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Abstract—Due to the centralized control, network-wide moni-
toring and flow-level scheduling of Software-Defined-Networking
(SDN), it can be utilized to achieve Quality of Service (QoS)
for cloud applications and services, such as voice over IP,
video conference and online games, etc. However, most existing
approaches stay at the QoS framework design and test level, while
few works focus on studying the basic QoS techniques supported
by SDN. In this paper, we enable SDN with QoS guaranteed
abilities, which could provide end-to-end QoS routing for each
cloud user service. First of all, we implement an application
identification technique on SDN controller to determine required
QoS levels for each application type. Then, we implement a queue
scheduling technique on SDN switch. It queues the application
flows into different queues and schedules the flows out of
the queues with different priorities. At last, we evaluate the
effectiveness of the proposed SDN-based QoS technique through
an experimental analysis. Results show that when the output
interface has sufficiently available bandwidth, the delay can be
reduced by 28% on average. In addition, for the application flow
with the highest priority, our methods can reduce 99.99% delay
and increase 90.17% throughput on average when the output
interface utilization approaches to the maximum bandwidth
limitation.

I. INTRODUCTION

SDN enhances network flexibility and scalability by sepa-
rating control plane from data plane. It is progressively dom-
inating the dynamic management for timely network trouble
shooting and fine grained traffic scheduling in the data center
network infrastructure [1, 2], which is the foundation for
building today’s cloud computing services. More and more
multimedia applications are deployed on cloud. So cloud
users can access the multimedia data from any geographical
location. As the cloud providers, they should meet QoS
requirements for each cloud user application.

Compared with the traditional best-effort service model
of the Internet and some enforcement service models, such
as Integrated Services (IntServ) [3], Differentiated Service
(Diffserv) [4] and Multi Protocol Label Switching (MPLS) [5],
SDN can provide a better QoS guarantee for cloud applications
and services due to its centralized control, network-wide mon-
itoring and flow-level scheduling [6-7, 23]. Existing studies
have tried to use SDN to provide end-to-end QoS routing [8]
or multipath routing [9] for multimedia applications. However,
most existing approaches stay at the QoS framework design
and test level, while few works focus on studying the basic
QoS techniques supported by SDN. Different from previous
works, we implement and verify a SDN-based QoS guaranteed

technique for cloud applications. We combine application
identification with queue scheduling to meet the application
flows with different required QoS levels. Our methods supply
a basic QoS technique for end-to-end QoS routing, as well
as make a supplement to existing approaches. The main
contributions of this paper are summarized as follows.

(1) We implement an application identification technique
on SDN controller based on C4.5 decision tree. In addi-
tion to identifying application types, it also determines the
required QoS level for each type of application and issues
corresponding matching rules to SDN switches to meet the
QoS requirements of different applications.

(2) We implement a queue scheduling technique to allow
delay-sensitive data to be dequeued and sent first. We create
multi-queues for each output interface of the switch, including
the Expedited Forwarding (EF) queue with the highest priority,
the Assured Forwarding (AF) queue with the medium priority
and the Best Effort (BE) queue with the lowest priority. We
then implement two algorithms to queue the packets into the
queues of each output interface and schedule the packets out
of the queues with different priorities.

(3) We evaluate the proposed SDN-based QoS technique
through an experimental analysis. Results show that when
the output interface has sufficiently available bandwidth, the
delay can be reduced by 28% on average. In addition, for
the application flow with highest priority, our methods can
reduce 99.99% delay and increase 90.17% throughput on
average when the output interface utilization approaches to
the maximum bandwidth limitation.

According to OpenFlow switch specifications [34], it sup-
ports limited QoS futures by the Hierarchical Token Based
(HTB) [35] queuing technique and the Hierarchical Fair Se-
quence Curve (HFSC) [36] queuing technique. Taking HTB as
an example, it only allows to configure guaranteed minimum
rate and limited maximum rate for the flows. And by default,
each output interface has only one First In Firs Out (FIFO)
queue. In this paper, we implement multi- FIFO queues for
each output interface, and use HTB to achieve both rate-
limiting and priority-scheduling.

