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Abstract—Tree-based RFID identification adopts a binary-tree
structure to collect IDs of an unknown set. Tag IDs locate at
the leaf nodes and the reader queries through intermediate tree
nodes and converges to these IDs using feedbacks from tag
responses. Existing works cannot function well under random ID
distribution as they ignore the distribution information hidden in
the physical-layer signal of colliding tags. Different from them,
we introduce PHY-Tree, a novel tree-based scheme that collects
two types of distribution information from every encountered
colliding signal. First, we detect if all colliding tags send the same
bit content at each bit index by looking into inherent temporal
features of the tag modulation schemes. If such resonant states
are detected, either left or right branch of a certain subtree
can be trimmed horizontally. Second, we estimate the number
of colliding tags in a slot by computing a related metric defined
over the signal’s constellation map, based on which nodes in
the same layers of a certain subtree can be skipped vertically.
Evaluations from both experiments and simulations demonstrate
that PHY-Tree outperforms state-of-the-art schemes by at least
1.79×.

I. INTRODUCTION

RFID systems [27] are widely deployed to label and track
items in various applications, such as inventory management
[29, 31], access control [3, 9], human-machine interaction [26],
localization and mobility tracking [23, 25, 28]. One funda-
mental operation in RFID systems is to read tag IDs (a.k.a.,
RFID identification). Two major types of RFID identification
schemes are ALOHA-based and tree-based. In ALOHA based
schemes [17, 30], each tag randomly selects a time slot and
responds to reader’s query, leading to frequent tag collisions
and low communication efficiency.

In contrast, tree based schemes allow readers to issue binary
prefixes for tags to match their IDs with. Previous works have
shown that tree-based schemes provide more stable identifica-
tion performance but incur more reader-tag interactions [21].
Existing MAC-layer tree-based works [13, 14, 16, 19, 21]
deliver their optimal performances only when the distribution
of tag IDs are highly uniform, which does not often happen
in practical scenarios.

In order to improve the performance of tree-based identi-
fication, we explore how to infer local tag distribution from
physical layer signals. When multiple tags collide, we can
detect whether all responding tags reply with the same bit at
each bit index by combining prior knowledge of tag coding
scheme and physical layer patterns. For example, if the query
prefix is “0” and the all-0 state is detected at index 3, the
reader can infer that no tag has replied with the prefix pattern
“0*1” (where * represents any bit value) and skip querying
prefixes matching the pattern “0*1”. In the binary query tree,

this is equivalent to pruning the right branch of the layer-2
nodes rooted at “0”. Since this physical layer information tells
whether left or right branches of certain tree nodes is empty
and thus could be skipped safely, we call such physical layer
information “horizontal information”.

In addition, based on collision patterns in the physical layer,
we can roughly infer the number of responding tags in each
query. For example, if 4 tags respond when the reader queries
prefix 01, instead of appending only one bit to prefix 01, the
reader can directly append two bits to the prefix and query 4
new prefixes (0100, 0101, 0110, 0111) to directly resolve the
collision. In the binary query tree, the reader skips two children
nodes (i.e, 010 and 011) and directly jumps down to the 4
grandchildren nodes. We call such physical layer information
“vertical information”. We find that by leveraging both types
of physical layer information, it is possible to skip many
unnecessary queries during the overall identification process.

In this paper, we propose PHY-Tree, a novel tree-based
scheme that extracts two types of distribution information (i.e.,
horizontal and vertical information) from every encountered
colliding signal and utilizes them to guide a more efficient
query over the binary tree. First, by looking into inherent
temporal features of the tag modulation scheme, we can detect
whether concurrent colliding tags backscatter with the same bit
content at each bit index (horizontal info). Second, we can also
estimate the number of colliding tags in a slot without extra
communication overhead, by computing a related metric that is
defined over the signal’s constellation map (vertical info). By
accumulating these information along the whole identification
process, a great amount of information regarding the tag
ID distribution can be obtained to avoid many unnecessary
queries – this is the reason why PHY-Tree outperforms them
by nature. We also design a mechanism to compensate for
errors in the obtained physical layer information and ensure
that all tag IDs in the set are correctly identified. Finally, we
conduct experiments on our USRP/WISP testbed and perform
extensive trace-driven simulations to evaluate PHY-Tree. The
evaluation results show that PHY-Tree outperforms state-of-
the-art tree-based identification scheme by 1.79×.

