The following publication F. Li, J. Cao, X. Wang, Y. Sun, T. Pan and X. Liu, "Applying Buffer to SDN Switches: Benefits Analysis and Mechanism Design,"

This is the Pre-Published Version.

1

in IEEE Transactions on Cloud Computing, vol. 9, no. 1, pp. 54-65, 1 Jan.-March 2021 is available at https://doi.org/10.1109/TCC.2018.2846620.

Applying Buffer to SDN Switches :
Benefits Analysis and Mechanism Design

Fuliang Li, Member, IEEE, Jiannong Cao, Fellow, IEEE
Xingwei Wang, Yinchu Sun, Tian Pan, and Xuefeng Liu

Abstract—Software-Defined-Networking (SDN) is progressively
dominating the dynamic management for timely network trouble
shooting and fine grained traffic scheduling in data center net-
works. One critical issue in SDN is to reduce the communication
overhead between the switches and the controller. Such overhead
is mainly caused by handling miss-match packets, because for
each miss-match packet, a switch will send a request to the
controller asking for forwarding rule. Existing approaches to
address this problem generally need to deploy intermediate proxy
or authority switches to hold rule copies, so as to reduce the
number of requests sent to the controller.

In this paper, we argue that using the intrinsic buffer in a
SDN switch can also greatly reduce the communication overhead
without using additional devices. If a switch buffers each miss-
match packet, only a few header fields instead of the entire packet
are required to be sent to the controller. Experiment results show
that this can reduce 78.7% control traffic and 37% controller
overhead at the cost of increasing only 5.6% switch overhead
on average. If the proposed flow-granularity buffer mechanism
is adopted, only one request message needs to be sent to the
controller for a new flow with many arrival packets. Thus the
control traffic and controller overhead can be further reduced
by 64% and 35.7% respectively on average without increasing
the switch overhead.

Index Terms—Software Defined Networking, data center net-
works, communication overhead, switch, buffer.

I. INTRODUCTION

DN enhances network flexibility and scalability by sep-

arating control plane from data plane. It is progressively
dominating the dynamic management for timely network trou-
ble shooting and fine grained traffic scheduling in data center
network infrastructure [3, 6, 28], which is the foundation for
building today’s cloud computing services. One critical issue
in SDN is to reduce the communication overhead between the
switches and the controller. Such overhead is mainly caused

Fuliang Li is with the School of Computer Science and Engineering,
Northeastern University, Shenyang, China, and the Department of Com-
puting, Hong Kong Polytechnic University, Hong Kong, China (e-mail:
lifuliang @cse.neu.edu.cn).

Jiannong Cao is with the Department of Computing, Hong Kong Polytech-
nic University, Hong Kong, China (e-mail: jiannong.cao@polyu.edu.hk).

Xingwei Wang is the corresponding author, with the School of Computer
Science and Engineering, Northeastern University, Shenyang, China (e-mail:
wangxw @mail.neu.edu.cn).

Yinchu Sun is with the School of Computer Science and Engineering,
Northeastern University, Shenyang, China (e-mail: qinqinmuji@ 163.com).

Tian Pan is with the Department of Information and Communication
Engineering, Beijing University of Posts and Telecommunications, Beijing,
China (e-mail: platinum127@gmail.com).

Xuefeng Liu is with the School of Electronic Information and Commu-
nications, Huazhong University of Science and Technology, Wuhan, China
(e-mail: csxfliu@gmail.com).

by miss-match packets that cannot match any forwarding
rules of the flow tables. For each miss-match packet, the
switch will generate a request message and send it to the
controller. After the controller decides how to forward the
packet, it will send operation messages back to the switch.
According to these operation messages, the miss-match packet
and the subsequently arrival packets of this flow can be
forwarded. If many new flows arrive simultaneously, they
may introduce massive miss-match packets, which will trigger
the corresponding number of request messages sent to the
controller. The overhead, including the transmission load on
the control path and the computation load on the controller
will inflate quickly. The reasons of keeping the control traffic
at a low level includes two aspects. On the one hand, it can
reduce the bandwidth consumption of the control path, as well
as relieve the load on the controller. This is especially valuable
for the SDN applications with only one controller. In addition,
for some SDN applications, the control path shares the same
physical links with the data path. The control messages may
be congested if the control path carries too much control
traffic, even though a certain percentage of the bandwidth is
reserved for the control messages. On the other hand, existing
studies have proved that the control messages compete for
the limited resources of the switch, which will increase the
communication delay between the switch and the controller
[9]. Therefore, it is critical to reduce the switch-controller
control traffic. The challenge is that it is hard to quantify
the impact of the control traffic on performance. Alternatively,
In this paper, we observe the performance changes after the
control traffic is reduced by introducing the buffer mechanism.

Existing studies have tried to reduce the communication
overhead by cloning more forwarding rules in intermediate
proxy [10] or authority devices [15], which in partly take
responsibility of the controller. The switch first requests the
intermediate devices for how to forward the miss-match pack-
ets, and will not request the controller unless the devices
fail to give a response. Although these methods reduce the
requests sent to the controller, they don’t reduce the requests
generated by the switches. Furthermore, additional devices will
increase the overall budget. Different from previous works,
we utilize the intrinsic buffer of SDN switches to reduce both
the size and the number of the request messages generated
by the switches. Our methods can substantially reduce the
communication overhead and will make a supplement to ex-
isting approaches. To our best knowledge, we conduct a first-
ever study on reducing the switch-controller communication
overhead through SDN switch buffer. The main contributions

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

of this paper are summarized as follows.

(1) We investigate the benefits of adopting SDN switch
buffer. Without the buffer, each miss-match packet is entirely
included in the request message sent to the controller, while
if adopting the buffer, only several header fields are involved,
which will shrink the request message size. We measure the
performance impact on a variety of metrics under different
buffer size settings, including control path load, controller
overhead and flow setup delay, etc. Results reveal that the
switch buffer can reduce 78.7% control path load and 37%
controller overhead at the cost of increasing only 5.6% switch
overhead on average. And if there is enough buffer space,
controller delay, the switch delay and the flow setup delay
can also be reduced by 58%,87% and 78% respectively on
average.

(2) We propose a flow-granularity buffer mechanism for
SDN switches. Assuming that a new flow contains many pack-
ets arriving concurrently. With the default buffer mechanism,
every miss-match packet will trigger a request message sent
to the controller. While using the proposed buffer mechanism,
only one request message is sent to the controller for all the
miss-match packets of this flow, which will reduce the number
of the request messages. We evaluate the proposed buffer
mechanism through a comparison analysis with the default
one. Results show that the proposed buffer mechanism can
further reduce 64% control path load and 35.7% controller
overhead on average without increasing the switch overhead.
In addition, the proposed buffer mechanism can improve the
buffer utilization by 71.6% on average. And Although the
proposed buffer mechanism introduces complexity to process
the miss-match packets, it does not significantly increase the
flow setup delay, while reducing the flow forwarding delay by
18% on average.

