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Abstract—Information about vehicle safety, such as the driving safety status and the road safety index, is of great importance to
protect humans and support safe driving route planning. Despite some research on driving safety analysis, the accuracy and
granularity of driving safety assessment are both very limited. And the problem of precisely and dynamically predicting road safety
index throughout a city has not been sufficiently studied and remains open. With the proliferation of sensor-equipped vehicles and
smart devices, a huge amount of mobile sensing data provide an opportunity to conduct vehicle safety analysis. In this paper, we first
discuss the mobile sensing data collection in VANET and then identify two main challenging issues in vehicle safety analysis in VANET,
i.e., driving safety analysis and road safety analysis. In each issue, we review and classify the state-of-the-art vehicle safety analysis
techniques into different categories. For each category, a short description is given followed by the limitation discussion. Furthermore,
in order to improve the vehicle safety, we propose a new deep learning framework (DeepRSI) to conduct real-time road safety index
prediction from the data mining point of view. Specially, the proposed framework considers the spatio-temporal relationship of vehicle
GPS trajectories and external environment factors. The evaluation results demonstrate the advantages of our proposed scheme over
other methods by utilizing mobile sensing data collected in VANET.
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1 INTRODUCTION

In modern society, cars and other private vehicles are widely
used by many people. A crucial problem that each person has to
face everyday is the increasing number of accidents occurred on
the road. Consequently, the expense and related dangers are also
recognised as a serious problem. Unfortunately, this transportation
safety problem continues to worsen because of population growth
and the increasing number of vehicles in urban areas. According
to the report from World Health Organization1, each year approx-
imately 1.25 million people die of road traffic injuries around the
world, which means one person is killed every 25 seconds. If the
current trend continues, road accidents are predicted to increase
by 65% and become the fifth major cause of death by 2030.

With the high demand for reducing road accidents and improv-
ing traffic safety, various kinds of sensors have been equipped with
many newly manufactured vehicles. And the high speed mobile
communication networks have accelerated the proliferation of
sensor-equipped smart devices such as smartphones and wearable
devices. These abundant mobile sensors provide an enormous
opportunity to collect a huge amount of mobile sensing data
to conduct vehicle safety analysis in vehicular ad hoc networks
(VANET).

Accurate vehicle safety analysis can be applied in autonomous
driving system. With large amount of sensing data and many
advanced data analysis techniques, autonomous driving is very
promising to achieve lower accident rate than human driving. To
realize the autonomous driving, two kinds of information should
be analyzed in real time, i.e., the driving safety and road safety
information. The driving safety information include the driver’s
driving behaviors and the vehicles surroundings. The road safety
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information include the road safety level about various accidents.
Some studies have been conducted to survey the state of the art

of vehicle safety analysis in VANET by analyzing its challenges
and comparing recent approaches. In [1], Liu et al. introduce the
architecture of in-vehicle networks, the controller area network
(CAN) frame format and the vulnerabilities of in-vehicle net-
works. Then the authors make a summary on the methodologies
that have been used in the experimental studies, present a general
procedure that can be followed to attack in-vehicle networks, and
introduce some existing experimental studies. Considering that the
intrinsic vulnerabilities of the CAN bus and the available inter-
faces make in-vehicle networks vulnerable, the authors propose
the corresponding countermeasures to enhance in-vehicle network
security. In addition, some challenges and future directions are
also presented. In [2], Khan et al. present a brief review of different
mobile phone sensing systems which can be utilized to improve
the vehicle safety and conduct intelligent driver assistance. The
authors categorize all the urban sensing systems into two broader
categories, such as participatory and opportunistic sensing sys-
tems. In each category of systems, three sub-classes are further
identified, including personal, social and public sensing systems.
Moreover, the authors also briefly introduce the area of application
of each system.

