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Abstract—By hiding messages inside existing network proto-
cols, anti-censorship tools could empower censored users to visit
blocked websites. However, existing solutions generally suffer
from two limitations. First, they usually need the support of
ISP or the deployment of many customized hosts to conceal the
communication between censored users and blocked websites.
Second, their manipulations of normal network traffic may
result in detectable features, which could be captured by the
censorship system. In this paper, to tackle these limitations, we
propose a novel framework that exploits the publicly available
automation services and the plenty of web services and contents
to circumvent web censorship, and realize it in a practical
tool named AutoFlowLeaker. Moreover, we conduct extensive
experiments to evaluate AutoFlowLeaker, and the results show
that it has promising performance and can effectively evade real-
world web censorship.

I. INTRODUCTION

Internet censorship exists almost everywhere [1], and the
range of blocking or filtering can vary from an institutional
level to a centralized national level [2]. A recent report shows
that 34 out of 65 countries participating in the survey has
intensified Internet censorship last year [3]. On the other hand,
many anti-censorship tools have been proposed to circumvent
Internet censorship [4]–[15]. These tools usually involve a
helper outside the censored network to assist the censored
users to access blocked resources (e.g., websites).

Existing anti-censorship solutions generally suffer from two
limitations. First, they usually need the support of ISP or the
deployment of many nodes to conceal the direct communica-
tion between users and the blocked websites. For instance, Tor
[16], a well-known anonymity network that has been widely
used to evade censorship, and Lantern [17] have to deploy
many nodes around the world. As another example, Telex [7]
and TapDance [8] need the support from friendly ISP routers
to the network covert channel through HTTPS connections.

Second, although recent studies propose leveraging publicly
available services (e.g., Skype [9]–[11], [15], on-line games
[13]–[15], cloud-based storage services [12], [15]) to transfer
messages for mitigating the deployment issue, their manipu-
lations of normal network traffic may result in detectable fea-
tures, which could be captured by the censorship system. Note
that such detectable features enable the censor to reasonably
confirm that a censored user intentionally accesses blocked
information. In other words, these tools cannot provide users
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enough deniability. For instance, SkypeMorph [9] and Free-
Wave [10] suffer from eavesdropping attack [11], while the
Direct-Sequence Spread Spectrum (DSSS) modulation used by
SkypeLine [11] is detectable through a SVM classifier [18].
Exploiting on-line games, Castle [14] encodes secret data into
in-game commands (e.g., move or set-rally-point commands)
through a combination approach and uses a desktop automa-
tion tool to execute the commands. Nonetheless, this approach
may send unreasonable commands because it enumerates all
possible commands, thus leading to observable anomalies.
As another example, CAMOUFLAGE [15] uses the base64
encoding scheme to convert the binary secret data to text, and
then puts it in email or file sharing services. However, pure
base64 contents in email or file sharing services are unusual,
which could be detected by the censorship system.

To address these two challenging issues (i.e., deployment
and stealthiness), we propose a novel framework and develop
a practical tool, named AutoFlowLeaker, which exploits the
publicly available automation services (e.g., IFTTT [19], Flow
[20], Zapier [21], Apiant [22], etc.) and plenty of existing
web services and contents to deliver messages and circum-
vent web censorship. The automation service allows users to
define conditions for a web service (a.k.a. trigger channel)
and specify certain actions in another web service (a.k.a.
action channel). If the conditions are satisfied, the automation
service will automatically execute the specified actions. For
example, a user can define a condition for twitter like “a
new message about SRDS” and specify an action for Gmail
like “send an email containing the new twitter message to
the Chair”. Therefore, by exploiting automation services and
customizing the condition and the action, we can not only let
the information (e.g., messages) be automatically transferred
from one web service to another, but also control when and
how the information will be transferred.

Our framework, as shown in Fig.1, tackles the deployment
issue by employing the automation services to connect the web
services accessible to the censored user and the web services
selected by the helper, who will forward the requests from
the censored users to the blocked websites and send back
the responses. In other words, neither the censored user nor
the helper need to deploy any customized nodes. Note that
the automation services have gained the popularity due to
their capability of automating tedious tasks and connecting
numerous web services and IoT devices, thus making the
censor’s economic and social cost of blocking such services
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Fig. 1. The censored user first encodes the encrypted messages into web items and puts them on the web services acceptable to the censor. The automation
service automatically transmits such items to the helper’s web services. After that, the helper recovers the original messages by decoding the items and
decrypting the encrypted data. The helper can send the responses from blocked websites to the censored user using the same process.

very high. For example, according to the review of IFTTT
in 2016 [23], there are 15 million Applets, which denote the
chains of conditions and actions, running on IFTTT. Moreover,
more than 326K IoT devices are connected to IFTTT.