One may doubt that buffer is not necessary under the
assumption that a flow sets up beginning with several small
packets negotiating first. For example, a TCP connection starts
with the three-way handshake, which only needs three small
packets to establish the connection. In this case, the buffer is
not necessary indeed. However, for an UDP connection, one
communication end may suddenly send massive packets to
another end without negotiation, in which case, buffer becomes
inevitable. In addition, forwarding rule of a TCP flow may
be kicked out from the size limited flow table, occurring
during the short time period of data transmission interruption.
Large volume of data may be transmitted after that transient
time period because the TCP connection is not terminated
in actual. Therefore, buffer is also useful for such kind of
TCP connections. According to OpenFlow switch specification
1.5.1 [26], the buffer is well defined. However, until now, it
is not well studied at all. Therefore, we analyze the effects
of the default buffer mechanism and propose a new buffer
mechanism in this paper. The default buffer mechanism can
reduce the size of the request message, and the OpenFlow
protocol just needs to be configured correctly. The proposed
buffer mechanism can further reduce the number of request
messages, and the OpenFlow protocol needs to be extended
mainly from two aspects: 1) how to buffer each miss-match
packet; 2) and how to forward each buffered packet.

The remainder of this paper is organized as follows. Related
work is presented in Section II. Benefits of adopting SDN
switch buffer are analyzed in Section III. Section IV presents
and evaluates the proposed flow-granularity buffer mechanism.
We discuss the adoption of SDN switch buffer in Section V
and conclude the whole paper in Section VI .

II. RELATED WORK

SDN has become a promising network technology and it
has been deployed to a wide range of network environment,
including campus networks [1], enterprise networks [2], data
center networks [3], cellular networks [4], satellite networks
[5], etc. However, there are still many issues need to be
addressed for SDN.

One critical issue is to reduce the communication overhead
between the switches and the controller. In SDN, frequent
interactions between switches and controller are necessary for
miss-match packets. Kim et al [13] addressed the controller
overhead when packets cannot match any rule of the flow
tables. Song et al. [30] proposed and developed a control path
management framework to enhance SDN reliability, including
several control path reliability algorithms and a novel control
message classification and prioritization system. Curtis et al.
[10] argued that fine-grained control of SDN cannot meet the
demands of high performance networks, e.g., micro flows may
create excessive load on the controller and the switches. They
decreased the communication overhead between switches and
controller by cloning forwarding rules in intermediate proxy,
which can reduce the need to invoke the control plane for most
flow setups. DIFANE [15] distributed necessary rules to the
intermediate authority switches. Forwarding rules are partly
made in data plane, which can reduce the flow setup latency
and respond quickly to network dynamics. Mazu [8] reduced
the latency of generating request messages by redirecting miss-
matched packets to a fast proxy that is tasked with generating
the necessary messages for the controller, while it reduces
the latency of execution of forwarding rules by enabling fast
parallel execution of updates. In summary, current studies
reduce the requests sent to the controller through deploying
intermediate devices, which cache more forwarding rules and
play a part role of the controller. Different from previous
works, this paper takes full utilization of switch buffer to
reduce the size of the request message, as well as the the
number of the requests generated by the switches. Actually,
the buffer mechanism could also be utilized as a supplement to
existing approaches, because it takes effect before the request
messages sent out. This paper proves the value of adopting
switch buffer and propose a new buffer mechanism to further
reduce the switch-controller communication overhead.

Fine-grained control and real-time sensitivity applications
require quick adaptation to the changes of network topologies
or traffic patterns [6, 7]. Therefore, researchers also pay atten-
tion to understand SDN switch performance, which is more
or less related to or affected by the communication overhead
between the switches and the controller. Rotsos et al. [11]
proposed an open framework to evaluate OpenFlow switch
implementations. They found that the switching performance

depends on applied actions and firmware. Huang et al. [12]
investigated three commercial OpenFlow switches and pointed
out that control path delays and flow table designs affect
switching performance. Tai et al. [14] uncovered the source
of forwarding latency caused by forwarding rule insertions on
data plane. Xu et al. [31] proposed two cost-optimized flow
statistics collection schemes using wildcard-based requests,
which could reduce the bandwidth overhead and switch pro-
cessing delay. He et al. [8, 9] studied four SDN switches
and showed the latencies underlying the generation of request
messages and execution of forwarding rules. Different from
previous works, we try to analyze the benefits of adopting
switch buffer through an in-depth measurement study, which
could make a complementary exploitation of SDN switches.
Observed from the analysis results, we find that switch buffer
can reduce the communication overhead between the switches
and the controller.

The root cause of communication overhead stems from
the size limitation of SDN flow tables. Rules in flow tables
have to be updated adapting to network dynamics, i.e., rules
for inactive flows will be kicked out and replaced by rules
for active flows. As a result, packets cannot always match
the rules of the flow tables. Therefore, optimizing flow ta-
ble utilization (such as caching more rules, updating rules
quickly, etc.) can reduce the requests sent to the controller
indirectly. Luo et al. [16] shrank the flow table size and
provided practical methods to achieve fast flow table updates.
Li et al. [17] proposed an efficient flow-driven rule caching
algorithm to optimize the SDN switch cache replacement.
CacheFlow [18] spliced long dependency chains to cache
smaller groups of rules while preserving the per-rule traffic
counts. FlowShadow [19] achieved fast packet processing and
supports uninterrupted update by caching microflows. Zhang
et al. [32] propose a delay-guaranteed approach called D3G
to reduce the latency of chained services while obtain fairness
across all the workloads, by means of designing a latency
estimation algorithm and a feedback scheme. Yan et al. [29]
proposed a new rule caching scheme, as well as an adaptive
cache management method. The mechanism can reduce the
cache miss rate by one order of magnitude and the control
path bandwidth usage by a half. Different from these studies,
this paper exploits the benefits of switch buffer to directly
reduce the communication overhead. Buffer has been adopted
to improve performance and achieve QoS guarantee in legacy
switches [20, 21]. However, it receives little notice in SDN.

III. PROBLEM AND EXPERIMENT DESCRIPTION

In this section, we first describe the problem and then show
the measurement methodology.

A. Problem Description

A flow contains many packets of {p1,pa,...,pn} arriving
at {t1,t2,...,t, }. If p; matches a rule of the flow table, it
will be forwarded at a line rate. Otherwise, the switch will
generate a pkt_in message sent to the controller. After the
controller decides how to forward the packet, it will send a pair
of control operation messages (flow_mod and pkt_out) to the

TABLE I: Configurations of Experimental Devices

Device Name CPU Cores | RAM NIC
Hosty 3.3GHZ 4 4GB 1x 100Mbps
Hosta 3.3GHZ 4 4GB 1x 100Mbps

Open vSwitch | 3.3GHZ 4 4GB | 3x100Mbps

Floodlight 3.3GHZ 4 4GB 1x 100Mbps

X

Host; Open vSwitch Host:

Fig. 1: Topography of the Experimental Platform.

switch: flow_mod message carries the forwarding rule that will
be installed in the switch; pkt_out message instructs to directly
forward the miss-match packet through a specified interface of
the switch. The time of the flow_mod message taking effect is
te. If to > to, po will trigger another pkt_in message. In the
worst case, if t. > t,, n pkt_in messages will be triggered.
When massive packets fails to match any rules of the flow
tables simultaneously, a great deal of request messages will
be sent to the controller. Moreover, corresponding control
operation messages will be sent back to the switch. Such
communication overhead needs to be reduced by the following
three reasons.