The remainder of this paper is organized as follows. Related
work is presented in Section II. Section III describes the SDN-
based QoS technique. We evaluate the proposed SDN-based
QoS technique in Section IV. Section V concludes the whole
paper.
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II. RELATED WORK

SDN has become a promising network technology and it has
been deployed in data center networks [1, 2]. Benefiting from
the centralized control, network-wide monitoring and flow-
level scheduling, SDN provides the opportunity to achieve a
better QoS guarantee for cloud applications and services.

Jeong et al. [10] extended the Network Operating System
[11] for SDN with the QoS-aware ability of resource discover,
routing computation, fault notification and restoration, etc.
Wallner et al. [12] showed a basic idea to realize QoS
through adding QoS modules and tools to the Floodlight
controller [13]. Ishimori et al. [14] proposed the control of
multiple packet schedulers to improve QoS for SDN. Bueno
et al. [15] extended OpenNaaS [16] framework with SDN
capacity to provides dynamic QoS control. Jarschel et al. [17]
proposed an application-aware SDN approach to provide QoE
for YouTube video streaming. They evaluated which types
of application information can be exploited to enhance QoE.
Bari et al. [18] proposed an autonomic SDN-based QoS pol-
icy enforcement framework by specifying QoS-based Service
Level Agreements. Gorlatch et al. [19] used SDN to address
the dynamic network demand and improve the QoS of real-
time online interactive applications. Akella et al. [6] studied
QoS-guaranteed bandwidth allocation for cloud users based on
SDN. They introduced queuing techniques and considered the
performance metrics of response time and the number of hops.
Tomovic et al. [8] presented a new SDN control framework for
QoS provisioning. The framework could provide required QoS
level for multimedia applications automatically and flexibly.
Seddiki et al. [20] proposed a SDN-based approach to achieve
per-flow QoS for broadband access networks. Yan et al. [21]
proposed an SDN-based multipath QoS solution, which could
reduce delay, increase throughput and quickly reroute traffic
from path failure. Sieber et al. [22] proposed a Network
Services Abstraction Layer on top of the network control
and management plane. They then introduced a unified data
model for both SDN and legacy devices to achieve QoS
for time-critical tasks. Dwarakanathan et al. [23] proposed a
framework to meet the QoS requirements of cloud applications
while providing high availability guarantees. Adami et al. [24]
designed and developed a network control application for QoS
provisioning on top of the Floodlight controller.

Existing works have proved the benefits of SDN to achieve
QoS provisioning. Most studies stay at the systematic frame-
work design and test level, while few works focus on queu-
ing and scheduling techniques. In this paper, we implement
and verify a SDN-based QoS guaranteed technique, which
combines application identification with queue scheduling to
achieve QoS guarantee for each cloud user application flows.
Our work makes a supplement to existing studies, and provides
a basic support for end-to-end QoS and multipath routing.

III. A SDN-BASED QOS GUARANTEED TECHNIQUE

We first briefly introduce the system framework of the
proposed SDN-based QoS guaranteed technique. Then, we

describe the application identification approach and the queue
scheduling mechanisms.

A. System Design

As depicted in Fig. 1, the system mainly contains three
modules: the application identification module, the queue
management module and the queue scheduling module. We
also redesign the control message management modules for
both the switch and the controller.

1) Control Message Management: This module is responsi-
ble for sending, receiving and processing the control messages,
mainly including the packet in message, the packet out mes-
sage, the flow mod message and the queue mod message. If a
packet can match a rule of the flow table, it will be forwarded
at a line rate. Otherwise, the switch will generate a pkt in
message and send it to the controller. After the controller
decides how to forward the packet, it will send a pair of
control operation messages (flow mod and pkt out) to the
switch: flow mod message carries the forwarding rule that
will be installed in the switch; pkt out message instructs to
directly forward the miss-match packet through a specified
output interface of the switch. The queue mod message is
used to configure the queues on the output interface.

2) Application Identification: We implement the applica-
tion identification technique in this module. it can identify
application types according to the application features, and
map different application types to different required QoS
levels. This will instruct to configure QoS forwarding rules
in the flow tables through the control message management
module.

3) Queue Management: This module is in charge of con-
figuring queues on the output interfaces and maintaining the
queue configuration information. It sends queue configuration
commands to a switch through a queue mod message. The
switch parses the queue mod message and configures the
queues on a specified output interface.