To handle the stealthiness issue, our framework adopts
two new approaches. First, we propose a novel algorithm (in
Section III-C) to convert the encrypted data from censored
users or the blocked websites into items acceptable to the
censor in the public pool, as shown in Fig.1. For example, the
item could be a published research paper or a weather report
from a weather website. We use such real items instead of self-
generated texts because they can evade NLP-based censorship
techniques. Moreover, there are enormous real items with a
huge variety, making it difficult, if not impossible, for the
censorship system to block all of them. The censored user’
AutoFlowLeaker will send the items to the web services
accessible to the censored user, and the automation services
will automatically forward them to the web services selected
by the helper. The helper’s AutoFlowLeaker will recover the
encrypted data from the items, and then decrypt it to get the
messages from the censored user. Similarly, the helper can
first encrypt the response from blocked websites, and then
use AutoFlowLeaker to encode the encrypted data into items
in the public pool. Once the items are delivered to the web
services accessible to the censored users through the automa-
tion services, the censored users can use AutoFlowLeaker to
recover the responses. Second, to raise the bar for detecting
and tracing the communication between the censor user and
the helper, our framework carefully organizes the automation
services and adjusts the web services used by the censored user
and the helper (in Section III-A) and dynamically changes the
sources of items (in Section III-B).

Overall, we make the following major contributions:
• To our best knowledge, we propose the first framework

that exploits automation services to circumvent web cen-
sorship. By exploiting plenty of web services and web
contents, our framework does not need to deploy any
customized host. Moreover, it provides strong stealthiness

by adopting our new algorithms to convert binary data
into texts that consist of legitimate web items, carefully
organizing automation services, and dynamically chang-
ing the web services and the sources of web items.

• We develop a practical tool, named AutoFlowLeaker,
to realize the new framework by leveraging existing
automation services, web services and items.

• We conduct extensive experiments to evaluate Aut-
oFlowLeaker. The experimental result shows that it has
promising performance and can effectively evade real-
world web censorship.

Roadmap. Section II introduces automation services and the
threat model. Section III details our framework and Section
IV describes the implementation of AutoFlowLeaker. Section
V evaluates AutoFlowLeaker. After introducing related work
in Section VI, we wrap up with discussion in Section VII.

II. BACKGROUND AND THREAT MODEL

A. Automation Flow

An automation flow consists of an automation service and
a pair of channels, including a trigger channel and an action
channel, which can be any web service supported by the
automation service. A user can define the condition on the
trigger channel and specify the action on the action channel.
Once the condition is satisfied, the automation service will
execute the corresponding action.

Client 
Application

Compression

Decompression

Encryption

Decryption

Encoding

Decoding

Public Pool
Channel 
Service

Automation 
Service

Application Layer Data Layer Transmission Layer

User

Fig. 2. The procedure of processing outgoing and incoming data.

B. Threat Model

As shown in Fig. 1, the censored user wants to access the
websites blocked by the censor, but can only visit websites
acceptable to the censor. Although the helper will assist



the censored user to visit the blocked websites, they cannot
establish direct communication connection due to the censor.
The censor can monitor, block, or delay the censored user’s
traffic. Moreover, the censor is sophisticated. Specifically, it
can analyze all the traffic crossing the border of the censor net-
work to detect and prohibit the communication via anonymity
networks such as Tor or encrypted proxies like SSH proxies.
Also, it can inspect the traffic to detect covert communication
activities [2], [24], [25]. We assume that the censored user
and the helper share the secret key and other parameters with
minimal out-of-band communication.

III. DESIGN

Fig. 2 shows AutoFlowLeaker’s procedure of processing
outgoing and incoming data. Outgoing data from the appli-
cation layer is redirected to AutoFlowLeaker that consists of
data layer (in Section III-B) and transmission layer (in Section
III-A). For outgoing data, the data layer first compresses and
encrypts it, and then converts it into web items (e.g., URL) in
the public pool through encoding. These items are extracted
from different sources. Then, the transmission layer combines
the items to form reasonable texts and sends these texts to
the selected web services, which will be forwarded to other
web services by the automation services. For incoming data,
the transmission layer first collects the texts from the selected
web services, recovers them to items, and then forwards items
to the data layer. It will convert them into binary data through
decoding, and apply decryption and decompression to get the
original information before sending it to the upper layer.

A. Transmission Layer

The transmission layer uses one or more automation flows
to deliver the selected items from the trigger channels to the
action channels. We first create a set of automation flows, and
then combine them to form multi-level automation flows. We
define two basic types of multi-level automation flows: (1)
a serial automation flow (Fig. 3a); (2) a parallel automation
flow (Fig. 3b). Users can further combine them together to
form more complex multi-level automation flows.

The core of a serial automation flow is a chain of automation
services (i.e., Zapier, IFTTT in Fig. 3a). For example, the
user can connect two automation services with the same
channel, Facebook, so that after Zapier transmits the data from
Ghost to Facebook, IFTTT forwards the data from Facebook
to Wordpress. The serial automation flow can increase the
difficulties of tracing the information because it takes much
more efforts for the censor to compromise and control all
automation services and web services used in the flow.