II. BACKGROUND & MOTIVATION

A. RFID backscatter

Passive tags are of small size and battery-free. They are
generally used in UHF RFID systems that operate in the range
from 860MHz to 960MHz. RFID reader issues continuous
wave (CW) onto RFID tags and tags can transmit data by
either reflecting or absorbing CW. In other words, each tag
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(a) 8 clusters for 3 colliding tags.
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(b) 16 clusters for 4 colliding tags.
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(c) 15 clusters for 4 colliding tags.
Fig. 1. Ideally, 2k number of clusters appear in the constellation map when k tags collide as shown in (a) for k = 3 and (b) for k = 4. However, in practice
clusters may overlap and less than 2k clusters could be observed as shown in (c) for k = 4.
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(a) Query Tree takes 20 queryies to identify all 8 tag IDs.
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(b) PHY-Tree takes only 6 queries to identify all 8 tag IDs.
Fig. 2. Illustration on how the proposed PHY-Tree scheme accelerate identification performance compared to classic Query Tree scheme.

has two transmission states, HIGH (bit 1) and LOW (bit 0)
[10, 15]. To increase the robustness against channel degrada-
tion and maintain a high decoding rate on the reader side,
certain encoding scheme is applied to the data transmitted by
a tag. EPC Class 1 Gen 2 (EPC-C1G2) standard [1] provides
several encoding schemes including FM0 and Miller-based
coding.

When k tags collide in the same time slot, two states of each
tag combine linearly in the wireless channel. In principle, there
are 2k states in the mixed signal (in complex values). Among
2k states, two of them are worth noting: all-0 and all-1 state.
The two states occur when the k tags transmit bit 0 or bit 1
at the same time. We denote the two states as resonant states,
to distinguish them from mixed states.

If we plot the received complex signal in 2D plane, we
observe many clusters in the constellation map. For each clus-
ter, its centroid represents a combined state of k tags and its
radius indicates the power of noise from the wireless channel.
Ideally we can observe 2k clusters (as shown in Figure 1(a) and
Figure 1(b)). When k increases, it becomes more challenging
to accurately infer k from the number of clusters, as shown
Figure 1(c) where 4 tags respond simultaneously.

B. RFID identification

The task of RFID identification is to collect all IDs of an
unknown tag set. ALOHA based schemes [17, 30] require tags
to reply randomly in any time slot of a frame and hence suffer
from repetitive collisions. On the other hand, in tree based
schemes the reader issues a series of binary prefixes and only
those tags whose IDs match the issued prefixes would reply.
Consequently, collisions are gradually reduced during such
reader-tag interactions, and finally all tags can be identified.

We explain some concepts in tree-based schemes and illus-
trate the key intuition of our design in Figure 2(a). Each node
represents a binary prefix in the tree and is classified into one
of the following three types: collision, singleton and empty,
depending on the number of responses upon queried. We find
that 8 tags are in the bottom layer of the tree (in square shape),
whose IDs can be read by traversing from the root to the tags.
For instance, the ID of the 3rd tag from left is 0010.

Many tree-based schemes [13, 16, 21] are proposed to
reduce the number of query prefixes (represented as black
nodes in Figure 2). Although their ways of traversing through
the tree differ from each other, one common feature in these
works is that they append at most one bit to the current queried
prefix to resolve collisions.

C. Motivation

Despite the plenty amount of tree-based identification
works, they perform poorly in practical scenarios where tag
ID distribution is random. Unlike previous works, we do
not assume the prior knowledge of tag ID distribution. To
optimize the query, we estimate the local distribution of tags
in each query subtree by extracting two types of physical
layer information, namely horizontal and vertical information.
We note that physical layer hints are obtained directly from
the physical layer without extra communication overhead. As
the hints are accumulated along the identification process, we
could gradually refine the queries and ultimately converge to
exact position of each tag ID.

We use an illustrative example to explain how horizontal and
vertical information could be utilized in tree-based identifica-
tion. In Figure 2(b) each of 8 tag IDs is labeled with a square
in the bottom layer. We start querying with the two nodes in
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Fig. 4. Colliding signal of two tags with different IDs using FM0 coding.

the first layer: “0” and “1”. When “0” is queried and the 4
tags in the subtree reply, the constellation map may exhibit
as shown in Figure 2(b). In this case, the reader can leverage
such collision hints and skip one query node vertically. As
such, two nodes (i.e., 00 and 01) are skipped and marked as
“V skip” (vertical skip). Meanwhile, the reader also obtains
the horizontal information that no tags reply with prefix 01
since the 4 responding tags have the same bit 0 at index 2.
Consequently, the node 01 and its descendants are skipped for
query and marked as “H skip” (horizontal skip). It is noted
that the skipped node 01 is the result of both skip types and
marked as “H+V skip”. Similarly, when “1” is queried, the
reader obtains both horizontal and vertical information, which
respectively indicate that 4 tags collide and no tags reply with
the prefix pattern “1*0” (where * represent a bit value). Thus,
the reader further skips the nodes 10 and 11 and two subtrees
rooted from node 100 and 110.

