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Abstract—In regression GUI testing for Android apps, test
scripts often fail due to outdated test actions. To avoid such false
positives while still retaining the value of the old test scripts
as much as possible, programmers need an automatic way to
maintain the tests after the corresponding GUI has evolved.

In this paper, we propose the CHATEM approach to automate
GUI test script maintenance for Android apps. Taking as input
the models for the GUIs of the base and updated version app
and the original test scripts, CHATEM automatically extracts
the changes between the two GUIs and generates maintenance
actions for affected test scripts. In an experimental evaluation on
16 Android apps, CHATEM was able to automatically maintain
the test scripts so that overall more than 95% of the remaining
behaviors tested before are still tested, and almost 80% of the
reusable test actions are retained in the result tests.

Index Terms—GUI testing, Regression testing, Automated test
maintenance

I. INTRODUCTION

In the past few years, mobile devices have become an
indispensable part of people’s daily life and, along with them,
tens of thousands of mobile applications (or apps) have been
programmed and put on the market, creating fierce competition
among the apps with overlapping functionalities. As users are
offered more options now and it is very easy for them to
switch from one app to another, developers have to pay more
attention to product quality in order to attract the users and win
the competition. Mobile apps are typically developed in short
iterations, and automated regression testing is often needed at
the end of an iteration to efficiently check that the introduced
changes do not break existing functionality. While most mobile
apps have rich graphical user interfaces (GUIs) and ensuring
the correctness of an app at the GUI level is critical for the
success of the app, automated regression GUI testing of those
apps has been a challenging task.

In GUI testing for mobile applications, tests are often
written as scripts for triggering events on the GUI widgets.
Since most such test scripts locate widgets with respect to
a context window and through querying certain properties of
the widgets like IDs, texts, and indexes within a list, they
are sensitive to changes that affect those relevant properties
of widgets. For example, if a test script accesses a button
through its text, assigning a different text to the button may
then cause the test script to fail. Such fails in regression GUI
testing, however, are not useful in the sense that they do not
reveal faults in the application under testing: they occur only

because the test scripts become invalid after the changes. To
avoid such failures during regression testing while reusing as
many as possible existing test scripts, considerable research
has been conducted to automatically bring test scripts in sync
with the GUI they exercise.

Although there are a number of ways to automatically
generate GUI test scripts [1]–[3], completely throwing away
old test scripts and generating new ones from scratch is
not always affordable or desirable. First, generating new
test scripts with acceptable quality, e.g., measured in state
coverage, can be enormously expensive; Second, automated
test script generation may fail to cover important behaviors
due to the lack of domain specific expertise or limitations of
the generation techniques, and manually crafted test scripts are
needed to complement the generated ones. Last but not least,
existing tests often incorporate human effort already, since test
engineers often need to manually revise the generated scripts
to improve their efficiency, understandability, or documenta-
tion.

Researchers have proposed different approaches to repairing
GUI test scripts for regression testing. Grechanik et al. [4]
developed the REST technique that models GUIs as trees
of widgets and activities and compares the trees to identify
changed GUI objects, which are then used to guide the analysis
and update of test actions involving the changed GUI objects.
Gao et al. [5] proposed SITAR to repair test scripts. SITAR
maps test scripts to an annotated event-flow graph (EFG)
model, and uses four repairing transformations to repair the
unusable test script actions. For repairing test actions that
are not in the model or changes that can not be repaired by
the repairing transformations, human input is needed. In our
previous work [6], we developed the ATOM technique for
GUI test scripts maintenance. Given an event sequence model
(ESM) encoding the behavior of a base version app and a
delta ESM (DESM) capturing the changes to the base version,
ATOM automatically repairs the test scripts targeting the base
version app to run on the changed version app. Although
useful, ATOM does require manual construction of the DESM,
which can be challenging at times as it requires knowledge
about not only the changes, but also how the base version app
and the ESM are related.