Besides raising the bar of tracing the information, the par-
allel automation flow can also increase the data transmission
efficiency because it leverages multiple automation services to
deliver data. Note that a parallel automation flow is built on the
same pair of channels (e.g., Evernote and Github in Fig. 3b)
but connects two channels with different automation services.
Moreover, the user should set different trigger conditions on
each automation service to avoid duplicate transmission.

Algorithm 1: The procedure of PickServices.

Input: n, h
Output: indexes[]

1 count←∑n
i=1

(
n
i

)
= 2n − 1;

2 r ← h mod count; i← 1;

3 while i ≤ n and r >=
(
n
i

)
do

4 r ← r −
(
n
i

)
;

5 i← i+ 1;

6 end
7 indexes[] = EncodeCombination(n, i, r);
8 return indexes[];

To enhance the stealthiness by dynamically changing the
channel services, we design a mechanism that uses the value
hi from a hash chain to determine the web services used in
the ith round of communication.

hi = H(hi−1), h0 = key, i ≥ 1 (1)
Let n be the number of channel services, each of

which has an index from 0 to n − 1. Given hi, we use
PickServices (Algorithm 1) to turn hi into an array
channels, which represents a combination of channel ser-
vices’ indexes (i.e., channels[] = PickServices(n, hi)).
Then, we use the channel services according to the indexes
stored in channels. For example, assuming n = 3 and
hi = 9, we have

∑3
r=1

(
3
r

)
= 7 different combinations. Using

PickServices, we obtain channels = {2} and hence we
use the third channel service to send data.

B. Data Layer

The data layer protects and hides the original secret mes-
sages so that the censor can neither recover the messages nor
determine the existence of communication. Fig. 2 shows three
essential pairs of components: (1) compression/decompression,
(2) encryption/decryption, and (3) encoding/decoding.
Compression/Decompression. It supports more efficient trans-
mission. Any compression/decompression algorithms (e.g., 7z,
zip) can be applied in our framework. The compression and
decompression are defined as follows:

Dcompressed = Compress(Dapp),

Dapp = Decompress(Dcompressed),
(2)

where Dapp is from or to the application layer.
Encryption/Decryption. It enables confidentiality and integrity
by using the key pre-shared between the censored user and the
helper to encrypt or decrypt the original secret messages.

Dencrypted = Encryptkey(Dcompressed),

Dcompressed = Decryptkey(Dencrypted),
(3)

where Dencrypted is the encrypted data. Without knowing
key, the censor cannot decrypt Dencrypted even if the censor
collects all the data sent to/from the censored user.
Encoding/Decoding. It enhances the stealthiness and provides
the censored user deniability by converting Dencrypted to
legitimate web items so that the censor cannot determine the
existence of communication.

Dtext[] = Encode(Dencrypted, pool, hi),

dataencrypted = Decode(Dtext[], pool, hi),
(4)
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Fig. 3. Two kinds of multi-level automation flow.

where pool contains web items and hi denotes a hash value
used to dynamically change the sources of web items.

The encoding process (Fig. 4) consists of two steps. In the
first step, we split Dencrypted into chunks, each of which will
be attached a 48-bit header to form a message. The header
records the total length of Dencrypted, the size of the chunk,
and the data offset of current chunk in the original data.

In the second step, we use the new K-property combination
based coding mechanism (in Section III-C) to convert the
binary messages into web items acceptable to the censor. For
example, users can choose the web pages that contain the list
of accepted papers and let each paper be the web item. Each
item will have K properties (e.g., the conference of the paper,
the publication year of the paper) so that we can divide them
into different groups according to the properties.

Dencrypted
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Dtext Dtext Dtext……

!"Combination 

coding
Header

messages

len size off

#"Encapsulating 
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Fig. 4. The encoding process.

Similarly, to enhance the stealthiness, we use
PickServices (Algorithm 1) to pick different sources of
web items. Each source has an index from 0 to m−1, where m
is the number of sources. That is, we obtain the combination of
the indexes of sources: sources = PickServices(m,hi),
and then choose the corresponding sources.

C. K-Property Combination based Coding Scheme

We propose a novel K-property combination based coding
scheme to construct the mapping between a binary message
and the arrangement of web items. For the ease of explanation,
let msg be the integer representation of the binary message
and A denote the arrangement of the web items selected from
the public pool. Moreover, we use item to refer to a selected
web item and batch to indicate a container that accommodates
multiple items. For example, the accepted papers of SRDS
constitute a batch. An item or batch is regarded as distin-
guishable if it has a unique “ID”. For example, the DOI can
be used to distinguish a group of papers. Otherwise, the item
or the batch is indistinguishable.

K-property combination is based on K counting problems,
each of which is defined as grouping I items to B batches
(B ∈ [1, I]). For example, given a database of academic

papers, grouping three papers among all the papers into two
conferences according to one property (e.g., conference name)
is one counting problem. We perform such grouping task K
times according to K different properties. As each counting
problem has different arrangements, we can calculate the total
number of arrangements, denoted as C. By designing an
algorithm that output each grouping arrangement in a fixed
order, we can obtain a mapping between the arrangement and
the index that is in the range of [0, C) (i.e., msg ∈ [0, C)).
The new algorithms are based on the combinatorial framework
[26], [27]. The major difference is that for the new application
scenario our new algorithms leverage the multiplication princi-
ple to significantly increase the total number of arrangements.