Compared to these existing studies, in this article, our em-
phasis is on the comprehensive taxonomy and comparison of
different vehicle safety analysis techniques. We first discuss the
mobile sensing data collection in VANET and then identify two
main challenging issues in vehicle safety analysis, i.e., driving
safety analysis and road safety analysis. For each issue, many
techniques are investigated and classified into different categories,
as shown in Table 1. For each category, a short description is
given followed by the limitation discussion. Furthermore, for the
road safety analysis, existing works mainly leverage mathematical
models and images analysis techniques to assess and predict the
road safety. However, model-based works often need empirical
assumptions and parameters, and image-based methods only focus
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TABLE 1: Different vehicle safety analysis techniques in VANET.

Issues Techniques Examples

Driving safety
analysis

Analyzing driving
behavior

Dynamic Time Warping [3]
Naive Bayes classifier [4]
Inertial sensing data comparison [5]

Detecting vehicle’s
surroundings

Vehicle detection [6]
Pedestrian detection [7]
Traffic sign and lane detection [8]

Road safety
analysis

Mathematical model
Analysis of Covariance model [9]
Linear model and thresholding [10]
Empirical Bayes model [11]

Image analysis
Support Vector Regression [12]
Support vector machine [13]
Convolutional neural networks [14]

on extracting relationships between images and road safety, which
cannot achieve high prediction accuracy. Thus, we further propose
a new deep learning framework (DeepRSI) to predict the real-
time road safety index with multi-domain urban data from the
data mining point of view. Specially, the complex spatio-temporal
relationship between vehicle GPS trajectories and safety index
is analyzed. We also consider some external environment factors
(e.g., weather condition and event), which influence the road
safety index. The evaluation results demonstrate that our proposed
scheme can achieve better performance than other methods by
utilizing mobile sensing data collected in VANET.

2 VEHICLE SAFETY ANALYSIS IN VANET
2.1 Mobile sensing data collection
With the proliferation of sensors, the sources of mobile sensing
data in VANET can be divided into two categories: one is the smart
device such as smartphone and wearable device. These smart
devices are usually equipped with many sensors, including GPS,
accelerometer, magnetic field, and gyroscope. The collected mo-
bile sensing data can be preliminarily analyzed by the smart device
or transmitted to the cloud through the wireless communication
networks for further mining. The other one is the vehicle, which is
assembled much more sensors (the average amount reaches 70 to
100) than the smart device. According to the application domain,
we can divide these sensors into four categories: safety, diagnos-
tics, convenience, and environment monitoring. Because vehicles
have more computational power than smart devices, complex data
analysis can be conducted locally. Moreover, vehicles are able
to communicate with other vehicles, infrastructures, and mobile
devices in VANET to exchange data and derived information.
Thus, with these vast amounts of mobile sensing data collected
in VANET, various services and applications can be provided.

2.2 Challenges in vehicle safety analysis
During the various services and applications in VANET, vehicle
safety analysis is the most crucial. The philosophy of vehicle
safety analysis is to obtain various safety information of vehicles
and roads to prevent potential accidents and improve transporta-
tion safety. The obtained safety-related information is shared and
transmitted between various vehicles in VANET. Fig. 1 gives an
example of recognized traffic sign transmission. Vehicle safety
analysis needs to address many challenges in the future before it
becomes successful, which include data collection, computation
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Fig. 1: An example of recognized traffic sign transmission between
various vehicles in VANET.

accuracy, system dynamic, and so on. In this article, we identify
two main challenging issues in vehicle safety analysis system:
driving safety analysis and road safety analysis.

In driving safety analysis, driving behaviors of a driver will be
analyzed to detect aggressive driving style and vehicle’s surround-
ings will be detected to conduct intelligent driver assistance. How
to accurately detect driving style with limited data collection and
precisely recognize vehicles surroundings without extra special-
ized device are crucial to the success of driving safety analysis.