In this paper we propose a CHAnge-based TEst Mainte-
nance approach to regression GUI testing, named CHATEM.
Given two ESMs for the base and updated version app and
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a group of test scripts for the base version app, CHATEM
automatically extracts changes between the two GUIs, iden-
tifies the impact of the changes on the tests, generates and
applies maintenance actions to update the affected test scripts.
As for the construction of the input ESMs, we propose a semi-
automatic approach, which combines the application of state-
of-the-art model extraction tools and manual confirmation to
strike a balance between efficiency and model quality. Since
all the maintenance actions constructed by CHATEM have
direct connection with affected actions in test scripts, we
hope maintenance results generated in this way are easier
for programmers to understand and then more likely to be
accepted by programmers.

We have implemented the CHATEM technique into a tool,
also named CHATEM, and conducted an experiment to evalu-
ate the maintenance power of CHATEM. In the experiment, we
used 16 production Android apps from previous research work
as the subjects, and overall CHATEM was able to produce
maintained scripts that test more than 95% of the behaviors
tested before and retain almost 80% of the reusable test
actions. The effectiveness of CHATEM was comparable with
ATOM’s, suggesting CHATEM could be used as an alternative
or a complement to ATOM.

The main contributions of this paper are as the following.
• We propose the CHATEM automated approach to An-

droid GUI test script maintenance. CHATEM extracts
changes between different GUIs based on their corre-
sponding ESMs, and generates maintenance actions that
can be applied directly to affected test scripts to bring
them in sync with the updated version GUI.

• We implement the CHATEM technique into a prototype
tool, also named CHATEM, for more efficient test script
maintenance and regression testing of mobile applica-
tions.

• We conduct an empirical study on 16 real-world Android
applications to evaluate the effectiveness of CHATEM.
The experimental results suggest that the effectiveness
of CHATEM is comparable with our previous approach
ATOM, but users are relieved of the burden of manually
building a model to encode the changes between different
versions of the app.

The rest of this paper is organized as follows. Section
2 takes a mobile application as an example to illustrate
CHATEM from a user’s perspective. Section 3 introduces
the preliminaries to Android GUI testing. Section 4 details
the framework and the individual components of CHATEM.
Section 5 explains the experiments we conducted to evaluate
the effectiveness of CHATEM as well as the experimental
results. Section 6 briefly reviews related work in GUI testing
and test script maintenance for mobile applications. Section 7
concludes the paper and discusses a few options for possible
future work.

II. PRELIMINARY

In this section, we will give an introduction to the basic
concepts related to GUIs of Android apps and the scripts

developers use for testing the GUIs.

A. Composition of an Android GUI

Android applications are typically developed in the Java
programming language and executed on the Dalvik virtual
machine. The Android SDK tool compiles the source code,
the data and resources of an app into an APK file, which can
then be installed directly on Android devices. Most APK files
include a manifest file (named AndroidManifest.xml),
a group of bytecode files for the compiled application classes
(to be interpreted by the Dalvik virtual machine), and other
necessary resource files. The manifest file contains the global
configuration and is an essential part of the app. Besides
specifying the file structure of an app, a manifest file also
lists the major components of the app like activities, services,
broadcast receivers, and content providers, and declares the
app’s permission to access various APIs and interact with other
apps.

Most interactions between apps and their users are through
activities, which can be roughly understood as the counterpart
of windows in desktop applications. To introduce activities and
their supported user interactions, we use general concepts like
screen, widget, and event.

A screen is an activity, a menu or a dialog [7]. An activity
is defined by subclassing the android.app.Activity
class, and a dialog by subclassing android.app.Dialog.
There are two kinds of menus. Option menus are re-
lated to activities, and an activity can only have at most
one option menu. Option menus are typically initialized
in the callback method onCreateOptionMenu. Context
menus are associated with widgets of activities, and are
initialized in method onCreateContextMenu. One can
register a context menu for a widget by calling method
registerForContextMenu. All the statically created ac-
tivities must be declared in the app’s manifest file, and each
activity will be assigned a unique id to mark its uniqueness.