Definition 1 (Cardinality of a set). Let S be a set. If there
are exactly n distinct elements in S where n is a non-negative
integer, S is a finite set and n is the cardinality of S. The
cardinality of S is denoted by |S|. [28]

Definition 2 (Bijection and cardinality). Two sets A and B
have the same cardinality, |A| = |B|, iff there exists a bijection
from A to B. [28]

Lemmas 1-2 introduce two counting problems and the
solutions, which are motivated by [26] and [29]. The proofs of
Lemmas 1-2 and Theorem 1-2 can be found in the full version
of this paper [30].

Lemma 1. Given I distinguishable items and B (B ∈ [1, I])
distinguishable batches, if the order of items and the order
of batches are considered, the number of the arrangements,
referred as Clist, for grouping I items to B batches is:

Clist(I) =

I∑
B=1

B!I!
( I − 1

B − 1

)
(5)

Lemma 2. Given I distinguishable items and B distinguish-
able batches, if the order of items and the order of batches are
not considered, the total number of arrangements, referred as
Cset, for grouping I items to B batches is:

Cset(I) =
I∑

B=1

B!S(I, B), (6)

where S(I,B) denotes the number of all partitions of
{1, 2, ..., I} into B non-empty sets [31].

Based on Lemma 1-2, we propose and prove Theorem 1 that
gives the counting equation for the K-property combination.

Theorem 1. Given I distinguishable items, if the order of
items and the order of the batches are only considered once,



the number of the arrangements for grouping the items to
distinguishable batches for K times is:

T (I,K) =
(K
1

)
Clist(I)Cset(I)

K−1 = KClist(I)Cset(I)
K−1 (7)
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Fig. 5. The capacity of T (I,K) with the change of I and K.

Since Theorem 1 reveals that there are T (I,K) different
arrangements for the items in the public pool, they can
represent no more than blog2 T (I,K)c bits of data, which
is referred as the capacity (i.e., the number of bits of binary
data hidden in one item). The total number of the arrangements
(i.e., C) indicates the size of the solution space of the encoding
function f (a bijection), and all the possible values of msg
constitute the domain of the function. To prove the existence
of such a bijection, we propose and prove Theorem 2, which
also reveals the range of msg.

Theorem 2. For any counting problem, let C be the total
number of arrangements, there exists a bijection f : [0, C)→
{all the arrangements}.

According to Theorem 2, there exist at least one bijection
f from X to Y , where X is the integer range [0, T (I,K))
(i.e., msg ∈ [0, C)), and Y is the set of all the arrangements.
We name this bijection f as the encoding function, while its
inverse function f−1 as the decoding function. The encoding
and decoding algorithms are described in the next subsection.

D. Encoding and Decoding Algorithms

Last subsection proves that there exists a bijection between
the integer set and the set of the arrangements. Although the
one-to-one mapping rules can be saved in a codebook for
conversion, it is not practical to keep a large codebook due

Algorithm 2: The procedure of SeparateValue.

Input: I, K, msg
Output: r[]

1 count← T (I,K)/K; i← K − 1;
2 r[K]← bmsg/countc; msg ← msg mod count;
3 while i ≥ 0 do
4 if i = r[K] then
5 count← count/A1(I);
6 else
7 count← count/A2(I);
8 end
9 r[i]← bmsg/countc; msg ← msg mod count;

10 i ← i− 1;

11 end
12 return r[];

to security concerns. Therefore, we design new encoding and
decoding algorithms that can perform the bijective function
and its inverse function without the need of a codebook.

Fig. 6a shows the encoding procedure that takes in I , K
and msg (msg ∈ [0, 2blog2 T (I,K)c) ⊆ [0, T (I,K))), and in-
volves four external functions: SeparateValue (Algorithm
2), Encode1 (Algorithm 3), Encode2 (Algorithm 4) and
CombineArrangement.

Given I , K, and msg, we can calculate an non-negative
integer array r of size K + 1. This process is referred to
CombineValue (i.e., msg = CombineValue(I, r)), and
its inverse process is SeperateValue (Algorithm 2):

msg =

r[K]∑
i=0

r[i]Cset(I)
i + Clist(I)

K∑
i=r[K]+1

r[i]Cset(I)
i−1, (8)

where r satisfies the following three conditions: (1) r[K] ∈
[0,K); (2) for any given integer i ∈ [0, r[K]) ∩ (r[K],K),
r[i] ∈ [0, Cset(I)); (3) r[r[K]] ∈ [0, Clist(I)).