In road safety analysis, we analyze the effect on the road safety
from external environments, including road geometry, traffic flow,
weather, and human behavior. Through predicting the fine-grained
safety level of road in a city, emergency mechanisms (e.g., sending
warnings and conducting traffic controls) could be launched in
advance and less traffic accidents may occur. How to dynamically
and accurately analyze the effect of external factors to predict the
safety level of road with high granularity are enormous challenges
to the practical application of the road safety analysis.

2.3 Driving safety analysis
Over the past decade, there has been significant research effort
dedicated to the development of driving safety analysis system,
which is intended to enhance transportation safety and prevent
accidents. Several systems have been proposed to improve the
driving safety from two aspects: analyzing driving behavior [3],
[4], [5], and detecting vehicle’s surroundings [6], [7], [8].



IEEE NETWORK 3

With the wide adoption of smartphones and development
of sensing technology, the driving style can be measured more
objectively. Aggressive driving, a particular type of driving style,
has been reported to be a influential factor of accidents by the
American Automobile Association (AAA) Foundation for Traf-
fic Safety2. By understanding an individual’s driving behavior,
a system can timely remind the driver to change aggressive
driving styles to reduce the risk of an accident. Johnson et al.
[3] study the problem of detecting and recognizing potentially
aggressive driving behavior in a mobile, effective, and inexpensive
way. MIROAD [3], a driver monitoring system, is developed
by utilizing the Dynamic Time Warping algorithm and fusing
multiple smartphone based sensor data into a single classifier.
Hong et al. [4] seek to understand and model aggressive driving
style by applying a machine learning technique (i.e., Naive Bayes
classifier) on a number of driving-related features. To obtain an
objective measurement of driving style, the authors also construct
a lightweight in-vehicle sensing platform based on drivers own
smartphones. Considering the effect of phone use on the driving
safety, Wang et al. [5] explore a low-infrastructure approach that
senses vehicle dynamics to determine whether the phone is used by
the driver or passenger. The location of smartphone is inferred by
comparing the centripetal acceleration measured from smartphone
with the acceleration measured at a reference point inside the
vehicle. In [5], a data calibration algorithm is also proposed to mit-
igate the noise of sensor readings and unpredictable geometries,
such as different size of turns, driving speed, and driving styles.
However, considering privacy protection and energy consumption
in smartphone, drivers may refuse smartphones to collect data,
which will limit the extensive adoption of these systems.

Besides analyzing driving behavior, many works develop
various intelligent driver assistance systems to detect vehicle’s
surroundings to promote driving safety. Satzoda et al. [6] propose
VeDAS, a multipart-based vehicle detection algorithm, to detect
vehicles from fully and partially visible rear views by employ-
ing Haar-like features. A modified active learning framework is
proposed to train the Adaboost classifiers. Then, the detected
parts from the classifiers are associated by using a novel iterative
window search algorithm and a symmetry-based regression model
to extract fully visible vehicles. Jeong et al. [7] leverage the
far-infrared camera to detect sudden pedestrian crossing (SPC)
at night for supporting the intelligent driver assistance system.
Multiple pedestrians are detected based on cascade random forest
with low dimensional Haar-like and OCS-LBPs features. The
system infers the SPC based on the likelihood and spatiotem-
poral features of each pedestrian, such as the overlapping ratio
and the direction and magnitude of the pedestrians movement.
Considering the spatial structures in visual signals, Li et al. [8]
extend the framework of deep neural networks to conduct traffic
sign and lane detection. A multitask deep convolutional network
is proposed to detect the presence of the target and the geometric
attributes of the target. Then the authors adopt a recurrent neuron
layer to detect traffic sign and lane, although their spatial structures
may be hard to explicitly define. However, these existing systems
normally need expensive cameras and extra specialized devices
equipped in vehicles to detect surroundings.