Next the reader proceeds with the unskipped nodes in the
third layer (i.e., 000, 001, 101, 111). Upon node 000 is queried,
the reader learns that only 2 tags collide and a mixed state
appears at bit index 4. For this combination of horizontal
and vertical information, the only possibility is that 0000 and
0001 coexist. Thus the reader can directly identify two tag IDs
without explicit queries of 0000 and 0001.

Compared with Figure 2(a) where QT takes 20 queries
(marked as black solid circles or squares) to identify all 8 tag
IDs, PHY-Tree takes only 6 queries thanks to “H skip” and “V
skip”. To conclude, PHY-Tree improves the performance over
existing MAC layer schemes as it obtains extra physical layer
hints on the local ID distribution in each tag response slot and
accumulates them along the whole identification process.

III. HORIZONTAL INFORMATION

A. Horizontal Information

In Figure 3, FM0 flips states at the bit boundary between
two neighboring bits. An extra state flipping occurs in the mid
of bit 0, while the state of bit 1 keeps unchanged. We can thus
infer that if bit 0 is sent, the latter half of this bit and of its
previous bit should have the same state.
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(b) Overall cluster.
Fig. 5. Constellation map of 3 tags. Their 10-bit IDs include all 8 bit states.

The above patterns can be extended to the mix signal of
multiple tags, as shown in Figure 4. Specifically, no state
flipping occurs in the mid of a bit in all-1 state – the first and
second half of bit 1 have the same state. We see that when both
tags send bit 1 (i.e., index 2, 3, and 6), no state flips happens
in the corresponding indexes in collision signals. For a bit of
all-0 state, the latter half of this bit and of its previous bit are
the same. We see that when both tags send bit 0 (e.g., index 5
and 8), the latter states remain the same in the corresponding
indexes in collision signals. Mixed states do not exhibit these
features and can be distinguished from resonant states.

Next we check if resonant states can also be observed in
Miller coding. Figure 3 shows an example of Miller-2 coding.
We observe that for bit 1, the second and third quarters of the
signal have the same state. For bit 0, we observe that the states
of the first and third quarter of bit 0 are the same. These two
patterns can be easily generalized for Miller-M coding with
M = 4, 8. In the rest of this paper, we focus on FM0 coding.

By detecting resonant states from the collision signal, the
reader can avoid querying unnecessary prefixes. We note that
even if a resonant state is detected at an index not right after
the prefix, we still can omit some unnecessary queries. For
example, in Figure 2(b), if prefix “1” is queried and an all-
1 state is detected at index 3, the reader can skip the nodes
matching the prefix pattern “1*0”; in this case, the nodes 100
and 110 and their descendant nodes can be skipped.

B. Robust Detection Algorithm

To detect horizon information, we need to compare whether
two half-bit states are the same so as to detect both resonant
states. To perform the comparison in the complex tag response
signal, we can find the corresponding complex values for
the two states and compare their real and imaginary parts.
However, the backscatter signals may suffer from noises
which makes obtaining accurate horizon information more
challenging.

Next we design a robust resonant state detection algorithm.
In physical layer constellation map, since each cluster rep-
resents a combination state from all responding tags, we can
infer if states in two half bits are the same by judging whether
their corresponding clusters are overlapping with each other.

Figure 5(a) shows an example of overlapping clusters when
3 tags reply simultaneously. Each labeled cluster corresponds
to samples in a half bit. The 3 tags transmit the following
10-bit sequences: 0100001111, 0100110011 and 0101010101,



which include all 8 possible states, i.e., from 000 to 111. At the
bottom-right corner of Figure 5(a), the latter half of state 000 at
index 3 (in brown circle) shares a large overlapping region as
the latter half of state 111 at index 2 (in green solid square). In
fact, we can distinguish between the first and second half of a
bit from the tag response signal in the time domain. Moreover,
both the frontier and latter half-bit clusters of state 111 at index
1 (in green solid square) and index 10 (in black dot) are almost
overlapping as well. In contrast, states other than 000 or 111
do not have similar overlapping patterns. Figure 5(b) shows
the overall constellation map.

To quantify the notion of cluster overlapping, we first
compute the centroid of two clusters as the average of cor-
responding samples. Two clusters are judged as overlapping if
the distance between their centroids is below a threshold:√

(x2 − x1)2 + (y2 − y1)2 ≤ c× r0, (1)
where (x1, y1), (x2, y2) are the coordinates of two centroids
and r0 is the cluster radius. c is tunable and empirically set
to 2.5 in Section VII. We can approximate r0 as the L2-norm
of all samples in a cluster:

r0 =

√√√√ q∑
i=1

(xi − x̄)2 + (yi − ȳ)2. (2)

IV. VERTICAL INFORMATION

The number of replying tags k in a slot can help the reader
to adjust the prefixes in the following queries. For example,
if 4 tags respond to the prefix “0”, 2 bits should be appended
for the next query. In ALOHA schemes [30]: the optimum
slot efficiency is achieved when the number of slots equals to
the number of tags. Similarly, to accommodate k tags in the
subtree, we need to append log2 k bits to the previous query.