A screen is active if it can receive user inputs and interact
with the user. Given any point in time, each app has at most
one active screen.

During testing, the active screen provides the execution
context for the next test script action. If a screen is inactive,
the next test script action will fail if it targets a widget on that
window.

Screens consist of widgets. Widgets have properties (e.g.,
ID and title) and users can trigger events on widgets. In
general, Android apps deal with two types of events: widget
events and system default events. Widget events are triggered
through user interactions with the corresponding widgets. A
widget event can be identified by the widget triggering the
event and the event type, and a widget may trigger multiple
types of events. For example, clicking on and long clicking on
a button will trigger two different events on the same button.
System default events are not associated with any widget, but
are triggered by pressing the physical buttons like BACK or
HOME on mobile devices. An event in general relates two
screens: One is the currently active screen of the app and the



other is the screen to become active in response to the event.
We refer to these two screens as the source and the target
screen of the event, respectively. The source screen and the
target screen of an event may be the same.

B. Android GUI Test Scripts and Test Actions

To automate the system testing of Android apps on the GUI
level, developers often write test scripts, which can then be
executed by various testing engines. Although different GUI
testing engines support different sets of features for test script
construction, most test scripts are essentially sequences of test
actions and each test action consists of two important parts: a
widget locator and an event trigger. When applied on an active
screen, a widget locator returns the widget on the screen that
satisfies certain criterion; An event trigger signals an event
of specified type on a widget. From an active screen, the
execution of a test action then involves first locating a target
widget and then firing the specified event on that widget. The
execution fails if multiple or no widget can be found or the
located widget does not support the type of event to be fired.
Properties that are often used to construct locators include,
e.g., ID, text, type, and XPath. In the remaining of this
paper, we refer to the collection of these properties as locator
properties.

III. CHATEM IN ACTION

In this section, we use a simple Android App named
NotePad to show how CHATEM works in helping maintain
GUI test scripts for mobile applications. The NotePad appli-
cation was also used as the running example to demonstrate
the work flow of the ATOM GUI test script maintenance
technique [6]. We adopt the same example in this paper to
make the differences between ATOM and CHATEM more
distinct and easier to understand.

NotePad is a simple app for note taking. Figure 2 shows four
activities in the base version of the app for adding, editing,
and deleting notes. On each of the first three activities, a user
may call up a menu by pressing the Menu physical key, as
shown on the bottom of the corresponding activities.

In the base version of NotePad, the initial activity shown
when the application is first launched is activity SCa, which
lists all the notes previously saved in the app. From there, a
user may choose to either add a new note or edit an existing
note, by clicking on the “Add note” button or a note entry from
the list. A new note will be opened in activity SCb for editing,
where the user may save or discard the changes made till a
certain point by clicking on the button “Save” or “Discard”
on the activity. An existing note, however, will be opened in
activity SCc for editing. There, the user may save the changes,
revert the changes, delete the note, or edit the title of the note,
by clicking on the corresponding button on the activity.

Figure 3(a) shows three test scripts written in Robot Frame-
work1 for testing the base version of NotePad [6]. All the three

1http://robotframework.org/

scripts start execution from the initial activity SCa and each of
them essentially contains a sequence of actions, one action per
line. For example, the first action in TS1 is to press the Menu
physical key on activity SCa, and the second is to click on the
menu button with text “Add note”. For ease of presentation, we
refer to a widget simply by the text on it, when the meaning
is clear from the context. Test scripts also often use texts to
identify the widgets to operate on, and other properties used
for widget identification in test scripts include, e.g., the IDs
and the names.

TS1 creates a new note, adds some text, and then saves
the note; TS2 is the same as TS1, except that the changes
are discarded at the end; TS3 execute assumes the presence
of a note item named note1. It opens a note named note1,
presumably stored in the app before testing, by clicking on the
note item, then clicks on Delete to remove the note. Although
more sophisticated mechanisms may be employed to devise
stronger oracles, the execution of a test script is considered
successful if no error is triggered in the process. Since test
scripts TS1, TS2, and TS3 are written against the base version
of NotePad, they all run successfully as intended.