2. https://www.aaafoundation.org/aggressive-driving-research-update

2.4 Road safety analysis

Although analyzing the driving safety of a driver is an effective
way to reduce accidents and improve the transportation safety,
it fails to consider the effect from external environments. Road
safety analysis, on the other hand, analyzes and predicts the safety
of each road in a city, which can support safe route planning and
transportation safety control. It is another crucial aspect in vehicle
safety analysis. Previous road safety analysis can assess the safety
index of each road in a city and make some prediction based on
various mathematical models [9], [10], [11] or image analysis [12],
[13], [14].

Some methods develop various models to describe and predict
road safety index from factors like street geometry, traffic flow
and human behavior, based on a number of empirical assumptions
and parameters. Traunmueller et al. [9] investigate the relation-
ship between the safety perceptions and characteristics of the
built environment to understand the impact of place-familiarity,
visual properties of environment and the presence of people. In
Streetwise [9], based on the assumption that most users would
provide a correct contribution, the problem of environment safety
assessment is approached by utilizing an Analysis of Covariance
model on crowdsourced data to detect significant factors that affect
road safety. uSafe [10] proposes a platform to inform citizens
about the safety of urban environments based on user-generated
content reported via mobile devices. Based on the proposed
model with empirical parameters, the direct participation of the
citizens are extracted, and then the safety in urban environment
is assessed. Especially, the anonymity and privacy protection are
also considered in the proposed system. Different customizable
protection mechanisms are designed and corresponding effective-
ness is ensured through an empirical model. Elvik et al. [11] study
the predictive performance of road safety estimation through the
empirical Bayes model. The road safety is analyzed and predicted
from the accident record of an entity and the expected accident
frequency of similar entities determined by another empirical
model named Safety Performance Function. In [11], five versions
of empirical Bayes estimate of road safety are proposed and their
prediction performances are compared on historical data collected
in Norway. However, in these model-based works, empirical
assumptions and parameters might not be applicable to all urban
environments.

In addition, some methods study the relationship between
visual elements and city attributes to predict road safety based
on image analysis. Streetscore [12] is a scene understanding algo-
rithm based on support vector regression to predict the perceived
road safety from streetscapes. The authors create a perceptive
road safety map for a city by collecting training data from an
online survey with contributions from more than 7000 volunteers.
Arietta et al. [13] present a method to learn the relationships
between visual elements and city attributes such as crime rates,
theft rates and danger perception from street-level images of a
city. Effective features are automatically extracted from images
and fed into support vector machine classifier. Unlike most scene
analysis focusing on identifying objects directly present in a scene,
Khosla et al. [14] propose to look beyond the immediately visible
elements of an urban scene to predict potential crime rate for
an area. Through training crime data and images collected from
Google street view, the authors utilize the convolutional neural
network to analyze and predict the safety of a road from an urban
scene. However, these image-based methods focus on extracting
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Fig. 2: Illustration of the proposed deep learning framework to predict the real-time road safety index.

relationships between images and perceptive road safety, which
cannot achieve high fine granularity or prediction accuracy. Dif-
ferent from existing efforts, we propose a new method to analyze
multiple cross-domain factors to accurately infer the road safety
index of a city from the data mining point of view.

3 A NEW DEEP LEARNING FRAMEWORK TO CON-
DUCT ROAD SAFETY ANALYSIS

In this section, in order to conduct road safety analysis, we propose
a new deep learning framework (DeepRSI) to predict the real-time
road safety index based on the deep dense convolutional network
[15]. The designed architecture is comprised of four major parts,
as shown in Fig. 2.

3.1 Multiple cross-domain data collection
In part I, we collect and preprocess a large amount of multiple
historical cross-domain urban data from authoritative official or-
ganizations in the New York City3,4. These data include urban
map, weather data, holiday event data, GPS trajectories generated
by over 13,000 taxis, and accident event records. These taxis in
VANET are equipped with GPS which can be viewed as a large
number of mobile sensors measuring the travelling speed on the
road. The trajectory data can also provide the pick-up and drop-
off locations in each trip. As shown in Fig. 3, we divide the city
into disjointed grids. Each grid has a unique road safety index to
be inferred. Vehicle GPS trajectories are preprocessed and derived
into traffic flow in each grid and each time slot in the form of a
matrix.

