of a flow. A pkt in message will introduce a flow mod
message and a pkt out message. When receiving the flow mod
message, the switch installs the forwarding rule in the flow
table (line 1). However, this rule only applies to the subsequent
arrival packets of F , not to the already buffered packets of F .
When the pkt out message arrives, it carries the buffer id (line
2) and the out port (line 3). The switch uses buffer id to get
the first buffered packet of F (line 4), and forwards it through
the out port of the switch (line 5). Then, the switch forwards
other buffered packets of F one by one (line 7∼8). Meanwhile,
corresponding buffer units are released (line 6 and line 9).

B. Performance Evaluation

We implement the proposed buffer mechanism in Open
vSwitch, and evaluate its performance compared with the
default buffer mechanism. In this experiment, the buffer is



Algorithm 2 Forward Each Buffered Packet
Input: flow mod and pkt out messages arriving
Output: Forward each buffered packet of F
1: modify the flow table based on flow mod message;
2: buffer id ← getBufferId (pkt out);
3: out port ← getOutPort (pkt out);
4: firstPacket ← getPacketFromBuffer (buffer id);
5: forward (firstPacket, out port);
6: releaseBufferUnit(firstPacket);
7: while (nextPacket ← getPacketFromBuffer(buffer id)) is not null do
8: forward (nextPacket, out port);
9: releaseBufferUnit(nextPacket);

10: end while

Fig. 6. Controller Usages under Different Sending Rates.

set to 256 for both of the buffer mechanisms. As shown in
Fig. 1, Host1 sends 50 flows (20 packets for each flow) to
Host2 in cross sequences. We repeat the experiments at each
sending rate for 20 times.

1) Control Path Load: As depicted in Fig. 5(a), the pro-
posed buffer mechanism introduces less control traffic sent
from the switch to the controller. Using the flow-granularity
buffer, control path load is kept at a low and stable level,
while for the packet-granularity buffer, control path load
increases quickly when the sending rate exceeds 30Mbps. The
flow-granularity buffer sends only one pkt in message to the
controller for a flow with many miss-match packets, so it
can reduce the number of pkt in messages. As shown in Fig.
5(b), the flow-granularity buffer also introduces less control
traffic sent to the switch. This is because fewer control request
messages introduce fewer control operation messages, i.e., the
pkt out messages and the flow mod messages. In summary,
flow-granularity buffer can reduce 64% of the control path
load of one direction on average and for another direction, the
control path load can be reduced by 80% on average.

2) Controller Usages: As depicted in Fig. 6, the proposed
buffer limits the controller usages below 30%. While using the
default buffer, the controller needs more computing resources
(mean of 24.82% and maximum of 65.1%) in most cases,
especially when the sending rate is over 70Mbps. The flow-
granularity buffer reduces the number of pkt in messages,
which effectively decreases the controller overhead by 35.7%
on average.

Fig. 7. Switch Usages under Different Sending Rates.

3) Switch Usages: As depicted in Fig. 7, the mean switch
usage of the proposed buffer is 11.67%, while the mean value
is 17.31% for the default buffer. Considering the error caused
by the instability of the experimental devices, they present
similar switch usages. That is to say, the flow-granularity
buffer mechanism complicates packet processing, but it does-
n’t introduce extra overhead to the switch compared with the
packet-granularity buffer mechanism.

4) Buffer utilization: We calculate the average and maxi-
mum number of the buffer units that are used at each sending
rate. As depicted in Fig. 8(a), the flow-granularity buffer uses
fewer buffer units during the whole testing process. The flow-
granularity buffer always uses no more than 5 buffer units,
while for the packet-granularity buffer, the buffer utilization
presents a rapid growth with the sending rate increasing, and
it uses 43 buffer units at the sending rate of 95Mbps. Using the
flow-granularity buffer, only one pkt in message is triggered
for a flow with many miss-match packets. The pkt in message
is given a buffer id and all the buffered packets share this
buffer id. After the pkt out message arrives, it instructs to
forward the buffered packets with the same buffer id. That
is to say, this pkt out message applies to all the buffered
packets of this flow. Through this way, the buffer units can
be quickly released, leading to a low utilization of the buffer
space. While for the packet-granularity buffer, each miss-
match packet triggers a pkt in message, which is given an
exclusive buffer id. So a pkt out message only applies to its
corresponding buffered packet. This causes the buffer units
released slowly and leads a high utilization of the buffer
space. When the sending rate is high, the packet-granularity
buffer mechanism will trigger more pkt in messages in a short
time period, which presents an increasing demand on buffer
space. In summary, the flow-granularity buffer mechanism can
quickly release the buffer units. It improves the efficiency of
the buffer utilization by 71.6% on average.

VI. CONCLUSIONS

In this paper, we take a first step towards analyzing and
utilizing SDN switch buffer. 1) We first analyze the benefits
of adopting switch buffer. Using the default packet-granularity



Fig. 5. Control Path Load under Different Sending Rates.

Fig. 8. Buffer Utilization under Different Sending Rates.

buffer, only several header fields instead of the entire miss-
match packet are included in the request message, which
reduces the request message size. Experiment results show
that the default buffer could reduce the load on control path
and the controller. 2) Then, we propose a flow-granularity
buffer mechanism, which sends only one request message
to the controller for a flow with many miss-match packets.
Through this way, the number of the request messages is
reduced. Experiment results show that the proposed buffer
mechanism could further reduce the communication overhead
without increasing the switch overhead.
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