An updated version of NotePad incorporates the following
changes to the GUI of the base version. First, the Add note
menu button on SCb is moved to Add; Second, instead of
deleting a note immediately after a user clicking on the Delete
button on SCc, the app opens a dialog with Yes and No buttons
and only proceed with the action if Yes is clicked; Third, the
Discard menu item is removed from SCc.

With such changes to the GUI, some of the action sequences
given by the original test scripts no longer describe feasible
interactions with the app. That is, they become obsolete.
Particularly, TS1 and TS2 will both fail on the updated GUI
as SCa no longer has a menu item Add note; while TS3 will
not fail, it does not complete the deletion action either.

Taken two models encoding behaviors of the app in two
versions, CHATEM computes automatically the changes one
has to make to get the upated GUI from the base version,
determines which parts of the test scripts are affected by
the changes, generates corresponding maintenance actions to
mitigate the impact caused by each change, and applies the
generated actions to make the obsolete test scripts in sync
with the updated GUI. Figure 3(b) shows the result test scripts
produced by CHATEM, with added and modified actions
highlighted. TS1 is updated to reflect the change of menu item
name from Add note to Add; Besides being updated in the
same way as in TS1, TS2 is also truncated, with infeasible
events removed from the script; TS3 is extended with the
action of clicking on the Yes button on the confirmation dialog,
and therefore successfully deletes note1.

Although the results are the same for GUI test script main-
tenance with ATOM [6] and CHATEM, the two techniques
require different input information and use different models
for script maintenance. Elaborate!Elaborate!
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Fig. 1. The overall framework of CHATEM.

SCa SCb
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Fig. 2. Three screens and their corresponding menu items in the NotePad
app.

IV. APPROACH

In this paper, we propose the CHATEM approach to main-
taining test scripts based on event sequence models (ESMs) of
evolving mobile apps. CHATEM requires as input the ESMs
for the base version and the updated version of the app under
consideration as well the test scripts for the base version.
Taking those inputs, CHATEM identifies changes between the
two versions, relates the identified changes to test actions
affected by the changes, constructs alternative test actions,
and replaces the obsolete test actions with the alternatives to
produce the updated test scripts that are suitable to run on
the updated version of app. Besides maintaining existing test
scripts, CHATEM also generates new test scripts to exercise
the new event handlers, widgets, and screens added to the GUI.

TS1

1 Press Keycode MENU
2 Click Element name=Add note
3 Input Text id=some text
4 Press Keycode MENU
5 Click Element name=Save

TS2

1 Press Keycode MENU
2 Click Element name=Add note
3 Input Text id=some text
4 Press Keycode MENU
5 Click Element name=Discard

TS3

1 Click Element name=note1
2 Press Keycode MENU
3 Click Element name=Delete

(a) Base version

TS1

1 Press Keycode MENU
2 Click Element name=Add
3 Input Text id=some text
4 Press Keycode MENU
5 Click Element name=Save

TS2

1 Press Keycode MENU
2 Click Element name=Add
3 Input Text id=some text
4 Press Keycode MENU
5 Click Element name=Save

TS3

1 Click Element name=note1
2 Press Keycode MENU
3 Click Element name=Delete
4 Click Element name=Yes

(b) Updated version

Fig. 3. Test Scripts for NotePad

Figure 1 shows the overall framework of CHATEM. Four
main steps are involved in applying CHATEM: constructing
ESMs by combining automated model extraction and manual
confirmation; extracting changes to the GUI by comparing the
ESMs; identifying impacts of the changes on test scripts by
simulating the tests on the base version ESM; maintaining
the test scripts by constructing alternative test actions and
using them to replace the obsolete test actions. The rest of
this section first defines the event sequence model that we use
to model the GUIs of mobile apps and then explains in detail
each individual step.