According to Theorem 2, we can derive two bijective
functions for the counting problems described in Lemma 1-
2, named as Encode1 and Encode2, respectively. Since
for any i ∈ [0,K) r[i] is in the domain of Encode1 or
Encode2, we use Encode1 and Encode2 to encode each
r[i], where i ∈ [0,K). After that, we get an array A of size
K, each element of which is the encoded arrangement of the
corresponding r[i]: (1) a[r[K]] = Encode1(I, r[r[K]]); (2)
a[i] = Encode2(I, r[i]), i ∈ [0, r[K])∩ (r[K],K). To obtain
the final arrangement A, we use CombineArrangement to
combine all these arrangements together.

Decoding is the inverse process of encoding (Fig. 6b). It also
relies on four external functions: SeparateArrangement,
Decode1 (Algorithm 5), Decode2 (Algorithm 6) and
CombineValue. They are inverse functions of four external
functions in encoding procedure. SeparateArrangement
first extracts K sub-arrangements (i.e., a) and rK (i.e., r[K] =
rK) from the composite arrangement A. Then, Decode1
and Decode2 convert them to integer numbers stored in the
integer array of r: (1) r[r[K]] = Decode1(a[r[K]]); (2)
r[i] = Decode2(a[i]), i ∈ [0, r[K]) ∩ (r[K],K). To get the
original input msg, we perform function CombineValue
that uses Eq. (8) to calculate msg.

Algorithms 3-6 involve other external functions since the
counting problems in Lemma 1 and Lemma 2 can be divided
into basic counting problems (e.g., permutation, combination,
and set partition), and we use the existing algorithms for them.
Besides, function len() returns the length of the input array.
Permutation. EncodePermutation(X , R) and
DecodePermutation(X , perm) are the encoding
and decoding functions for the permutation problem X!.
perm = [p1, ..., pX ] is the permutation of X elements. We
employ the corresponding algorithms in [32].
Combination. EncodeCombination (X , Y , R) and
DecodeCombination(X , Y , comb) are the encoding and
decoding functions for the combination problem

(
X
Y

)
, where

comb = [c1, ..., cY ] is an arrangement of choosing Y elements
from X available elements. We adopt the corresponding algo-
rithms (algorithm 2.7 and 2.8) in [31].
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Fig. 6. Encoding and decoding procedures of AutoFlowLeaker

Algorithm 3: The procedure of Encode1.

Input: I, R
Output: arr

1 calculate the number of batches, denoted as B;
2 split integer R into three parts: r[0], r[1], r[2];
3 items← EncodePermutation(I, r[0]);
4 batches← EncodePermutation(B, r[1]);
5 comb← EncodeCombination(I − 1, B − 1, r[2]);
6 return (items, batches, comb);

Algorithm 4: The procedure of Encode2.

Input: I, R
Output: arr

1 calculate the number of batches, denoted as B;
2 split integer R into two parts: r[0], r[1];
3 batches← EncodePermutation(B, r[0]);
4 setp← EncodeSetPartition(I,B, r[1]);
5 arr ← (batches, setp)
6 return arr;

Algorithm 5: The procedure of Decode1.

Input: arr
Output: R

1 extract permutation of items, permutation of
batches and combination of items and batches
from arr;

2 I ← len(items); B ← len(batches);
3 r[0]← DecodePermutation(I, items);
4 r[1]← DecodePermutation(B, batches);
5 r[2]← DecodeCombination(I − 1, B − 1, comb);
6 R← r[0] + r[1]I! + r[2]I!B!;
7 return R;

Algorithm 6: The procedure of Decode2.

Input: arr
Output: R

1 extract permutation of batches and set partition
of items and batches from arr;

2 I ← the number of distinct elements among all
the subsets of setp;

3 B ← len(batches);
4 r[0]← DecodePermutation(B, batches);
5 r[1]← DecodeSetPartition(I,B, comb);
6 R← r[0] + r[1]B!;
7 return R;

Set partition. EncodeSetPartition(X , Y , R) and
DecodeSetPartition(X , Y , setp) are the encoding and
decoding functions for the set partition problem S(X,Y ),
where setp = [s1, ..., sY ] is a division of X items in-
to Y batches. We use the UnrankKSetPartition and
RankKSetPartition functions in [33].

E. Example of Encoding and Decoding

We use an example of selecting academic papers to illustrate
the encoding and decoding procedures of the K-property
combination. Let a piece of paper information include title,
authors, and abstract. The public pool contains the paper
information of all papers accepted by IEEE S&P, ACM CCS,
and NDSS from 2014 to 2016. Let K = 2 and the two
properties selected are “conference name” and “publication
year”. The conference name follows the lexicographical order
while the publication year is in chronological order. For
selected pieces of paper information, they are sorted by their
titles in the lexicographical order.

Given I = 3 and K = 2, we have T (3, 2) = 1716 different
arrangements, which can encode blog21716c = 10 bits of data.