1) Control path may share the same physical links with the
data path. When the physical links carry heavy data traffic,
control messages may be congested. 2) Even if we reserve the
bandwidth or increase the priority for control traffic, we still
have the requirements of reducing the control messages to
relieve the load on the centralized controller. 3) Concurrent
switch activities, i.e., generating control request messages
and handling control operation messages will increase the
communication delay between the switch and the controller
[9]. This is caused by the competition of the limited resources
of the switch. So it is important to keep the control traffic at
a low level.

B. Experiment Description

Fig. 1 shows our experiments setup. Open vSwitch(OVS)
[22] is an open source OpenFlow virtual switch. Floodlight
[23] is an open source SDN controller. We run OVS and
Floodlight on two commodity PCs respectively. Table I shows
the configurations of the experimental devices. Host; and
Hosty connect to OVS with 100Mbps interfaces. We run
pktgen [24] on Hosty to generate traffic at rates of SMbps
- 100Mbps with the Ethernet frame size of 1000 Bytes. We
run fcpdump [25] to listen on the interfaces that are connected
to the hosts and the controller respectively.

In this paper, we utilize switch buffer to reduce the com-
munication overhead from the following two ways: (1) reduce

the size of the request messages; (2) reduce the number of
the request messages. We observe the benefits of adopting the
default buffer mechanism and the proposed buffer mechanism
from many metrics, including:

Control path load: control traffic on the control path.

Controller usages: CPU utilization of the floodlight process.

Switch usages: CPU utilization of the switch.

Flow setup delay: the time consumption starting from the
first packet of a flow entering the switch to the packet leaving
the switch.

Controller delay: the time consumption starting from the
pkt_in message leaving the switch to the flow_mod or pkt_out
message arriving at the switch.

Switch delay: the difference between the flow setup delay
and the controller delay.

Buffer utilization: the number of buffer units used to store
the miss-match packets.

IV. BENEFITS OF ADOPTING SWITCH BUFFER

Adopting the default buffer of OVS, the switch buffers each
miss-match packet, and can let only several header fields
instead of the entire miss-match packet include in the pkt_in
message. Note that the actual length of the data field in the
message depends on how to configure the parameter of the
pkt_in message. It is easy to implement if the controller want
to see the entire packet (considering the security applications).
In our experiment, the buffer is set to no-buffer, buffer-16
(storing at most 16 packets) and buffer-256 (storing at most
256 packets). As shown in Fig. 1, Host; sends 1000 new flows
to Host, at each sending rate. Each flow includes one packet.
To generate new flows, we use pktgen [24] to forge source IP
addresses. We repeat the experiments at each sending rate for
20 times.

A. Control Path Load

Control path load refers to the control traffic (i.e., pkt_in
messages sent from the switch to the controller, flow_mod
and pkt_out messages sent from the controller to the switch)
on the control path. We analyze the control path load from
two directions respectively. As depicted in Fig. 2 (a), we find
that the control path load nearly presents a linear relation
to the sending rate when the buffer is not utilized. Without
buffer, the entire miss-match packet will be included in the
pkt_in message, resulting in large packets sent to the controller.
When the buffer is used, only several bytes of each miss-
match packet are included in the pkz_in message. Results show
that buffer-16 and buffer-256 limit the control path load under
40Mbps. Control path load of buffer-16 gradually increases
when the sending rate exceeds 35Mbps, while buffer-256 al-
ways generate less control traffic with the mean of 10.86Mbps
and the standard deviation of 6.05Mbps. Deep analysis results
reveal that using buffer-16, the buffer is exhausted around
the sending rate of 35Mbps. So once the buffer is adopted,
the buffer size should be correctly set according to the traffic
patterns. Fig. 2(b) shows the similar patterns to Fig. 2(a). A
pkt_in message will introduce a pair of flow_mod and pkt_out
messages. Without buffer, the pkt_out message includes the

entire miss-match packet, while it mainly contains a specific
port number when using buffer. In summary, providing enough
buffer space, we can reduce 78.7% of the control path load
of one direction on average and 96% on average for another
direction.

B. Controller Usages

We measure controller usages (i.e., CPU utilization of the
floodlight process) to evaluate the load on the controller. As
depicted in Fig. 3, controller usage tends to be a linear growth
when the sending rate is lower than 50Mbps. After that point,
controller usage of no-buffer presents an approximate expo-
nential variation with a standard deviation of 33.41%. While
controller usages of buffer-16 (mean of 53.07% and standard
deviation of 16.62%) and buffer-256 (mean of 34.59% and
standard deviation of 9.87%) are relatively low and stable.
Without buffer, the controller needs to capture the header
fields of each miss-match packet from the pkz_in messages.
When the sending rate becomes higher, the controller will
handle more concurrently arrival pkt_in messages and require
much more computing resources as a result. If adopting buffer,
the pkt_in message only contains the necessary header fields,
which simplifies the process of decision making. Due to
the exhaustion of the buffer space, buffer-16 shows a poor
performance when the sending rate is high. Note that since the
experimental devices are multi cores, controller usages exceed
100% sometimes. In summary, buffer can reduce 37% of the
controller overhead on average. And if we set the buffer with
enough space, we can keep the controller usages at a relatively
stable level.

C. Switch Usages

We use switch usages (i.e., CPU utilization of the switch)
to evaluate the load on the switch. We should make sure how
much extra load will be added to switch when adopting buffer.
As depicted in Fig. 4, switch usages of no-buffer, buffer-16
and buffer-256 present similar patterns, increasing quickly at
the beginning, while slowly when the sending rate exceeds
40Mbps. During the whole testing process, buffer-256 (mean
of 274.64% and standard deviation of 44.62%) introduces
more load to switch than buffer-16 (mean of 263.84% and
standard deviation of 51.88%), which behaves similarly to no-
buffer (mean of 260.13% and standard deviation of 51.92%).
The reason is that buffer related operations cause higher switch
CPU utilization than no-buffer. Buffer-16 is exhausted when
the sending rate is high, so it performs similarly to no-buffer
after that point. In summary, buffer adoption complicates the
switch design and its packet process, but we find that it only
introduces 5.6% extra load to switch on average. This is a
positive indicator to adopt buffer in SDN switches.

D. Flow Setup Delay

Flow setup delay is used to evaluate the responsiveness of
switches to arrival flows. As shown in Fig. 5, when sending
rate is lower than 70Mbps, the flow setup delay variations
present similar patterns across different buffer sizes. Without

100

—F—— No-buffer
(e Buffer-16

80T ... Ao Buffer-256

60

40

20

Control Path Load (Mbps)

40 60 80
Sending Rate (Mbps)
(a) Control Messages Sent from Switch

100

100 T T
—F—— No-buffer
20 @) Buffer-16
----- A\ Buffer-256

Control Path Load (Mbps)

Sending Rate (Mbps)
(b) Control Messages Sent to Switch

Fig. 2: Control Path Load under Different Sending Rates.