Many cardinality estimation techniques [6, 18, 20, 32] can
estimate k with high accuracy but they involve extra query
overhead. Other works [2, 10, 12] estimate k by counting the
number of visible clusters in the constellation map of the tag
response signal. Although these works are lightweight, they are
not scalable to large k values. This is because when k becomes
large, individual clusters have the tendency to overlap with
each other and consequently, cluster counting based method
no longer performs well. As a result, it is hard to accurately
count the exact number of responding tags when the number
of tags increases. Instead of aiming at the exact k, we find that
it suffices for PHY-Tree to estimate the logarithmic scale of
k to make an intelligent bit appending decision in subsequent
queries. To this end, we explore a new metric defined over the
signals constellation map to estimate the scale of k.

A. Intuition & Definition

The area occupied by the physical layer symbols is a good
candidate of k-indicator because: 1) it might increase when k
increases; 2) it is robust to overlapping clusters for large k.

Based on the above observation, we define an indicator of
k, named “effective area” (EA), as follows. First we find the
smallest rectangular region that contains all data samples in
the constellation map and divide it into small square grids.
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Fig. 6. Experiment results.
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Fig. 7. Simulation results.

Next we count the number of samples in each grid and set
a threshold to differentiate noise grids from signal grids –
the grids with the number of samples below the threshold are
regarded as noise. EA is computed as the multiplication of the
number of signal grids and the area of the grid unit and can
be explained as the summation of areas of all signal grids.

B. Basic Observations from Experiment Results

We conduct experiments on USRP/WISP testbed (shown in
Figure 8) to validate whether EA is a good indicator of k.
We configure multiple WISP tags to reply concurrently with
random number (RN) sequences to single reader queries. As
it is hard for us to obtain traces of larger k from our testbed,
we generate them by adding up available experimental traces
instead. For example, we can synthesize a trace of k = 6 by
adding up two traces of k = 2 and of k = 4.

Figure 6(a) plots EA versus k based on the collected and
synthesized traces. To compute EA, we empirically choose the
grid size to be 0.01 × 0.01 and the grid density threshold to
be 13% of total number of samples in a response slot. For
each k, we compute EA values for corresponding traces and
display an average EA in Figure 6(a). We see that EA increases
exponentially over k. We also plot the standard deviation of
EA versus k in Figure 6(b). We find though the standard
deviation of EA also increases when k increases, it is small
compared to the corresponding mean value of EA, meaning
that EA is a stable indicator of k across diverse traces.

To confirm whether the tendency between EA and k from
Figure 6 is general or specific to certain configurations, we
simulate k-tag baseband response signals (k = 1, 2, ..., 10)
with the SNR profile of collected experimental traces, which
often falls in the range [10dB, 30dB]. We set the AWGN noise
power N0 to 0.1. Each tag randomly picks up an initial signal



Fig. 8. Our USRP-N210 and WISP 4.1 testbed.

amplitude in [1, 10] and phase in [0, 2π]. Since the power scale
of simulated traces is much larger than that of experimental
ones, we adjust the grid size and the density threshold to better
distinguish between signal grids and noise grids and hence
compute a more accurate EA. Empirically, we adjust the grid
size to be 0.50 × 0.50 and leave the grid density threshold
the same as in Figure 6. We plot the average EA versus k for
simulated traces in Figure 7, from which we observe a similar
tendency as in Figure 6.

C. Appending Rule

The number of observed clusters in the constellation map
is always upper bounded by the number of data samples Ns

in a response slot. Each of our experimental traces contains
6000 to 8000 samples, which allow us to estimate k up to 12.

In fact, it makes no big difference to infer 8 or more than 8
(but less than 16) colliding replies if k is used for tree-based
identification. Specifically, we need to append dlog2 ke bits to
the current prefix for further queries, if the length of the prefix
after appending does not exceed the tag ID length. Following
this rule, 4 bits will be appended if k is detected to be in the
range [9, 16]. Hence, if we can infer 8 tags at most and the
corresponding EA is denoted as a0, we would append 4 bits
for any measured a satisfying a > a0.

One may argue that more dedicated rules can be applied to
determine the number of appended bits. For k = 9, appending
3 bits may resolve most collisions but appending 4 bits may
incur some inefficient queries to which no tag replies. Though
it seems that appending 3 bits is more optimal than appending
4 bits, it does not fundamentally improve the identification
performance, due to two reasons. First, our mapping model
between EA and k is a coarse one. Second, in general tree-
based schemes, a rough estimation of k for each reader
query without incurring extra overhead is sufficient to bring
promising performance gain for the whole query process.