To encode a 10-bit message ”0011101110” (i.e., 238), we first
use SeparateValue to divide this message into K+1 = 3
parts, and obtain an integer array r = [40, 3, 0]. The meaning
of this array is:

r[0] + r[1]Clist(3) + r[2]Clist(3)Cset(3) = 40 + 3× 66 + 0 = 238

Since rK = r[2] = 0, when grouping the paper
information to conferences, we should consider the order
of paper information and conference names according
to Lemma 1. Thus, for the property conference name,
we use Encode1 to encode r[0] = 40. That is, a[0] =
Encode1(3, r[0]) = ((P.0, P.2, P.1), (F.2, F.0, F.1), (0, 1)).
The order of items (i.e., pieces of paper information) and
batches (i.e., conference names) are {Paper 0, Paper 2,
Paper 1} and {Conference 2, Conference 0, Conference
1}, respectively. The arrangement of pieces of paper
information and conferences is {(F.2, P.0), (F.0, P.2),
(F.1, P.1)} (F is short for conference name and P for paper
information). For the property publication year, we obtain
a[1] = Encode2(3, r[1]) = ((Y.1, Y.0), ((P.0, P.1), (P.2))).
The arrangement is {(Y.1, P.0), (Y.1, P.1), (Y.0, P.2)}



(Y means the publication year). Then, the final
arrangement is A = CombineArrangement(a) =
(F.2, Y.1, P.0), (F.0, Y.0, P.2), (F.1, Y.1, P.1) (i.e., Paper 0
in Conference 2, Year 1, Paper 2 in Conference 0, Year 0,
and Paper 1 in Conference 1, Year 1).

TABLE I
9 CHANNEL SERVICES USED BY AutoFlowLeaker.

Service Name API Read Write Delete
Dropbox Python SDK 3 3 3

Email SMTP requests 3 3 3
Evernote Python SDK 3 3 3
Facebook Python SDK 3 3 3

Ghost Web requests 3 3 3
Github Python SDK 3 3 7
Twitter Python SDK 3 3 3

Wordpress REST API 3 3 3
Yinxiang Biji Python SDK 3 3 3

IV. IMPLEMENTATION

Following the system design, we implement AutoFlowLeak-
er using Python in Ubuntu 14.04, and practically it can work
on any systems that support Python.
Transmission layer. Table I lists the channel services integrat-
ed in AutoFlowLeaker. Since most of these channel services
offer SDK, we use them directly. For the services (e.g., Ghost,
Wordpress) without SDKs, we create HTTP requests using the
library httplib2 to interact with them. For all nine services,
we implement read, write and delete operations, except for
Github that supports closing an issue rather than deleting it.
Thus, we implement the close operation for Github instead
of the delete operation. To enable the transmission layer, we
configure automation flows on IFTTT and Zapier.
Data layer. For the compression/decompression component,
we use the python package libarchive. To encrypt or decrypt
data, we use AES in the package PyCrypto. Moreover, we im-
plement the combination-based coding scheme by ourselves.

V. EVALUATION

We conduct extensive experiments to evaluate Aut-
oFlowLeaker and answer five research questions listed in the
subsections below. RQ1∼RQ3 are related to the performance.
RQ4 studies the effectiveness of AutoFlowLeaker and RQ5
evaluates the stealthiness.

A. RQ1: What is the performance of the channel services
and the automation services?
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Fig. 7. Average read/write/delete operation time of each channel service.

1) Channel Services: The operation response time is an
important criterion to select suitable channel services in the
automation flow. We measure the response time of three basic
operations of channel services, including read, write, and
delete. Each operation response time is defined as the time
interval between the time of sending the request for certain
operation and the time of receiving the first response packet
to the request. Table I enumerates the channel services under
investigation, which are used pretty frequently in daily life
and have a huge number of users. In each experiment, we
use the tool node-lipsum to generate a 4096-bytes (4 KB)
text file, and then send the content of this file through a trigger
channel. AutoFlowLeaker will make another request to get that
post. Finally, we delete that post. For each service, we repeat
the experiment 100 times.

Fig. 7 presents the average values and the standard devia-
tions of the operation response time of each channel service.
Apart from Email (we will discuss Email as a trigger service in
Section V-B), Yinxiang Biji has the best overall performance.
Wordpress and Facebook take lots of time on write and delete
operations. Since there is a large time gap between the ACK
of the request and the first data packet of the response, the
low performance may be due to the overhead of the write and
delete operations on the server side.
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Fig. 8. Average polling period.

2) Automation Service: The automation service checks the
data in the trigger channel periodically with a fixed polling
period. We evaluate and compare the polling period of four
automation services, including IFTTT, Zapier, Flow and Api-
ant. For the ease of direct comparison, we create the same
automation flows for each automation service. Fig. 8 shows the
results, which are in consistent with the official documentation
of each automation service. For IFTTT, the average polling
period is around 15 minutes. Note that the official document
of Zapier states that the polling period is either 5 minutes or
15 minutes, depending on the pricing plan of the account. In
our experiment, we set the polling period as 5 minutes.