150 . ,
——H&— No-buffer
@ Buffer-16
N A Buffer-256
X
% 100
(]
g
)
5
o
g2 sof
Q
Q
O 1 1 1 1
0 20 40 60 80 100
Sending Rate (Mbps)

Fig. 3: Controller Usages under Different Sending Rates.

350
300
s
B 250+
5
-]
B 200
2
w2
150 - —+H— No-buffer
©- Buffer-16
----- A Buffer-256
100 ; - - -
0 20 40 60 80 100
Sending Rate (Mbps)

Fig. 4: Switch Usages under Different Sending Rates.

buffer, the mean is 5.28ms and the standard deviation is
8.74ms. When the sending rate exceeds 70Mbps, the delay
of no-buffer is quite variable with the maximum of 30.46ms.
The mean delay of buffer-16 is 1.98ms. It presents a similar
pattern to no-buffer with a standard deviation of 1.85ms. The

delay of buffer-256 maintains a stable variation with a mean
of 1.17ms, a standard deviation of 0.37ms and the maximum
of 5.35ms. Normally, buffering the first miss-match packet
and forwarding the buffered packet of a flow introduce buffer
related operations, which will increase the flow setup delay of
the flow. But we find that the flow setup delay can be reduced
by 78% on average when using buffer-256. We next explain the
reasons and give the effective condition of buffer on reducing
the flow setup delay.

The flow setup delay of a new flow is mainly composed of
five parts: the delay of buffering the first miss-match packet,
marked as T}, f fer; the delay of generating the pkz_in message
by the switch, marked as Tpy ;,; the controller delay defined
in Section IV.E, marked as Ts_,.,s; the delay of processing
the pkt_out message by the switch, marked as Tp; u; the
delay of releasing the buffered packets according to the pkt_out
message, marked as T}.cjeqse. Without buffer, each miss-match
packet is entirely included in the pkf_in message and the
pkt_out message. These control messages compete for the
limited bus bandwidth between the ASIC and switch CPU,
the bandwidth of the control path, and the computing resource
of the controller, which greatly affects the generation of the
pkt_in messages, the generation of the pkt_out messages and
the processing of the pkt_out messages [8]. Correspondingly,
the values of Tpy_in, Ts—c—s and Tpy oy Will be larger than
adopting buffer. Because when using buffer, only several bytes
of each miss-match packet are included in the pkz_in message,
and the pkt_out message carries even less information than
the pkt_in message. As a result, less control traffic competes
for the limited resources. However, buffer adoption brings in
Touffer and Trejeqse. SO the effective condition of buffer on
reducing the flow setup delay can be expressed as that the
buffer delay (Thy f fer + Treicase) 18 less than the additional and
variable part of the request delay (Tpk;_in, Ts—c—s and Tpi;_our)
caused by competing the limited resources. Our experimental
results show that when the sending rate is high, buffer can
reduce the flow setup delay obviously. This is easy to explain
according to the given effective condition. Without buffer, high
throughput means that more large control messages compete

35 r .

—+H+— No-buffer

30r O Buffer-16

= |l A\----- Buffer-256
g
&
jo)
&)
g
Q
wn
z
2
=

Sending Rate (Mbps)

Fig. 5: Flow Setup Delay under Different Sending Rates.

for the limited resources. This needs more extra delay to
generate and process the control messages. We also find that
buffer-256 performs better than buffer-16, this is because
buffer-16 is over utilized when sending rate is high, which
complicates the buffer operations and introduces more buffer
delay than buffer-256 with enough buffer space.

In summary, in addition to reducing the communication
overhead, adopting a large enough buffer can also reduce the
flow setup delay. However, the flow setup delay is affected by
many factors, such as flow patterns, line rate and processor
capabilities, etc. So it is difficult to quantitatively evaluate the
flow setup delay under different conditions. Given that, we
conduct a qualitative analysis of how the buffer benefits the
flow setup delay. The experimental result has shown another
positive incentive to adopt SDN switch buffer.

E. Controller Delay

We record the timestamp (1) when the pkt_in message
is sent from the switch, and the timestamp (f2) when the
flow_mod or pkt_out message arrives at the switch. The
difference (to — t1) is roughly considered as the controller
delay. As shown in Fig. 6, the controller delay of no-buffer
is always higher than that of buffer-16 and buffer-256. The
controller delay of no-buffer (mean of 1.65ms, maximum of
4.84ms and standard deviation of 1.1ms) presents an obvi-
ous increase beginning at the sending rate of 60Mbps. The
controller delay of buffer-16 (mean of 1.11ms and standard
deviation of 0.66ms) follows the same trend with no-buffer,
while the controller delay of buffer-256 (mean of 0.70ms
and standard deviation of 0.12ms) keeps stable during the
whole testing process. When the buffer is not adopted, the
controller should first capture the required information from
the pkt_in message, which includes the entire miss-match
packet. After the decision is made, it also needs to encapsulate
the entire miss-match packet into the pkt_out message. These
operations are more time consuming than adopting the buffer,
which lets some necessary header fields of each miss-match
packet include in the pkr_in message. Buffer-16 cannot provide
available buffer units when the sending rate is high, so it
behaves poorly compared with buffer-256. In summary, if we

—+H— Nobuffer
—O— Buffer-16
4| —A— Buffer-256

Controller Delay (ms)

100

Sending Rate (Mbps)

Fig. 6: Controller Delay under Different Sending Rates.

provide enough buffer space, we can reduce 58% controller
delay on average.

FE. Switch Delay

In our study, the flow setup delay consists of switch delay
and controller delay. The switch delay refers to the generation
time of the pkt_in message and execution time of the pkt_out
message. Execution time of the flow_mod message, i.e., rule
installation time has been studied in an existing work [8]. As
depicted in Fig. 7, when sending rate is lower than 75Mbps,
switch delay presents no differences among the three buffer
sizes. After that point, switch delay of no-buffer increases
quickly. It reaches to 25.07ms when the sending rate is
95Mbps. Switch delay of buffer-16 (mean of 0.87ms and
standard deviation of 1.18ms) outperforms no-buffer. Switch
delay of buffer-256 (mean of 0.47ms and standard deviation
of 0.27ms) always keeps at a low and stable level. Without
buffer, large pkt_in messages are sent out, while at the same
time, flow_mod messages and large pkt_out messages are
sent back. The going out and coming in control messages
compete for the limited switch resources, especially the bus
bandwidth between the ASIC and switch CPU [8], which will
delay the control messages to take effect. This situation will
cause obvious consequence when the control traffic exceeds
a threshold. In summary, the switch delay can be reduced by
87% on average by adopting a large enough buffer.