D. Modelling EA over k

We propose a non-parametric model for the mapping be-
tween EA and k. Since inferring k up to 8 suffices (according
to Section IV-C), we adopt a range based model for each
k ∈ [1, 8]. If the measured EA is in a certain range, the
associated k can be obtained. To train the range-based model
8 tags are chosen from the tag set and multiple traces are
collected for each k. Then the expectation and standard
deviation of EA are computed; the minimum/maximum of
the range of EA for k are obtained by subtracting/adding the
standard deviation from/to the expectation. Such a model is

robust because the range estimation errors for k1 are not easily
propagated to that for k2, for k1 6= k2.

V. PHY-Tree PROTOCOL

We propose an efficient and robust RFID identification
scheme by exploiting both horizontal and vertical information.

A. A Basic Protocol

Suppose a target set contains M tags, each has an ID
with the length of L bits. We denote the ID of the tag
j as IDj = bL−1bL−2...b1b0, where bL−1 is MSB and
b0 is LSB. When the reader queries with an l-bit prefix
Q = ql−1ql−2...q1q0 (1 ≤ l ≤ L), tag j checks if the first
l bits of its ID, bL−1bL−2...bL−l, match Q. If they match, the
tag j replies to the reader with its ID.

We first design a basic identification algorithm. The reader
starts the query from the first layer of the binary tree (i.e.,
Q = 0 or Q = 1). Upon receiving the colliding physical layer
signal from k tags for the prefix Q, the reader can compute
an estimation of the number of replying tags k̂ (vertical infor-
mation) and obtain an inference vector G = gL−1gL−2...g1g0
(horizontal information), where gi (i = 0, 1, ..., L−1) indicates
the bit state at index i. Specifically, gi is set to 0 or 1 if an
all-0 or all-1 state is detected respectively and -1 otherwise.

Since only tags matching Q respond, we know that gL−1
gL−2...gL−l = ql−1ql−2...q1q0. If collision happens, the reader
resolves the collision as follows. First it uses k̂ and the
appending rules to derive the optimal number of appended
bits h. The reader appends h bits to the current queried
Q to obtain the appended prefix query set Q′ for subse-
quent queries. For example, if h is 3, Q′ includes pre-
fixes from ql−1ql−2...q1q0000 to ql−1ql−2...q1q0111. Second
the reader uses G to filter out unnecessary prefixes from
Q′. If gL−l−3 = 1 in the above example, Q′ is reduced
to only 4 prefixes: ql−1ql−2...q1q0001, ql−1ql−2...q1q0011,
ql−1ql−2...q1q0101 and ql−1ql−2...q1q0111.

Generally h is solely determined as dlog2k̂e. However, if
subsequent d bits are detected as resonant states right after
the prefix Q, i.e., gL−l−1...gL−l−d takes valid values (0 or 1),
h is adjusted to be max(dlog2k̂e, d+ 1).

We describe the whole query process as follows. In the
binary tree representation, the reader queries in the breadth-
first mode. Denote N as the queue of subsequent prefixes
for query. N is initialized with 2 prefixes “0” and “1” and
is automatically sorted in increasing prefix length. In the
case that two prefixes in N have the same length, the one
with smaller value is queried first. For example, prefix 010
is queried before prefix 011. The reader first obtains the
minimum prefix length lmin in N and queries all prefixes
with length lmin in N . Each time the reader pops out the first
prefix in N for query and waits for tag responses. If less than
3 tags reply, the reader continues to pop out a new Q in N for
query. Specifically if one or two tags reply to Q, they can be
uniquely identified. Otherwise, the reader extracts G, k̂ and d
from the colliding signal to compute h. The reader appends h
bits to Q to get the initial Q′, filters out some prefixes in Q′



using G and adds the updated Q′ to N . The reader repeats
the above query procedure until N becomes empty.

B. Error Compensation

The bit state detection algorithm in Section III may mistake
mixed states for resonant states and guide the reader to ignore
some subtree nodes of the current prefix. Therefore, some tags
in the set are missed by the reader. We need to eliminate this
problem to meet the basic requirement of RFID identification.

A straightforward solution is to record the list of unqueried
prefixes due to the guidance of G for each query in the basic
algorithm because the missed tags may reply to these prefixes.
The reader may adopts the original QT scheme [13] to query
prefixes in this list and identifies the remaining tags, without
using either horizontal or vertical information. Specifically, it
uses depth-first query method to traverse the whole binary tree
and always appends one bit for the next queries if collision is
encountered. Although it ensures no tag is missed, this solution
counters against the benefit brought by horizontal information
and degrades the performance gain.