A. Event Sequence Model (ESM)

We adopt the event sequence model from [6] to abstract
possible behaviors of an Android app. For the sake of com-
pleteness, this section also includes the definition of ESM.

Let W be the set of widgets in an app, and E the
set of event types on W , an event sequence model for
an app is a non-deterministic finite state machine M =
〈Σ,S, {s0},C,F 〉, where
• Σ = W ×E is the set of events in the app;
• S ⊆ 2W (si ∩ sj = ∅,∀si ∈ S, sj ∈ S, i 6= j) is the set

of screens in the app;
• s0 ∈ S is the initial screen;



• C ⊆ S×Σ×S is a set of connections between screens.
Given a connection c = 〈s1, σ, s2〉 ∈ T , we call s1, σ,
and s2 the source, the cause, and the destination of c,
respectively.
A connection c = 〈s1, σ = 〈w, e〉, s2〉 ∈ C in the model
indicates that, on active screen s1, triggering event type
e on widget w will make screen s2 become active.

• F = S is the set of final screens.

Note system default events are modeled in an ESM with
the help of a set D (D ⊆W ) of dummy widgets. For each
screen si ∈ S, there exists exactly one dummy widget di such
that di ∈ si. System default events like BACK and HOME can,
and can only, be triggered on dummy widgets. In this way, we
unify the process of widget events and system default events
in CHATEM. We do not differentiate the two types of events
hereinafter.

Model Construction In the work on ATOM [6], we require
as input an event sequence model (ESM) for the app under
consideration. In the experiments to evaluate the effectiveness
of ATOM, we manually constructed ESMs for the subject
mobile apps through investigating both the documentations
and the actual behaviors of the apps, and Delta ESMs (DESM)
that capture the changes through side-by-side comparison of
two app versions. Although most DESMs are much smaller
than ESMs, manually constructing the DESMs turns out to
be a non-trivial task, requiring considerable knowledge about
not only the correspondence between the base version model
and the base version app but also how the changes affect the
model.

In view of the latest development in GUI model construction
for mobile apps, we employ a three-step process in this paper
to semi-automatically construct ESMs for apps. First, we
use an automated model extraction tool, e.g., Gator [7], to
construct an initial ESM for the app under maintenance. Due
to limitations of such tools, the result model may miss feasible
behaviors that are important for the maintenance task and/or
include infeasible behaviors. To rectify the initial model, the
second phase of model construction involves executing the app
to confirm important behaviors of the ESMs. In this phase,
we use the base version test scripts to exercise the app and
mark observed behaviors in the models as feasible. Finally,
we manually inspect the unmarked events in the models and
add important behaviors that are missing. After the three steps,
we get the input model for CHATEM. The constructed model
contains enough useful information to effectively help test
script maintenance, as observed in our experiment. For future
work, we plan to investigate how the completeness of ESMs
affects the performance of CHATEM and how to effectively
enhance the completeness of the constructed ESMs.

The above model construction process is conducted based
on the binary form of mobile apps, e.g., apk files of Android
apps. Operating on the binary level, rather than on the source
code level, makes our approach applicable to a wider range of
apps.

B. Change Extraction

Since its ultimate goal is for test script maintenance,
CHATEM focuses on GUI changes that influence the execution
of test scripts. Given two modelsM = 〈Σ,S, {s0},T ,S〉 and
M′ = 〈Σ′,S′, {s′0},T ′,S′〉 for the base and updated version
GUI, CHATEM first extracts changes to the GUI at the screen,
widget, and connection levels, respectively.

1) Changes to screens.: CHATEM identifies three sets of
screens from both models: S+ contains screens added to the
base version app, S− contains screens removed from the base
version app, and S× contains screens that are changed between
the two versions.