3.2 Deep spatio-temporal dense network structure
Deep learning is a technique to learn representations of data with
multiple levels of abstraction by utilizing various computational
models that are composed of multiple processing layers. The

3. https://data.cityofnewyork.us/
4. http://www.nyc.gov/html/tlc/html/about/trip−record−data.shtml

technique can discover intricate structure in large data sets by
using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the
representation in each layer from the representation in the previous
layer.

In part II of DeepRSI, we design a novel deep spatio-temporal
dense network structure to analyse the spatio-temporal pattern of
vehicle traffic flow in each region of a city. This deep spatio-
temporal dense network framework utilizes dense convolutional
unit to collectively model spatial and temporal dependencies of
vehicle traffic flows between any two regions in a city. For tempo-
ral dependencies, we first divide the time axis into three segments,
i.e., recent time, near time and distant history. The vehicle traffic
flow matrices of time intervals in each segment are then fed
into three corresponding temporal components to model three
temporal properties: closeness, period and trend, respectively. For
spatial dependencies, we design a sequence of dense convolutional
units in each temporal component to model the spatial properties
of vehicle traffic. Thus, three spatio-temporal components are
generated, which have the uniform network structure consisting
of 2 convolutional layers and L dense convolutional units. Such
new proposed deep spatio-temporal dense network structure can
collectively capture the spatial and temporal dependencies of
vehicle traffic flows between nearby and distant regions in a city.

In part III, we also concern some external factors, such as
weather condition and event, which will influence the road safety
index. For example, the heavy rain and snow will make roads
very slippery and the heavy fog will decrease the visibility. Some
holidays (such as Chinese Spring Festival) can significantly lead
to traffic congestion. All these factors will easily cause serious
traffic accidents. Thus, in our system, we mainly consider weather,
holiday event, and metadata (i.e. day of the week and weekend).
Then, we feed these external factors into a two-layer fully-
connected neural network. The first layer can be viewed as an
embedding layer for each sub-factor followed by an activation, and
the second layer is used to map low to high dimensions that have
the same shape as XDens. The output of the external component
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(a) Grid. (b) Vehicle trajectories.

Fig. 3: Illustration of the grid and vehicle GPS trajectories.

is denoted as XExt with the parameters θExt.

3.3 Real-time road safety index prediction to improve
vehicle safety
In our system, the road safety index (SI) is a number used to
communicate to the public how safe an area is. As the SI increases,
traffic accidents will occur with a decreasing possibility. The SI
values are divided into several ranges, and each range is assigned
with a descriptor. We calculate the safety index as follows:

SI = (1−Ra) ∗ 100, (1)

where Ra is the traffic accident rate per 100,000 inhabitants and
has been normalized.

In part IV, we fuse these four components and add a clas-
sification output layer to generate a complete network architec-
ture. The different regions are all affected by closeness, period
and trend, but the degrees of influence may be various. Thus,
we first dynamically aggregate the outputs of the three spatio-
temporal components with a proposed parametric-matrix-based
fusion method, as follows:

XDens = Wc ◦ X(L+2)
c + Wp ◦ X(L+2)

p + Wq ◦ X(L+2)
q , (2)

where ◦ is Hadamard product, X(L+2)
c , X(L+2)

p and X(L+2)
q are

the outputs of the three spatio-temporal components, Wc, Wp

and Wq are the learnable parameters that adjust the degrees
affected by closeness, period and trend, respectively. Furthermore,
we combine the spatio-temporal aggregation with the external
component to predict the final road safety index in each and every
region, as follows:

XReLu = ReLu(XDens + XExt), (3)

where XReLu is the final aggregation of four components, ReLu
is a rectified linear unit that is simply the half-wave rectifier
f(z) = max(z, 0), which can yield a faster convergence than
the standard logistic function and tanh function in a deep network.
Finally, with a softmax classification layer being added as the
output layer, the whole deep network can be trained to predict the
real-time road safety index SI in each region of a city.