4) Queue Scheduling: This module queues the packets of
different applications into different queues, and then schedules
the packets out of the queues with different priorities. Each
output interface can configure no more than 8 queues with
different required QoS levels. In our study, we create 3 queues
for each output interface. The relation between an application
and a queue is presented in the action filed of a flow table
item, marked as enqueue = x : y. It means packets of this
application is queued into queue y of output interface x.

In addition to the primary modules, we also use the route
computation, the topology management and the flow moni-
toring functions of the controller. They work together with
the application identification module to calculate an output
interface with a specific queue number for an application flow.
The workflow of the proposed QoS guaranteed technique is
described as follows.

Step 1-2: A flow contains many packets of {p1, p2, ..., pn}
arriving at a switch. If p1 matches a rule of the flow table,
it will be directly forwarded through step 8-9. Otherwise, the



switch needs to request the controller for forwarding decision
through step 3-4 for the miss-match packet.

Step 3-4: The switch generates a pkt in message for p1 and
send it to the controller. The control message management
module captures the header fields of p1 included in the
pkt in message. Then, the header information is sent to the
application identification module.

Step 5: According to the header information, the application
identification module extracts required features and queries the
trained classification algorithm to determine the application
types and the required QoS levels. The results are sent to the
control message management module.

Step 6: According to the classification and QoS mapping
results, as well as the forwarding interface computed by
the route computation function, the control message manage-
ment module generates a pair of control operation messages
(flow mod and pkt out) and sends them to the switch.

Step 7: The switch installs the forwarding rule in the switch
according to the flow mod message and directly queues p1 into
a queue of a specified output interface according to the pkt out
message.

Step 8-9: The switch queues the subsequently arrival packets
of the application flow into the queue of the specified output
interface. And at the same time, the queue scheduling module
schedules the queued packets of the application out of the
queue of the interfere.

B. Application Identification

In this section, we train the C4.5 decision tree to identify
application types. Then we define the rules to map each
application type to a specific required QoS level.

1) Application Types Identification: Features selection is
the basis of application type identification. It starts at the
flow setup phase. For TCP application flows, the features
includes {source port, destination port, MSS, WIN}. It is well
known that the port is closely related to application types. In
addition, MSS and WIN present great differences among the
applications. For UDP application flows, the features includes
{source port, destination port}.

According to the selected features, the C4.5 decision tree
[25] is trained and implemented in the controller to identify
the application types. Assuming the training dataset of S has
k kinds of application types, the information entropy of S can
be expressed as equation (1).

H(S) = −
k∑

i=1

pi log2 pi (1)

Each element in {p1, p2, ..., pk} represents the probability
of an application type appearing in the dataset of S. Entropy
is used to address the information uncertainty. The smaller the
entropy is, the lower uncertainty the information is. And low
information uncertainty means the dataset of S is concentrated
in some application types. If we divide S into n subsets

TABLE I
APPLICATION TYPES AND CORRESPONDING REQUIRED QOS LEVELS

Application Types QoS Levels
VOIP, GAME, SERVICES, CHAT Expedited Forwarding

MULTIMEDIA, WEB, INTERACTIVE Assured Forwarding
EMAIL, BULK, P2P Best Effort

according to the attributes of X. The expectation entropy of
X to S (conditional entropy) is expressed as equation (2).

H(S|X) =

n∑
i=1

p(Si)H(Si) (2)

As shown in equation (3), the information gain is the
difference between the entropy and the expectation entropy.

Gain(S,X) = H(S)−H(S|X) (3)

The C4.5 decision tree introduces the information gain ratio
(GainRatio) based on the information gain. It calculates the
GainRatio for each attribute and chooses the attribute with
the maximum GainRatio as the split node. The GainRatio is
expressed by equation (4).

GainRatio(S,X) =
Gain(S,X)

SplitInfo(S,X)
(4)

Where, SplitInfo(S,X) is the split information of X to
S and expressed as equation (5).

SplitInfo = −
n∑

i=1

p(Si) log2 p(Si) (5)

Algorithm 1 describes how to use the C4.5 decision tree
algorithm to identify application types. Since the algorithm is
well known, we omit the details of the algorithm description.
In this paper, we adopt the Moore dataset [26] to train and
verify the algorithm. Moore dataset is popularly applies to
application identification. The dataset contains 370000 flows
composed by 10 application types shown in Table I. We use
k-folder Cross Validation [27] to test the effectiveness of
Algorithm 1. We divide the Moore dataset into K subsets
and consider K − 1 subsets as the training data. The selected
feature is the port number. Each subset of the K subsets
will be regarded as the test set, so the training and test
process will be conducted K times. As a result, we can get K
classification models. We find that when K is set to 10, the
average identification accuracy is 99%. Results show that the
training decision tree can be used to identify the application
types.