B. RQ2: How much time delay is introduced by the automa-
tion service?

The automation service’s polling mechanism introduces ex-
tra delay, defined as the interval between the time of publishing
information over the trigger channel service and the time of
publishing information over the action channel. We use the
same automation flows as in the previous experiment. Fig. 9
shows the time delay. We can see that it is approximately equal



to the polling period. Apiant and Zapier are more stable than
IFTTT and Flowd due to their smaller deviation.

IFTTT Flow Zapier Apiant
0

200

400

600

800

1000

1200

Service Name

T
im

e
 D

e
la

y
 (

s
e

c
o

n
d

s
)

 

 
Ghost to Wordpress
Wordpress to Dropbox
Dropbox to Wordpress

Fig. 9. Average time delay.

For IFTTT, Zapier, and Apiant, users can manually execute
a task (i.e., the automation flow) before the automation service
polls the task, whereas Flow does not support this feature.
Besides, there is a special kind of trigger named instant trigger,
which pushes the data to the automation service directly.
For example, Email and Short Messaging Service (SMS) can
be integrated as the instant trigger services. Therefore, for
IFTTT, we measure the time delay of both manually executed
automation flows and instant trigger-based automation flows.
Fig. 10 presents the results. We see that the average time delay
of normal automation flow on IFTTT is about 900 seconds (15
minutes). When applying manual execution (i.e., force check),
the time delay is reduced to roughly 300 seconds (5 minutes).
Furthermore, using instant service (e.g., Email) as the trigger
service largely lowers the time delay to about 5 seconds.
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Fig. 10. Average time delay of different automation flows on IFTTT.

C. RQ3: Does the multi-level automation flow highly in-
crease the time delay?

Deploying multiple automation services can raise the bar
for tracing secret messages, and we design two basic types
of multi-level automation flow, as shown in Fig. 3. Here, we
measure the time delay of eight multi-level automation flows.

For assessing the serial automation flow illustrated in Fig.
3a, we first connect the trigger channel service (i.e., Ghost
or Evernote) and Facebook with Zapier, and then connect
Facebook and the action channel service (i.e., Wordpress or
Github) with IFTTT. In this case, Zapier forwards the data
we publish on the trigger channel to Facebook, and IFTTT

transmits the data on Facebook to the action channel. For
evaluating the parallel automation flow shown in Fig. 3b), we
create different automation flows, each of which is connected
with the same trigger channel and action channel. For example,
in Fig. 3b, we connect Evernote with Zapier and IFTTT, but
set different trigger conditions so that Zapier and IFTTT will
not interfere with each other. Fig. 11b demonstrates the results
for serial automation flows and parallel automation flows. We
observe that the multi-level automation flow does not further
increase the time delay.

D. RQ4: Can AutoFlowLeaker enable the censored users to
visit the blocked website?

To evaluate the functionality of AutoFlowLeaker, in a region
where Twitter is blocked, we use it to retrieve the latest
tweets. Except for Twitter, AutoFlowLeaker could also access
other blocked websites. For comparison, we create two groups
of automation flows on IFTTT, each of which supports bi-
directional communication. The first group builds on the
instant trigger channel, Email: (1) from Email (the censored
user’s web service) to Wordpress (the helper’s web service);
(2) from Email (the helper’s web service) to Github (the
censored user’s web service). The second group replaces Email
of the censored user with Ghost and replaces Email of the
helper with Evernote.

The censored user first sends a request to the helper (outside
the censored network). On receipt of a request, the helper
retrieves the latest three tweets through Twitter API. Then,
the helper encapsulates the tweet information, including the
content, user’s name, and the publish time of a tweet, to
a JSON object, serializes the object to a string, and sends
the string back to the censored user through AutoFlowLeaker.
After that, the censored user uses AutoFlowLeaker to recover
the JSON object. In this experiment, we can successfully
obtain the latest tweets. For the first group using Email, the
average time cost (i.e., the interval between the time of sending
the request and the time of receiving the JSON object) is
around 22.7 seconds; for the second group, it is 393 seconds.

E. RQ5: How is the stealthiness of AutoFlowLeaker?
To evaluate the stealthiness of AutoFlowLeaker, we first

build a one-class Support Vector Machine (SVM) classifier
to determine whether a sentence is in natural language (NL)
or not. The training set consists of 200K NL sentences crawled
from Wikipedia [34] and the Brown corpora [35]. Similar
to [36], for each sentence in the training set, we use the
lexicalized Stanford Parser to infer its score (the goodness of
parsed object) and its Part-of-Speech (POS) tags. Based on the
POS tags, we count the number of nouns, verbs, adjectives,
and adverbs (each normalized by the total number of words)
and the total number of words. We then form three testing
sets: (1) another 10K NL sentences from Wikipedia; (2) 10K
sentences from the generated paper abstract digests using K-
property combination; (3) 10K randomly generated sentences.