Here we propose a more efficient compensation scheme
that could reserve the benefit of horizontal information. The
simulation results in Section VII-A show that the accuracy of
detecting resonant states is high under tight replying tag syn-
chronization. This indicates that a majority of tags in the target
set are identified using the basic algorithm. This motivates us
to design the following error compensation scheme. After the
basic algorithm stops, we mute those tags which have been
already identified so that they will not interfere with the second
round, where the reader performs a fresh identification using
QT, starting from the first layer. Since only a few unidentified
tags are left in the second round, it does not take many reader
queries to finish the second round, indicating its efficiency.

C. Further Improvement in Efficiency

By combining horizontal and vertical information in another
perspective, we can identify 2 colliding tags without further
queries and hence gain extra identification ability. Basically
if we can estimate k̂ = 2 for one query with high accuracy,
we can uniquely identify each of two tags with its partial ID,
rather than decode the whole ID. We explain the reason as
follows. Since each tag owns a unique ID, IDs of the two tags
must take different bit values in at least one bit index (e.g., i).
In other words, a mixed bit state exists at index i. Our bit state
detection algorithm can find out bits with mixed states and its
accuracy is quite high when only two tags reply (reported in
Section VII-A). The partial IDs for two tags are thus set as
the queried prefix concatenated with bit 0 and 1 at index i.

We incorporate this feature in the tree-based algorithm by
slightly modifying the appending rule used in Section V-A:

h = max(dlog2k̂e − 1, d+ 1). (3)
The term dlog2k̂e−1 in Eq.3 reflects the change brought by

extra identification ability of 2 tags. It is noted that we cannot
extend the partial ID identification to the case in which more
than 2 tags reply, due to two reasons. First, the estimation error
in the EA-k model increases when k increases, leading to the

inaccurate estimation results for k > 2. Second, even if k is
correctly estimated, we cannot identify these tags definitely as
more than k possible state combinations exist in several bits.

VI. DISCUSSION ON SYNCHRONIZATION

When we illustrate two types of physical layer information
in Section III and IV, we assume that the responding tags in a
slot are tightly synchronized. In real world scenarios, tags have
large diversities in their response delays due to multiple factors
such as manufacturers, types, antenna orientations, etc. In
this section, we briefly discuss how imperfect synchronization
affects the two types of physical layer information and suggest
how to mitigate the impact.

On one hand, the imperfect synchronization makes negligi-
ble impact on the vertical information. We estimate the number
of concurrent replies by processing samples in the entire time
slot, rather than samples in individual bit durations. Thus
the vertical information does not rely on the internal timings
between contiguous bit durations in the response signal.

On the other hand, imperfect synchronization degrades the
quality of the horizontal information. Specifically, discovering
all-0 and all-1 states in a bit requires bit-level synchronization.
Without perfect synchronization, we may accidentally detect a
resonant state as a mixed state (false negative), which leads to
missed opportunities for saving some reader queries, or detect
a mixed state as a resonant state (false positive), which results
in some tag IDs being not identified. Unlike Buzz [24], which
can calibrate for each tag’s clock to adjust its starting time
offset so that responding tags achieve tight synchronization,
we aim to identify all IDs of a completely unknown tag set.
Thus, we should not devote any effort to calibration; otherwise
such an effort can afford us to collect all tag IDs one by one.

We suggest several approaches to mitigate the impact of
imperfect synchronization on our scheme. Each tag can use
lower frequency for backscattering its ID to reduce the unsyn-
chronization rate, which is the ratio of the maximum starting
time offset over the individual bit duration. For example, if
4 symbols are used to encode one bit, the unsynchronization
rate can be reduced by half compared to using FM0 coding.
Better circuits are expected to be designed for RFID tags to
further reduce their unsynchronization rates [7, 8]. Besides, to
completely eliminate false positives for the horizontal informa-
tion, we design an error compensation mechanism in Section
V-B. Additionally, powerful collision recovery schemes like
BiGroup [15] (which can decode 4 to 5 collision tags without
assuming tight synchronization) can augment our scheme to
further improve the overall identification performance.

VII. EVALUATION

A. Microbenchmark

In this section, we evaluate the effectiveness of horizontal
and vertical information. We collect practical traces from our
USRP/WISP testbed in the office environment, as shown in
Figure 8. The USRP motherboard is equipped with an RFX900
daughterboard operating at 900Hz UHF band to transmit
reader commands and receive backscatter signals from tags.
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Fig. 9. Impact of false positive of horizontal information on PHY-Tree.
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Fig. 10. Optimal range for c in resonant state detection with different ks.