For the misclassification application flows, on one hand, we
can still provide best effort services as the traditional way. On
the other, during the subsequent transmission, more features
(such as, packet size, packet number, inter-packet gap, etc)
can be collected to further determine the application types. If
the result is not same to that judged at the flow setup phase,
corresponding QoS forwarding rules will be updated.
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Fig. 1. System Framework of the SDN-based QoS Guaranteed Technique.

Algorithm 1 Application Types Identification with C4.5
Input: Training dataset of S, Attribute set of A
1: Tree ← {}
2: if S belongs to the same class or A is Φ then
3: Terminate;
4: end if
5: for all attribute X ∈ A do
6: compute H(S|X), SplitInfo(S,X) and GainRatio(S,X)
7: end for
8: Xbest=Maximum(GainRatio(S,X));
9: Tree ← create a decision node with Xbest;

10: Ssubset ← split S into n different subsets based on Xbest;
11: for all Ssubset do
12: Treen ← C4.5 (Ssubset, A−Xbest);
13: attach Treen to the corresponding branch of the Tree;
14: end for
15: return Tree

2) Application QoS-Levels Mapping: Different application
types have different QoS requirements, which should be
mapped to different QoS levels. Application flows mapped to
the same QoS level are queued into the same queue. Through
QoS levels mapping, the switch can provide differential ser-
vices for the application flows. According to the specification
of IEEE 802.1Q [28], we classify the QoS into three levels:
Expedited Forwarding (EF), Assured Forwarding (AF) and
Best Effort (BE) forwarding. Considering the requirements of
the applications in delay, jitter and bandwidth, we map the ap-
plication types to the three required QoS levels. The mapping
relations are shown in Table I. Real-time applications (VOIP,
GAME, SERVICES and CHAT) are sensitive to delay and
jitter. 2) Streaming application (MULTIMEDIA) focuses on
unidirectional transmission and interactive applications (WEB
and INTERACTIVE) are executed on the basis of the request-
response model. Both of them are less sensitive to delay,

but require bandwidth guarantee for availability. 4) Compared
with the other applications, background applications have little
demands on delay and bandwidth, e.g., Email, Bulk and P2P.

C. Queue Scheduling

Queue scheduling aims to queue the application flows into
the queues with different QoS levels, and schedule the queued
packets out of the output interfaces. In this paper, we design
the queue scheduling algorithms based on LLQ (Low Latency
Queueing) [29].

1) Queue Implementation: LLQ brings the ability to specify
low latency behaviour for a traffic class. Each queue is
equipped with a priority and application flows queued in
the queue with higher priority will be scheduled out of the
interface first. We implement three queues at each output
interface, including EF queue, AF queue and BE queue. EF
queue (highest priority): packets queued in the EF queue are
served with strict QoS guarantee. AF queue (middle priority):
packets queued in the AF queue can get a certain degree of
minimum bandwidth guarantee. BE queue (lowest priority):
packets queued in the BE queue enjoy the best effort service
without QoS guarantee.

Algorithm II describes how to queue the packets into the
queues of an output interface. Assume that n packets of
different applications arrive at a switch, and all the packets
are forwarded to the same output interface of the switch.
According to the forwarding decisions, the packets belonging
to different QoS levels are queued into different queues of the
output interface. Algorithm III describes how to schedule the
queued packets out of an output interface. If the EF queue
is not empty, all the packets in the EF queue are scheduled
out of the output interface (line 2∼4). Otherwise, the scheduler



checks whether the AF queue is empty or not. If the AF queue
is not empty, one packet in the AF queue is scheduled out
of the output interface (line 5∼6). Then, the scheduler moves
out from the current while loop and moves into the next while
loop (line 7). If the AF queue is empty, the scheduler checks
the BE queue. If the BE queue is not empty, one packet in
the BE queue is scheduled out of the output interface (line
9).