4 EXPERIMENT RESULTS

We carry out experiments of road safety index prediction on an
Intel core i7 machine with 32GB RAM and NVIDIA TITAN X
graphics card. A large amount of multiple historical cross-domain
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Fig. 4: Precision of different methods for road safety index
prediction.

urban data (more than 200G) are collected from authoritative
official organizations in the New York City. The total distance
of all vehicle trips reaches 216 million kilometers, and the amount
of accessing points is over 78 million. Because taxis contribute
about 30 percent of traffic flow in the New York City5, the data
is big enough to represent the traffic patterns there. In this article,
about two-thirds of data are used to train our models, and the other
part are used as the ground truth to compare the performance of
our methods. The whole city is divided into disjointed grids with
the granularity of 200m × 200m. Each grid has a unique road
safety index label to be inferred.

We measure our method by two performance metrics: preci-
sion and recall. The precision for a category in road safety indexes
is defined as the ratio of the number of correctly predicting a road
safety index to the total number of instances classified into this
category. And the recall for a category in road safety indexes is
defined as the ratio of the number of correctly predicting a road
safety index to the total number of instances that actually belong
to this category. The results also compare our proposed method
DeepRSI with other data analysis models, including decision
tree (DT), k-nearest neighbors (KNN), artificial neural network
(ANN), support vector machine (SVM), and image based deep
learning method [14].

As shown in Fig. 4, DeepRSI outperforms other methods in
term of mean precision. The mean precision of all categories in
DeepRSI can reach 83.2% with the highest precision 90.7% and
lowest precision 74.1% for one category. When we apply the DT
algorithm to infer the road safety index, the mean precision of
all categories is 73.4%. When the KNN algorithm is utilized to
infer the road safety index, the mean precision of all categories
is 56.6%. And the mean precision of all categories can achieve
69.4%, when the road safety index is inferred by the ANN
algorithm. When we apply the SVM algorithm to conduct the
road safety index inference, the mean precision of all categories
is 62.1%. Moreover, image based deep learning method [14] can
achieve 78.3% mean precision of safety index prediction.

As illustrated in Fig. 5, DeepRSI can achieve better perfor-
mance other methods in term of mean recall. The mean recall of all

5. www.sciencedirect.com/science/article/pii/S0965856408001900
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Fig. 5: Recall of different methods for road safety index prediction.

categories in DeepRSI can reach 81.3% with the highest precision
90.2% and lowest precision 73.4% for one category. And when
the road safety index is predicted by DT, KNN, ANN, SVM, and
image based deep learning method [14], the mean recall of all
categories can reach 69.2%, 59.9%, 62.3%, 64.6%, and 77.1%,
respectively.

5 CONCLUSION

In this paper, we discuss many challenges and approaches in
vehicle safety analysis in VANET. Compared to other existing
studies, our emphasis is on the comprehensive taxonomy and
comparison of different vehicle safety analysis techniques. We first
discuss the mobile sensing data collection in VANET and then
identify two main challenging issues in vehicle safety analysis,
i.e., driving safety analysis and road safety analysis. In each issue,
we review and classify many the state-of-the-art vehicle safety
analysis techniques into different categories. For each category, a
short description is given followed by the limitation discussion.
Furthermore, in order to improve the vehicle safety, we propose a
new deep learning framework (DeepRSI) to conduct real-time road
safety index prediction from the data mining point of view. The
proposed framework considers the spatio-temporal relationship of
vehicle GPS trajectories and external environment factors. The
preliminary results demonstrate the effectiveness of our proposed
scheme by utilizing mobile sensing data collected in VANET.
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