G. Buffer Utilization

Aforementioned analysis results reveal that when buffer
is exhausted, performance metrics like control path load,
controller usages and flow setup delay, etc., start to increase
gradually or sharply. Therefore, avoiding buffer exhaustion is
crucial. As a basis, buffer utilization should be investigated
first. As depicted in Fig. 8, when the sending rate exceeds
30Mbps, buffer-16 is exhausted. After the buffer is exhausted,
the buffer can still work in the full utilization condition.
When a pkt_out message arrives, the buffered packet will be
forwarded and corresponding buffer units will be released.
New miss-match packets will be buffered when there are

30

—H&— No-buffer
25+ @ Buffer-16

----- A Buffer-256

Switch Delay (ms)

0 20 " 40 60 80 100
Sending Rate (Mbps)

Fig. 7: Switch Delay under Different Sending Rates.

80

—O— Buffer-16 A
AN Buffer-256 :

60 r

40 r

Number of Buffer Units

0 20 40 60 80 100
Sending Rate (Mbps)

Fig. 8: Buffer Utilization under Different Sending Rates.

available buffer units. However, when the sending rate exceeds
a threshold, the replacement of the buffer units cannot catch
up with the speed of the coming miss-match packets. Each
miss-match packet will be entirely included in the pkt_in
message, causing the performance to decrease quickly. In our
study, buffer-256 is sufficient to meet the requirements of the
experimental flow patterns. For buffer-256, when the sending
rate is over 70Mbps, more buffer units are needed. And no
more than 80 buffer units can meet the maximum sending rate.
That is to say, if each packet size is 1000 Bytes on average,
a 80 KBytes buffer is satisfied for a 100Mbps SDN switch
interface. This is a positive indicator for considering adopting
the SDN switch buffer.

V. FLOW-GRANULARITY BUFFER MECHANISM

We have proven the benefits of adopting switch buffer.
However, the default buffer only reduces the size of the
request messages. It still requires to send pkt_in messages
for every miss-match packet. We name the default buffer
mechanism packet-granularity. For a new flow with many
packets, the first arrival packet triggers a pkt_in message,
while the subsequent packets of this flow arrive before the
control operation messages are sent back and take effect. These

subsequent miss-match packets of the flow continue to trigger
redundant pkt_in messages sent to the controller. Therefore, in
addition to reducing the request message size, we further aim
to reduce the number of the request messages.

A. Mechanism Description

In this section, we present a flow-granularity buffer mech-
anism. It buffers all the miss-match packets of a flow and
lets only one request message send to the controller. After
a timeout period, if the switch doesn’t receive the control
operation messages, it will send another request message. The
flow-granularity buffer mechanism is divided into two parts as
depicted in Algorithm 1 and Algorithm 2.

Algorithm 1 describes how to buffer each miss-match
packet of a flow. A flow F' with n packets arrives a switch.
Each packet p; of F' will first match the flow table (line 2). If
p; matches a rule, it will be directly forwarded by the switch
(line 3). Otherwise, the switch will extract the buffer_id for
p; (line 4~5). In the OpenFlow specification [26], buffer_id is
used to identify a packet buffered at the switch and sent to the
controller by a pkt_in message. A pkt_out message including
a valid buffer_id removes the corresponding packet from the
buffer and processes the packet by the actions of the message.
If p; is the first arrival packet of the flow, the switch cannot
get the buffer_id from the buffer_id map (line 6). Then, the
switch buffers p; and creates a buffer_id for p; (line 7). Note
that all the miss-match packets of F' share the same buffer_id.
It is calculated based on the tuple of (src_ip, src_port, dst_ip,
dst_port, protocol), which is usually used to identify a flow.
The switch stores the buffer_id for p; (line 8) and sends a
pkt_in message to the controller (line 9). The pkt_in message
includes the header of p; and the buffer_id. If p; can get
the buffer_id from the buffer_id map, it means p; is not the
first arrival packet of F', then the switch directly buffers p;
without triggering a pkt_in message (line 10~11). Operations
of the proposed buffer mechanism are a bit more complex than
the default buffer mechanism. Therefore, it requires to extend
the OpenFlow protocol. If the controller does not send back
control operation messages after a timeout period (line 12), the
switch needs to send another pkz_in message to the controller
(line 13).

Algorithm 2 describes how to forward the buffered packets
of a flow. A pkt_in message will introduce a flow_mod
message and a pkt_out message. When receiving the flow_mod
message, the switch installs the forwarding rule in the flow
table (line 1). However, this rule only applies to the subsequent
arrival packets of F', not to the already buffered packets of F'.
When the pkt_out message arrives, it carries the buffer_id (line
2) and the out_port (line 3). The switch uses buffer_id to get
the first buffered packet of F' (line 4), and forwards it through
the out_port of the switch (line 5). Then, the switch forwards
other buffered packets of F' one by one (line 7~8). Meanwhile,
corresponding buffer units are released (line 6 and line 9).

B. Performance Evaluation

We implement the proposed buffer mechanism in Open
vSwitch, and evaluate its performance compared with the

Algorithm 1 Buffer Each Miss-match Packet

Input: a flow F' with n packets arriving
Initialization: buffer each miss-match packet of F'
1: for each arrival packet p; of F' do

2 if p; matches a rule of flow table then

3 the switch forwards p;;

4 else

5: buffer_id <+ getBufferldFromMap(p;);

6: if buffer_id= —1 then

7. buffer_id < bufferFirstPacket(p;);

8 storeBufferldIntoMap(p;, buffer_id);

9: send a pkt_in message including header of p; and buffer_id;
10: else

11: bufferSubsequentPacket(p;, buffer_id);

12: if timestamp expires then

13: send a pkt_in message including header of p; and buffer_id,
14: end if

15: end if

16: end if

17: end for

Algorithm 2 Forward Each Buffered Packet

Input: flow_mod and pkt_out messages arriving

Initialization: Forward each buffered packet of F'

: modify the flow table based on flow_mod message;

. buffer_id < getBufferld (pkt_out);

: out_port < getOutPort (pkt_out);

. firstPacket <— getPacketFromBuffer (buffer_id);

forward (firstPacket, out_port);

. releaseBufferUnit(firstPacket);

while (nextPacket <— getPacketFromBuffer(buffer_id)) is not null do
forward (nextPacket, out_port);
releaseBufferUnit(nextPacket);

: end while

SOPIDU A WLN—

—_

default buffer mechanism. In this experiment, the buffer is
set to 256 for both buffer of the mechanisms. As shown in
Fig. 1, Host; sends 50 flows to Hosts. Each flow includes
20 packets. During the test, we first send out 5 flows (i.e.,
100 packets) in cross sequences. Then, another 5 flows will
be sent to Hosts in the same way. The test will not terminate
until all the 50 flows are sent out. We repeat the experiments
at each sending rate for 20 times.

1) Control Path Load: As depicted in Fig. 9(a), the pro-
posed buffer mechanism introduces less control traffic sent
from the switch to the controller. Using the flow-granularity
buffer, control path load (mean of 0.045Mbps and standard
deviation of 0.005Mbps) is kept at a low and stable level,
while for the packet-granularity buffer, control path load
(mean of 0.123Mbps and standard deviation of 0.009Mbps)
increases quickly when the sending rate exceeds 30Mbps. The
flow-granularity buffer sends only one pkz_in message to the
controller for a flow with many miss-match packets, so it
can reduce the number of pkt_in messages. As shown in Fig.
9(b), the flow-granularity buffer also introduces less control
traffic sent to the switch. This is because fewer control request
messages introduce fewer control operation messages, i.e., the
pkt_out messages and the flow_mod messages. In summary,
flow-granularity buffer can reduce 64% of the control path
load of one direction on average and for another direction, the
control path load can be reduced by 80% on average.