Algorithm 2 Queue the Packets into the Queues of an Output
Interface
Input: n packets arriving at the output interface of I
1: for each arrival packet pi do
2: if pi belongs to EF QoS level then
3: queue pi to EF Queue;
4: else
5: if pi belongs to AF QoS level then
6: queue pi into AF Queue;
7: else
8: queue pi into BE Queue;
9: end if

10: end if
11: end for

Algorithm 3 Schedule the Queued Packets out of an Output
Interface
Input: EF , AF , BE
1: while TRUE do
2: while isNotEmpty(EF ) do
3: schedule out one packet in the EF Queue;
4: end while
5: if isNotEmpty(AF ) then
6: schedule out one packet in the AF Queue;
7: continue;
8: else
9: schedule out one packet in the BE Queue;

10: end if
11: end while

IV. EXPERIMENTAL EVALUATION

In this section, we first describe the experimental environ-
ment. Then, we evaluate the effectiveness of the proposed
SDN-based QoS technique.

A. Experiment Description

Fig. 2 shows our experiments setup. Open vSwitch(OVS)
[30] is an open source OpenFlow virtual switch. Floodlight
[31] is an open source SDN controller. We run OVS and
Floodlight on two commodity PCs respectively. Host1 and
Host2 connect to OVS with 100Mbps interfaces. We run
pktgen [32] on Host1 to generate traffic at the rates of 5Mbps
- 100Mbps with the Ethernet frame size of 1000 Bytes. We
run tcpdump [33] to listen on the interfaces that are connected
to the hosts and the controller respectively.

In this experiment, Host1 sends three kinds of flows to
Host2, including the voice flow (delay-sensitive), the video
flow (bandwidth-hungry) and the generic data flow. These
three application flows are sent out in cross sequences. We
implement the C4.5-based application identification technique
in the Floodlight and the LLQ-based queue scheduling tech-
nique in the Open vSwitch. The three types of flows will be

Fig. 2. Topography of the Experimental Platform.
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FIFO Mechanism. (b) The Proposed LLQ-based Mechanism

mapped to the EF, AF and BE QoS levels and correspondingly,
be queued into the EF queue, AF queue and BE queue respec-
tively. By default, each output interface is configured with a
FIFO queue. We conduct a comparison study between the
default queue technique and the LLQ-based queue technique
implemented in this study.

B. Effectiveness Evaluation

Fig. 3(a) shows the delay variations of the flows using the
default FIFO queue. With the increase of the sending rate,
the three types of flows compete for the bandwidth inten-
sively. When the total sending rate reaches to the maximum
bandwidth of the switch interface, the delays of the three
types of flows increase quickly. Since the default FIFO queue
mechanism doesn’t distinguish the differences of the flows,
the delays of the three types of flows present similar patterns.
Neither the voice flow nor the video flow is guaranteed with a
tolerant delay. The LLQ-based queue mechanism differentiates
the differences of the flows. As shown in Fig. 3(b), the voice
flow is guaranteed with a small delay. It is not affected by the
sending rate, because it is mapped to the EF QoS level, which
has the highest priority to use the bandwidth. The video flow is
mapped to the AF QoS level and guaranteed with the minimum
bandwidth of 30Mbps, so the delay of this flow is less affected.
However, when the sending rate exceeds 80Mbps, the delay
of the video flow starts to be influenced slightly. The generic
data flow is not guaranteed and the delay presents a similar
pattern with the default FIFO queue mechanism.

We then conduct further experimental analysis about the
proposed technique under different bandwidth conditions. 1)



No-congestion: the total bandwidth of the interface is sufficient
for the requirements of the three flows. 2) Congestion: the
bandwidth requirements of the three flows approach to the
total bandwidth limitation of the interface, i.e. 100Mbps.
Metrics of delay, jitter and throughput are used to evaluate
the performance of the three application flows.