The laptop connects to the USRP device and performs offline
processing on the backscatter signal in a single slot. The
sampling rate at the receiving port is 4 million symbols
per second. Each physical layer symbol is represented by
a complex value containing both quadrature and in-phase
components. We configure WISP tags to reply their random
number (RN) sequences concurrently to single reader queries.
We collect 258 traces in various operation environments.

1) Horizontal Information: We first study the performance
of the resonant state detection in obtaining horizontal in-
formation. Three important performance metrics are overall
accuracy, false positive rate (FPR) and false negative rate
(FNR). The overall accuracy refers to the ratio of the number
of correct detection of both resonant and mixed states over
the total number of bit states. False positive rate refers to the
ratio of the number of detecting mixed state as resonant state
over the number of actual mixed states. False negative rate
refers to the ratio of the number of detecting resonant state as
mixed state over the number of actual resonant states. Unless
otherwise noted, we repeat an algorithm for 100 runs to obtain
its average performance for each setting.

We find the optimal c, an important tunable parameter in
Eq.1. We vary k from 2 to 8 and design a set of 10-bit tag IDs
(which is enough to accommodate 8 different IDs) for each k.
With random SNR and fixed noise power of each generated
trace, we compute an average overall accuracy for each k.

We plot the overall accuracy over c in the range [0.1, 10] step
by 0.1 in Figure 10. From this figure, we discover that for each
k, the overall accuracy first increases sharply with c, maintains
high in a certain range and decreases slowly with c in the end.
We highlight the 0.95-accuracy line in this figure and find an
optimal range [1.39, 4.07] of c for all ks. For k = 2, the
overall accuracy is always 100% for any c, demonstrating the
credibility of the partial ID identification of 2 colliding tags.
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model for wide-range k.
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Fig. 11. Accuracy comparison between EA-k model and SSDA[10].

After obtaining the optimal c, we study the accuracy of the
resonant state detection with different k. We set tag ID length
to 100 to better accommodate more unique tag IDs and each
of the all-0, all-1 and mixed state occupies 33.3% of the total
100 bits. We choose 6 values for c from the optimal range
(1.5, 2, 2.5, 3, 3.5 and 4). A slight difference from the setting
in Figure 10 is that we generate random set of tag IDs in each
run given a value of k. We plot the overall accuracy, FPR and
FNR over k from 3 to 100 in Figure 12.

In Figure 12(a), the trend is that the overall detection
accuracy of both resonant and mixed states decreases when
k increases. This is natural as collisions from more tags
impose more challenges on the detection. Nevertheless, the
algorithm achieves around 70% accuracy when 20 tags collide
for c = 1.5. From Figure 12(b), we find FPR increases when
c increases. We emphasize in Section V-B that high FPR of
horizontal information is not desired and hence should be as
low as possible. As such, we can trade off between the overall
accuracy and FPR; if we set c to 2.0, we can obtain ≤ 1%
FPR and achieves ≈ 80% overall accuracy when k is 20.
In Section VII-B when we compare PHY-Tree with existing
tree-based identification schemes, we fix c to 2 in PHY-Tree.
In Figure 12(c), we can see that FNR increases over k and
decreases over c, which matches the trend in Figure 12(a).

Any non-zero false positive rate would trigger our error
compensation scheme. If the number of missing tags after the
basic query round is large, the follow-up error compensation
round incurs large query overhead and renders our proposed
PHY-Tree inefficient. We thus need to study about such over-
head to better evaluate our scheme.

Two metrics are considered: the percentage of missed tags
over the tag set population M in the basic query round and the
percentage of queries in the error compensation round over the
total number of queries. We evaluate the PHY-Tree algorithm
on M tags with randomly generated unique 15-bit IDs, where
M varies from 26 to 212. Figure 9 plots the result.

In Figure 9(a), we find that for all M values, the average
percentage of missed tags is ≤ 2.2%. In Figure 9(b), we find
the percentage of queries in the compensation round is ≤ 4%
when M > 8. Both figures demonstrate the small overhead
and high efficiency of our error compensation scheme.

2) Vertical Information: Next we study the accuracy of
obtained vertical information. As discussed before, we only
need to infer up to 8 tag replies with reasonable accuracy and
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Fig. 12. Performance of the resonant state detection algorithm in obtaining horizontal information when k varies in a wide range and c is fixed to be optimal.

for k > 8, we only need to judge if k̂ > 8. We adopt the
non parametric model and train the range for each k ∈ [1, 8].
The training set contains 100 randomly generated traces and
the testing set contains another 100 newly generated traces, for
each k. Each tag replies with 100-bit RN sequence. In both the
training and testing sets, we create 9-tag collision traces for
k > 8, which is the most challenging scenario for our EA-k
model since EA increases over k. We compare the estimation
k̂ with the ground truth k and compute the ratio of the number
of correctly inferred traces over the overall number of traces as
the accuracy. Figure 11(a) plots the result. It is observed from
Figure 11(a) that our EA model achiev-es ≈ 80% accuracy
on average. The corresponding accuracy is somehow low for
certain k value like 2, 6, 8. This is because of overlapping
ranges incurred in the training test: the upper bound of the
range for k is larger than the lower bound of the range for
k + 1. To alleviate this issue, we can set the middle of the
overlapping range as the common value for the upper bound
of k and lower bound of k + 1.