2) Controller Usages: As depicted in Fig. 10, the proposed
buffer limits the controller usages below 30%. While using the
default buffer, the controller needs more computing resources

(mean of 24.82% and maximum of 65.1%) in most cases,
especially when the sending rate is over 70Mbps. The flow-
granularity buffer reduces the number of pkt_in messages,
which effectively decreases the controller overhead by 35.7%
on average.

3) Switch Usages: As depicted in Fig. 11, the two buffer
mechanisms present similar switch usage patterns. Since the
experiment flows do not burden the switch, the switch utiliza-
tion is low. The mean switch usage of the proposed buffer
is 11.67%, while the mean value is 17.31% for the default
buffer. Considering the error caused by the instability of the
experiment platform which is built based on software switch,
the flow-granularity buffer mechanism doesn’t introduce extra
overhead to the switch compared with the packet-granularity
buffer mechanism, although the new buffer complicates the
packet processing.

4) Flow Setup Delay: Fig. 12(a) shows the flow setup delay
variations of the buffer mechanisms under different sending
rates. Using the proposed buffer, the mean is 2.05ms and the
standard deviation is 0.46ms, while using the default buffer,
the mean is 1.53ms and the deviation is 0.69ms. Although the
flow-granularity buffer reduces the number of pkf_in messages,
it introduces extra operations to the switch, which delays the
generation of pkt_in messages. So the packet-granularity buffer
performs better than the flow-granularity buffer in most cases.
However, when the sending rate is high, the competition for the
bandwidth and computing resources increases, and the benefits
of reducing the number of pkt_in messages start to appear. For
example, when the sending rate exceeds 80Mbps, the flow-
granularity buffer outperforms the packet-granularity buffer.

We also use flow forwarding delay (starting from the first
packet of a flow entering the switch to the last packet of that
flow leaving it) to compare the proposed buffer mechanism
to the default one. As depicted in Fig. 12(b), the flow-
granularity buffer behaves similarly to the packet-granularity
buffer in most cases. However, when the sending rate exceeds
80Mbps, the flow-granularity buffer presents its advantages.
For example, the forwarding delay of the packet-granularity
buffer is 54.71ms at the sending rate of 95Mbps, while the
value is 34.23ms for the flow-granularity buffer. There are two
reasons explaining the differences. 1) When the sending rate is
high, packets of a flow arrive almost at the same time, which
means that the number of the miss-match packets increases,
and the packet-granularity buffer introduces more control
messages competing for the limited resources. As a result,
the decision making and taking effect process is delayed. 2)
For the packet-granularity buffer, each buffered packet of a
flow can be forwarded only after its corresponding pkt_out
message is sent back. However, for the flow-granularity buffer,
the switch sends only one pkr_in message for a flow, and it
forwards all the buffered packets of that flow immediately
when the unique pkt_out message arrives.

In summary, the flow-granularity buffer introduces com-
plexity to process the miss-match packets, but it doesn’t
significantly increase the flow setup delay, while reducing
the flow forwarding delay by 18% on average. We also find
that the flow-granularity buffer mechanism performs better
than packet-granularity buffer mechanism when the sending

0.35

——H&— Packet-granularity

0.3
------ A Flow-granularity

0.25

Control Path Load (Mbps)

0 20 40 60
Sending Rate (Mbps)

(a) Control Messages Sent from Switch

80 100

0.14
—+H&— Packet-granularity
- 0.12 A .
E R Flow-granularity
3
el
<
]
2
<
<
a
I
=
]
Q
0
0 20 40 60 80 100

Sending Rate (Mbps)
(b) Control Messages Sent to Switch

Fig. 9: Control Path Load under Different Sending Rates.

70 " T . .
—H&— Packet-granularity

60 1 A\ Flow-granularity 1
g 50t]
3
g 40t 1
-
5 30 b _
E ; A
g ;
S 20 A 1

10 | 1

0 1 1 1 1

0 20 40 60 80 100
Sending Rate (Mbps)

Fig. 10: Controller Usages under Different Sending Rates.

25

——H&— Packet-granularity
------ A Flow-granularity

Switch Usages (%)

40 60
Sending Rate (Mbps)

100

Fig. 11: Switch Usages under Different Sending Rates.

rate exceeds a threshold. For example, when the sending
rate reaches to 95Mbps, the proposed buffer mechanism can
reduce 10.8% of the flow setup delay and 37.4% of the flow
forwarding delay.

5) Buffer utilization: We calculate the average and maxi-
mum number of the buffer units that are used at each sending
rate. As depicted in Fig. 13(a), the flow-granularity buffer uses
fewer buffer units during the whole testing process. The flow-
granularity buffer always uses no more than 5 buffer units,
while for the packet-granularity buffer, the buffer utilization
(standard deviation of 5.57) presents a rapid growth with the
sending rate increasing, and it uses 43 buffer units at the
sending rate of 95Mbps. Using the flow-granularity buffer,
only one pkt_in message is triggered for a flow with many
miss-match packets. The pkt_in message is given a buffer_id
and all the buffered packets share this buffer_id. After the
pkt_out message arrives, it instructs to forward the buffered
packets with the same buffer_id. That is to say, this pkt_out
message applies to all the buffered packets of this flow.
Through this way, the buffer units can be quickly released,
leading to a low utilization of the buffer space. While for the
packet-granularity buffer, each miss-match packet triggers a
pkt_in message, which is given an exclusive buffer_id. So a
pkt_out message only applies to its corresponding buffered
packet. This causes the buffer units released slowly and leads
a high utilization of the buffer space. When the sending rate
is high, the packet-granularity buffer mechanism will trigger
more pkf_in messages in a short time period, which presents
an increasing demand on buffer space. In summary, the flow-
granularity buffer mechanism can quickly release the buffer
units. It improves the efficiency of the buffer utilization by
71.6% on average. Note that due to the experiment conditions,
the buffer utilization of the packet-granularity buffer presents
differences under different sending rates as shown in Fig. 8
and Fig. 13.

VI. DISCUSSION OF ADOPTING SDN SWITCH BUFFER

In OpenFlow switch specifications [26], buffer is not utilized
by default. This paper evaluates the value of buffer adoption
on UDP flows. We may consider that a TCP flow setup begins
with several small packets negotiating first. So the buffer might
not be necessary for TCP flows. To address the doubts, this
section discusses how the buffer benefits both of the UDP
flows and the TCP flows.

35 " . .
——H&— Packet-granularity
o~ 3t — A Flow-granularity
g
E
o)
&)
g
5
7]
z
=
[y

"0 20 40 60 80
Sending Rate (Mbps)
(a) Flow Setup Delay

100

60

—8— Packet-granularity
50| A Flow- granularity

Flow Forwarding Delay (ms)

Sending Rate (Mbps)
(b) Flow Forwarding Delay

Fig. 12: (a) Flow Setup Delay and (b) Flow Forwarding Delay under Different Sending Rates.