1) Delay: a) No-Congestion. As shown in Fig. 4(a) ∼ Fig.
4(c), when the interface is not congested, both the default
and proposed mechanisms can meet the QoS requirements
of the application flows. Using the default FIFO mechanism,
the average delays of the three types of flows are 6.31µs,
6.18µs and 6.24µs respectively. While using the LLQ-based
mechanism, the average delays of the three types of flows
are 4.49 µs, 4.43µs and 4.46µs respectively. The delays of
the three flows are reduced by 28.8%, 28.3% and 28.5% on
average. For the default mechanism, the sending rate is small,
the flows don’t need to compete for the bandwidth. Packets
queued into the queue can be scheduled out quickly without
any queue waiting time. So the default mechanism can also
meet the QoS requirements of these application flows. For
the LLQ-based mechanism, the bandwidth assigned to each
queue is larger than the sending rate of the application flows,
so the bandwidth is enough to meet the QoS requirements.
However, the proposed mechanism creates three queues for
each output interface. Multi-queues mechanism reduces the
complexity of packet processing, so the LLQ-based (multi-
queues) mechanism performs a little better than the default
FIFO (single-queue) mechanism.

b) Congestion. As shown in Fig. 5(a) ∼ Fig. 5(c), the
proposed LLQ-based mechanism obviously outperforms the
default FIFO mechanism when the interface is congested.
Using the default mechanism, more and more packets are
congested in the queue over the time. As a result, the average
delays of the three types of flows present fast growth. While
using the proposed mechanism, there are there types of queues
for each interface. Each queue is marked with a QoS level, and
serves the application flows that are mapped to this QoS level.
The voice flow has the highest priority to use the bandwidth, so
the delay is small and keeps stable. The video flow is provided
with a certain degree of minimum bandwidth guarantee, so the
delay increases slowly. The generic data flow is served with
the best effort way, so the delay increases quickly. However,
its growth rate is smaller than that of the default mechanism.
Under the congestion condition, the average delays of the three
types of flows are reduced by 99.996%, 90.66% and 27.84%
on average respectively. In view of delay, the voice flow is
strictly guaranteed and the video flow can also be guaranteed
to a great extent.

2) Jitter: a) No-Congestion. As shown in Fig. 6(a) ∼
Fig. 6(c), when the interface is not congested, the jitters of
the three types of flows are small. However, the proposed
mechanism performs a little better than the default mechanism.
For the default mechanism, the average jitters of the three
types of flows are 3.02 µs, 3.93 µs and 2.20 µs respectively.
While for the proposed mechanism, the average jitters of
the three types of flows are 1.02 µs, 1.12 µs and 1.09 µs

respectively. The jitters can be reduced by 66.17%, 61.61%
and 50.41% on average respectively. The reason is that the
proposed mechanism adopts multi-queues to serve different
application flows, which can avoid the inference when all the
application flows are queued into a single queue.

b) Congestion. As shown in Fig. 7(a) ∼ Fig. 7(c), when
the interface is congested, the proposed mechanism presents
obvious advantages in view of jitter. Compared with the
default mechanism, the jitters of the three types of flows
can be reduced by 99.85%, 91.18% and 34.13% on average
respectively.

3) Throughput: a) No-Congestion. As shown in Fig. 8(a) ∼
Fig. 8(c), when the interface is not congested, the throughputs
of the two mechanisms present similar patterns. This is be-
cause the interface can provide sufficient bandwidth for each
kind of application flow. Packets queued into the queues can
be scheduled out quickly by both of the default mechanism
and the proposed mechanism.

b) Congestion. As shown in Fig. 9(a) ∼ Fig. 9(c), when the
interface is congested, the proposed mechanism can achieve
greater throughput than the default mechanism. Compared
with the default mechanism, the throughputs of the three types
of flows can be increased by 90.17%, 76.06% and 18.5% on
average respectively.

V. CONCLUSIONS AND FUTURE REMARKS

In this paper, we propose and evaluate a SDN-based QoS
technique for cloud applications. 1) We first design the ar-
chitecture of the SDN-based QoS technique, which combines
application identification with queue scheduling. 2) Then, we
implement an application identification method in the SDN
controller. It can identify application types and map each
type of application to a required QoS level. 3) Thirdly, we
implement a queue scheduling method in the switch. 4) At last,
we evaluate the proposed SDN-based QoS technique through
an in-depth experimental analysis.

In the future, we will conduct a theoretical analysis based on
queuing theory to prove the effectiveness of the queue structure
and scheduling algorithms. In addition, we will gather more
features to classify the application flows at finer granularity.
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Fig. 4. No-congestion: Delay Variations of Different Application Flows: (a) voice flow; (b) video flow; (c) generic data flow.
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