Fig. 12 presents the percentage of the sentences classified
as NL (i.e., NL accuracy) in each testing set. As excepted,
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Fig. 11. The left figure shows the time delay of basic automation flows; the right figure presents the time delay of multi-level automation flows that has the
same trigger and action channel as the left ones. As we can see, the multi-level automation flow does not further downgrade the performance.

the NL accuracy of the first testing set is very high ( around
97%) and that of the third testing set is very low (around 5%).
The NL accuracy of the second testing set is similar to that
of the first testing set. In other words, the sentences generated
by AutoFlowLeaker are similar to the real NL sentences and
therefore the users of AutoFlowLeaker could deny that they
are using AutoFlowLeaker for conveying stealth messages.
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Fig. 12. The percentage of sentences that classified as natural language.

VI. RELATED WORK

Existing anti-censorship solutions generally suffer from two
limitations (i.e., deployment and stealthiness). First, they usu-
ally need the support of ISP (e.g., Telex [7] and TapDance [8])
or the deployment of many nodes (e.g., Tor [4] and Lantern
[17]). In addition, solutions like Telex and TapDance may fail
to hide the flow features (e.g., packet sizes, timing), and thus
vulnerable to large-scale traffic analysis attacks [37]. Infranet
[5] and its successor (i.e., Facade [6]) send a special sequence
of HTTP requests and receive images carrying hidden mes-
sages. They require the participation of web servers and may
be vulnerable to stenographic stripping attacks [38].

Although recent studies leverage publicly available services
to mitigate the deployment issue, they suffer from the stealth-
iness problem because the detectable features will negatively
affect the censored user’s deniability. For example, a few
solutions [9], [10] exploit Skype to circumvent the censorship.
Particularly, SkypeMorph [9] mimics Skype call messages

by sending encrypted data through a traffic shaper to make
packet sizes and sending times similar to traffic from normal
Skype video calls. However, hiding data by imitation could be
easily detected [39]. Instead of mimicking an actual protocol,
FreeWave [10] runs the actual protocol. It modulates the
IP traffic into acoustic signals via a software modem and
then sends it through a VoIP session (e.g., Skype). However,
Geddes et al. [40] show that the audio signals of FreeWave
cause noticeable differences in the traffic pattern [40], [41].
Moreover, both SkypeMorph and FreeWave are vulnerable to
eavesdropping attacks [11] because, except the noise, no actual
human voice messages are exchanged. Thus, the censor can
easily spot SkypeMorph or FreeWave. Unlike SkypeMorph
and FreeWave, SkypeLine [11] embeds secret data in a rea-
sonable VoIP session using Direct-Sequence Spread Spectrum
(DSSS) modulation. However, DSSS can be detected with an
accuracy of 97.7% by Takahashi and Lee [18].

Several recent studies exploits online game platform to
evade the censorship. Rook [13] embeds secret data within
the mutable fields of video game network packets. It relies on
the Rook server operating on the game server, which may
cause deployment issue. Moreover, to identify the mutable
fields, Rook relies on the manual analysis of the game network
protocol and the correct implementation of at least part of the
protocol. Instead, Castle [14] encodes secret data into in-game
commands (e.g., move or set-rally-point commands). However,
it may send unreasonable commands because it enumerates all
possible commands, thus leading to observable anomalies.

Zarras [15] proposes CAMOUFLAGES, a plug-and-play ar-
chitecture that exploits the genuine services (e.g., email, VoIP,
game, file sharing) to evade the censorship. CAMOUFLAGES
assembles the secret messages with suitable headers, encrypts
them, and then forwards them to the helper through different
plugins (e.g., email plugin, VoIP plugin, game plugin). Un-
fortunately, it has already been shown that some services are
vulnerable to detection. Moreover, it uses the base64 encoding
scheme to convert the binary secret data to text and then
puts it in email or file sharing services. However, pure base64
contents in these services are unusual and thus suspicious.

CloudTransport [12] exploits the cloud-storage services [42]



as a rendezvous point to transfer secret data. However, if
the cloud-storage accounts are compromised, CloudTransport
cannot keep deniability because the censored user and the
helper use the same accounts. In AutoFlowLeaker, the cen-
sored user and the helper use different accounts “connected”
by the automation service. Even though all the services are
compromised, AutoFlowLeaker can still deny the involvement
in the covert communications due to our encoding scheme.
Moreover, a censor can employ website fingerprinting tech-
nologies to learn traffic patterns that emerge when the user
leverages CloudTransport to browse blocked destinations [43].

VII. CONCLUSION AND FUTURE WORK

To address current anti-censorship solutions’ limitations in
deployability and stealthiness, we proposed the first framework
that exploits automation services to circumvent web censor-
ship. This framework could be easily and widely deployed
given the popularity of automation services in daily life.
More importantly, it guarantees the stealthiness of message
transmissions by converting the encrypted (censored) data into
public web content acceptable to the censor. We implemented
the framework in AutoFlowLeaker and carefully evaluate it.
The results showed that, assisted by AutoFlowLeaker, one
can effectively evade real web censorship with promising
performance and plausible deniability for the communication
indistinguishable from natural languages. In future work, we
will design new mechanisms to handle the (rare) cases where
automation services and web services may not be reliable.
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