20

——H&— Packet-granularity
------ A FLow-granularity

Number of Buffer Units
=

0 20 40 60 80
Sending Rate (Mbps)
(a) Average

100

——&— Packet-granularity
------ A Flow-granularity

Number of Buffer Units

I JAYET:
oL

0 20 40 60 80
Sending Rate (Mbps)
(b) Maximum

100

Fig. 13: Buffer Utilization under Different Sending Rates.

A. Buffer for UDP Flows

UDP is a connectionless oriented protocol, i.e., packets of
UDP flow transmit directly without the process of connection
establishment. Without buffer, each miss-match packet will
trigger a request message, which includes the entire packet.
Massive packets of a new UDP flow may arrive around the
same time. Many request messages for this flow will be sent
to the controller, causing heavy load on the control path and
to the controller.

In this study, we use UDP flows to evaluate the benefits of
switch buffer and the efficiency of the proposed buffer mech-
anism. Results reveal that for UDP flows, using buffer could
obviously reduce the communication overhead. Therefore, a
good switch buffer mechanism is really needed to apply for
UDP flows. Existing studies have found that although TCP still
dominates network traffic in terms of packets and bytes, UDP
now often accounts for the largest fraction of flows in a given
link [27]. So using UDP flows to evaluate the effectiveness of
the switch buffer is convincing. If switch buffer benefits UDP
flows, it also benefits the mix of TCP and UDP flows.

B. Buffer for TCP Flows

TCP is a connection oriented protocol, which adopts a three-
way handshake process to establish a connection. In general,
the first few packets of TCP flows which are used to establish
the connection are very small (e.g. TCP SYN, TCP ACK) and
no data will be transferred until the connection is established.
After the connection is established, subsequent large packets of
this flow arrive successively, and the corresponding forwarding
rule has taken effect. These packets sent after the connection
establishment can match the rule of the flow table and will
no longer be treated as the packets of a new flow. From this
view, switch buffer is not necessary for TCP flows. However,
buffer can also apply to TCP flows for the following reasons.

1) For some TCP connection flows, the flows may present
inactive for a transient time period. The rules may be kicked
out from the size limited flow tables due to the inactivity,
but the connections are not terminated in actual. After that
transient period, corresponding ends may restore large volume
of data transmission. In this case, switch buffer is useful.

2) The main objective of this study is to reduce the

communication overhead through adopting the switch buffer.
Experiment results show that using the default buffer, the
communication overhead is obviously reduced. Meanwhile,
the flow setup delay is decreased and kept at a stable level.
The proposed buffer can also reduce the flow setup delay when
the sending rate is high. Therefore, buffering TCP flows can
at least gain the benefits from reducing the flow setup delay.

VII. CONCLUSION AND FUTURE REMARKS

In this paper, we take a first step towards analyzing and
utilizing SDN switch buffer. 1) We first analyze the benefits
of adopting switch buffer. Using the default packet-granularity
buffer, only several header fields instead of the entire miss-
match packet are included in the request message, which
reduces the request message size. Experiment results show
that the default buffer could reduce the load on control path
and the controller, as well as decrease the flow setup delay.
2) Then, we propose a flow-granularity buffer mechanism,
which sends only one request message to the controller for
a flow with many miss-match packets. Through this way, the
number of the request messages is reduced. Experiment results
show that the proposed buffer mechanism could further reduce
the communication overhead without increasing the switch
overhead.

In this paper, we evaluate the benefits of the default and
the proposed buffer mechanisms on the Open vSwitch with
100Mbps Ethernet. In the future, we will further evaluate
the benefits of buffer adoption through commodity SDN
switches with Gigabit Ethernet. In addition, we can design
egress scheduling mechanisms combing with the ingress buffer
mechanism proposed in this paper to provide QoS guarantee
for different applications.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their constructive comments. This work is supported by the
National Natural Science Foundation of China under Grant
Nos. 61602105 and 61572123; the Program for Liaoning
Innovative Research Term in University under Grant No.
LT2016007; the Fundamental Research Funds for the Central
Universities Project under Grant No. N171604006; CERNET
Innovation Project under Grant No. NGII20170121. The cor-
responding author is X.W. Wang.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
2008, 38(2): 69-74.

[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker. Rethinking Enterprise Network Control. IEEE/ACM
Transactions on Networking (ToN), 2009, 17(4): 1270-1283..

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.
Hedera: Dynamic flow scheduling for data center networks. In Proceed-
ings of the 7th USENIX Symposium on Networked System Design and
Implementation (NSDI), 2010: 19-19.

[4] X. Jin, L. E. Li, L. Vanbever, and J. Rexford. SoftCell: Scalable and
Flexible Cellular Core Network Architecture. In Proceedings of the 9th
ACM conference on Emerging networking experiments and technologies
(CoNEXT), 2013: 163-174.

[5] L. Bertaux, S. Medjiah, P. Berthou, S. Abdellatif, A. Hakiri, P. Gelard,
F. Planchou, M. Bruyere. Software defined networking and virtualization
for broadband satellite network. IEEE Communications Magazine, 2015,
53(3): 54-60.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang. Microte: Fine grained
traffic engineering for data centers. In Proceedings of the 7th ACM
COnference on emerging Networking EXperiments and Technologies
(CoNEXT), 2011: 8.

[7]1 X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J.
Rexford, and R. Wattenhofer. Dynamic Scheduling of Network Updates.
ACM SIGCOMM Computer Communication Review, 2014, 44(4): 539-
550.

[8] K. He, J. Khalid, S. Das, A. Akella, E. L. Li, and M. Thottan. Mazu:
Taming latency in software defined networks. University of Wisconsin-
Madison Technical Report, 2014.

[9] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,
E. L. Li, M. Thottan. Measuring control plane latency in SDN-enabled
switches. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research (SOSR), 2015: 25.

[10] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, S.
Banerjee. DevoFlow: Scaling Flow Management for High-performance
Networks. ACM SIGCOMM Computer Communication Review, 2011,
41(4): 254-265..

[11] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, A. W. Moore. Oflops:
An Open Framework for Openflow Switch Evaluation. In International
Conference on Passive and Active Network Measurement. Springer Berlin
Heidelberg, 2012: 85-95.

[12] D. Y. Huang, K. Yocum, A. C. Snoeren. High-fidelity Switch Models
for Software-defined Network Emulation. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking
(HotSDN), 2013: 43-48.

[13] E. D. Kim, Y. Choi, S. I. Lee, M. K. Shin, H. J. Kim. Flow table
management scheme applying an LRU caching algorithm. In International
Conference on Information and Communication Technology Convergence
(ICTC), 2014: 335-340.

[14] D. Tai, H. Dai, T. Zhang, B. Liu. On Data Plane Latency and Pseudo-
TCP Congestion in Software-Defined Networking. In Proceedings of the
2016 Symposium on Architectures for Networking and Communications
Systems (ANCS), 2016: 133-134.