In Figure 11(b), we compare the accuracy between EA-k
model and the SSDA algorithm in [10], which can estimate
up to 4 colliding tags. We implement SSDA using the original
settings in [10] and set the k range to [1, 4] for fair comparison.
We observe from Figure 11(b) that SSDA achieves higher
accuracy (≈ 90%) than our EA-k model does. Actually we
can combine both methods for better accuracy. Specifically,
we can use both methods to judge whether both estimation
results for k are below 4. If it is so, we apply SSDA for better
accuracy; otherwise we apply EA model for better scalability.

B. Comparison with Existing Identification Schemes

In this subsection, we compare PHY-Tree with three existing
tree-based identification works: QT [13], STT [16] and TH
[21]. Similar to [21], we adopt the average number of queries
(NoQ) as the performance metric, which is defined as the ratio
of total number of reader queries over tag set population M .
We also consider three types of tag ID distribution, namely
uniform, block and random (described in Section II-C). In
block distribution we first set the block size b to 10. Tag ID is
of 15 bits and M varies from 2 to 212. We plot the comparison
results under three ID distributions in Figure 13.

Our observations in Figure 13 are as follows. First, PHY-
Tree consumes the least amount of queries among all schemes
under three ID distributions. In the random ID distribution,
which represents the most typical case in real world scenarios,

the average number of queries for PHY-Tree is around 1 and
thus reduces the number of queries of TH (which is the most
efficient scheme among existing ones) by 1.79×. This gain
is quite promising: for any tag set with large cardinality,
our PHY-Tree is 1.79× more time-efficient than TH, the
tree hopping algorithm with accurate cardinality as the input.
Second, existing schemes take more queries to handle non
uniform distributions, especially the random distribution. Our
PHY-Tree can always utilize partial physical layer information
to enhance identification performance and outperform all these
works in any kind of tag ID distributions.

Among three types of tag ID distribution, block distribution
lies between in terms of ID continuity, depending on the block
size b. Random and uniform distribution can be regarded as a
block distribution with b = 1 and b ≈M respectively.

VIII. RELATED WORK

Many research works suggest fast RFID identification
schemes. In the ALOHA [30] scheme, tags reply in random
slots and only singleton slots can be identified. Their perfor-
mances maximize when the issued frame size is optimized.
Tree-based schemes [4, 5, 13, 14, 16, 21] aim to reduce the
number of collisions through reader-tag interactions. Hybrid
approaches [17] combine both for identification purpose. Some
other works [33–35] study the identification problems in
dynamic RFID systems. Different from these works, we utilize
physical layer information from tag replies to improve the
identification efficiency.

Collision recovery methods aim to decode collisions of
multiple tags. Buzz [24] assumes bit-level synchronization
among responding tags and decodes the aggregated rateless
codes of multiple tags. [2, 22] analyze the constellation map
and separate 2 tags. BiGroup [15] decodes up to 5-tag reply
with reasonable accuracy by extracting temporal-spatial fea-
tures from the received signal. Laissez-Faire [11] detects signal
edges and separates signal edges of multiple tags and thereby
decodes tag collisions. Laissez-Faire, however, requires the
tags to transmit with assigned initial offsets and bit durations.
Unlike those works, we focus on improving the overall query
process to identify all tags with minimum number of queries.

Existing works [10, 28] have explored how to utilize phys-
ical layer information to support other operations. PLACE
[10] counts the number of clusters in contellation map to
enhance RFID cardinality estimation. Tagoram [28] utilizes
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Fig. 13. Performance comparison between several schemes under three types of tag ID distribution.

phase information from RFID tags and tracks the labelled
items.

IX. CONCLUSION

Traditional tree-based RFID identification methods are on-
ly MAC-layer solutions and perform poorly when the tag ID
distribution is random. We propose a novel tree-based RFID
identification scheme that utilizes physical layer information
to improve the identification performance. Given the current
queried tree node, PHY-Tree can skip its children nodes in
either left or right branch by opportunistically detecting reso-
nant states; meanwhile, it also estimates how many tags collide
together and skips its children nodes in the same layers. By
accumulating both information along the whole identification
process, PHY-Tree significantly outperforms previous MAC
layer tree-based schemes.
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