[15] M. Yu, J. Rexford, M. J. Freedman, J. Wang. Scalable Flow-based
Networking with DIFANE. ACM SIGCOMM Computer Communication
Review, 2010, 40(4): 351-362.

[16] S. Luo, H. Yu. Fast incremental flow table aggregation in SDN. In IEEE
International Conference on Computer Communication and Networks
(ICCCN), 2014: 1-8.

[17] H. Li, S. Guo, C. Wu, J. Li. FDRC: Flow-driven rule caching optimiza-
tion in software defined networking. In IEEE International Conference
on Communications (ICC), 2015: 5777-5782.

[18] N. Katta, O. Alipourfard, J. Rexford, D. Walker. Infinite cacheflow in
software-defined networks. In Proceedings of the third workshop on Hot
topics in software defined networking (HotSDN), ACM, 2014: 175-180.

[19] Y. Wang, D. Tai, T Zhang, B. Xu, L. Jin, H. Dai, B. Liu, X. Wu.
Flowshadow: a fast path for uninterrupted packet processing in SDN
switches. In Proceedings of the Eleventh ACM/IEEE Symposium on
Architectures for networking and communications systems (ANCS),
2015: 205-206.

[20] N. Beheshti, Y. Ganjali, R. Rajaduray, D. Blumenthal, N. McKeown.
Buffer sizing in all-optical packet switches. In Optical Fiber Communi-
cation Conference and the National Fiber Optic Engineers Conference,
2006: 3.

[21] P. Eugster, K. Kogan, S. Nikolenko, A. Sirotkin. Shared memory
buffer management for heterogeneous packet processing. In IEEE 34th
International Conference on Distributed Computing Systems (ICDCS),
2014: 471-480.

[22] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, M. Casado. The
Design and Implementation of Open vSwitch. In Proceedings of the 7th
USENIX Symposium on Networked System Design and Implementation
(NSDI), 2015: 117-130.

[23] Floodlight. http://www.projectfloodlight.org/floodlight/.

[24] R. Olsson. Pktgen the Linux Packet Generator. In Ottawa Linux Sym-
posium, 2005.

[25] Tepdump. http://www.tcpdump.org/.

[26] OpenFlow Switch Specification. https://www.opennetworking.org/software-

defined-standards/specifications/.
[27] Analyzing UDP usage in Internet
https://www.caida.org/research/traffic-analysis/tcpudpratio/.

traffic.

[28] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D.
Maltz. zZUpdate: Updating Data Center Networks with Zero Loss. ACM
SIGCOMM Computer Communication Review, 2013, 43(4): 411-422.

[29] B. Yan, Y. Xu, H. J. Chao. Adaptive Wildcard Rule Cache Management
for Software-Defined Networks. IEEE/ACM Transactions on Networking,
2018.

[30] S. Song, H. Park, B. Y. Choi, T. Choi, H. Zhu. Control path management
framework for enhancing software-defined network (SDN) reliability.
IEEE Transactions on Network and Service Management, 2017, 14(2):
302-316.

[31] H. Xu, Z. Yu, C. Qian, X. Y. Li, Z. Liu, L. Huang. Minimizing
Flow Statistics Collection Cost Using Wildcard-Based Requests in SDNs.
IEEE/ACM Transactions on Networking, 2017, 25(6): 3587-3601.

[32] Y. Zhang, K. Xu, H. Wang, Q. Li, T. Li, X. Cao. Going fast and
fair: Latency optimization for cloud-based service chains. IEEE Network,
2018, 32(2): 138-143.

Fuliang Li received the B.S. degree in computer
science from the Northeastern University, Shenyang,
China in 2009, and the Ph.D. degree in computer
science from the Tsinghua University, Beijing, China
in 2015. He is currently an assistant professor at
the School of Computer Science and Engineering,
Northeastern University, Shenyang, China. He was
a postdoctoral fellow with Department of Comput-
ing at Hong Kong Polytechnic University, Hong
Kong during 2016-2017. He published 20 Jour-
nal/conference papers, including journal papers such
as IEEE/ACM TON, Computer Networks, Computer Communications, Jour-
nal of Network and Computer Applications, and mainstream conferences such
as IEEE INFOCOM, IEEE ICDCS, IEEE GLOBECOM, IEEE LCN, IEEE
CLOUD, and IFIP/IEEE IM, etc. His research interests include network man-
agement and measurement, mobile computing, software defined networking
and network security. He is a member of the IEEE.

Jiannong Cao received the BSc degree from Nan-
jing University, Nanjing, China, in 1982, and the
MSc and PhD degrees from Washington State Uni-
versity, Pullman, WA, in 1986 and 1990, all in
computer science. He is currently a chair profes-
sor of Distributed and Mobile Computing of the
Department of Computing and the director of Uni-
versity Research Facility in Big Data Analytics
at the Hong Kong Polytechnic University, Hong
Kong. His research interests include parallel and
distributed computing, wireless networks and mobile
computing, big data and cloud computing, pervasive computing, and fault
tolerant computing. He has served as chairs and members of organizing and
technical committees of many international conferences, including PERCOM,
INFOCOM, SMARTCOMP, ICMU, ICPP, MASS, ICPADS, IWQoS, ICDCS,
DSN, SRDS, ICNP, and RTSS. He has also served as an associate editor and
a member of the editorial boards of many international journals, including
IEEE TPDS, TCC, TC, IEEE Network, ACM TOSN, Elsevier Pervasive and
Mobile Computing Journal (PMCJ), Springer Peer-to-Peer Networking and
Applications, and Wiley Wireless Communications and Mobile Computing.
He is a fellow of the IEEE.

Xingwei Wang received the B.S., M.S., and Ph.D.
degrees in computer science from the Northeastern
University, Shenyang, China in 1989, 1992, and
1998 respectively. He is currently a professor at
the School of Computer Science and Engineering
and the head of College of Software, Northeastern
University, Shenyang, China. He has published more
than 100 journal articles, books and book chapters,
and refereed conference papers. He has received
several best paper awards. His research interests
include future Internet, cloud computing, mobile
computing and mobile social network.

Yinchu Sun received the B.S. degree in computer
science from the Northeastern University, Shenyang,
China in 2014. He is currently working toward
the M.S. degree in the Northeastern University,
Shenyang, China. His research interests include net-
work management and measurement, software de-
fined networking.

Tian Pan received the B.S. degree from North-
western Polytechnical University, Xi’an, China, in
2009 and the Ph.D. degree from the Department of
Computer Science and Technology, Tsinghua Uni-
versity, Beijing, China, in 2015. He is currently a
postdoctoral fellow researcher in the Department of
Information and Communication Engineering, Bei-
jing University of Posts and Telecommunications.
His research interests include router architecture,
network processor architecture, network power ef-
ficiency, and software-defined networking.

Xuefeng Liu received his M.S. and Ph.D. degree
from Beijing Institute of Technology, China, and
University of Bristol, UK, in 2003 and 2008, re-
spectively. He is currently an associate Professor in
Huazhong University of Science and Technology.
His research interests include wireless sensor net-
works and in-network processing.