CHATEM relates screens from different versions based on
their IDs. That is, two screens are only considered related if
they share the same ID. Correspondingly, S+ can be computed
easily as {s : S′|∀x ∈ S : s.id 6= x.id}, and S− as {s :
S|∀x ∈ S′ : s.id 6= x.id}. All screens within s ∈ S−S− are
considered retained into the updated version (with or without
changes).

Apparently, for each retained screen s ∈ S − S−, there
exists s′ ∈ S′ − S+ such that s.id = s′.id. s1 and s2 are
equivalent, denoted as s1 = s2, if the sets of widgets in s
and s′ are equivalent (see Section IV-B2). Otherwise, s′ is the
derivation of s in the updated version, and s the origin of s′ in
the base version. We use a one-to-one function ξ to encode the
derivation relation between screens, and S× can be computed
as the domain of ξ.

The above change extraction process is based on the as-
sumption that IDs of screens stay the same across different
versions. In cases where screen IDs get changed, CHATEM
also accepts extra input regarding the matching relation be-
tween the IDs before and after the changes. Given that IDs
assigned to screens seldom change during the evolution of
mobile apps, and that most apps have rather limited number of
screens, the overall cost for CHATEM to correctly identifying
the changes to screens should be easily affordable.

2) Changes to Widgets.: Changes may also take place
on the widget level. Similar to the extraction of changes to
GUI screens, CHATEM extracts three categories of changes
to widgets, denoted using three sets: W− is the set of widgets
that are removed from the base version, W+ is the set of
widgets that are added to the updated version, and W× is the
set of widgets that are retained but with modifications.

CHATEM considers all widgets that are part of an added
screen to be also added, i.e., ∀w.w ∈ s ∧ s ∈ S+ → w ∈
W+, and all widgets that are part of a removed screen to
be removed, i.e., ∀w.w ∈ s ∧ s ∈ S− → w ∈ W−. The
process for deciding whether a widget on a retained screen s1

(s1 ∈ S×) is added, removed, or retained with modifications
involves identifying two types of relations between widgets:
the equivalence relation and the derivation relation.

• Equivalence relation. Two widgets w1 and w2 (w1 ∈
s1 ∧ w2 ∈ ξ(s1)) are considered equivalent if and only
if all their properties have the same values, they trigger
the same set of events, and their event handlers for each



event transit the app to screens with matching IDs (see
Section IV-B1).

• Derivation relation. Given two widgets w1 and w2 (w1 ∈
s1 ∧ w2 ∈ ξ(s1)), CHATEM considers w2 to be the
derivation of w1 if 1) w1 and w2 are not equivalent
and 2) the majority2 of their locator properties (see
Section II-B) have comparable values. Two String-typed
values v1 and v2 are comparable if and only if they have
at least half of the words in common; Two values of other
types are comparable if and only if they are equivalent.
The criteria CHATEM adopts are picked based on our
empirical experience. Design of better criteria belongs to
future work. We overload the function ξ to also encode
the derivation relation between widgets.
Consider the Notepad app from Section III for example,
although the text of the menu item was changed from
“Add note” to “Add”, the menu item’s other loca-
tor properties like ID and XPath remained the same.
Therefore, CHATEM is able to correctly recognize the
derivation relation between the items.

Given a retained screen s1 and its derivation s2 = ξ(s1),
identification of equivalent widget pairs from s1 and s2 is
straightforward. Afterwards, CHATEM checks each pair of
remaining widgets from the two screens, and decides whether
there is a derivation relation between them. Naturally, such
checks are only performed between widgets of the same type.
For example, CHATEM never attempts to check whether a text
field is a derivation of a button.

In the end of this step, all widgets from the base version
GUI and with derivations are added to W×; remaining widgets
from the base version GUI and with no equivalences are added
to W−; extra widgets from the updated version app and with
no equivalences are added to W+. In this way, CHATEM
identifies all the widgets that are added, removed, and retained
with modifications.

3) Changes to Event Handling.: Since actions in test scripts
essentially trigger events on the GUI during testing, CHATEM
also extracts changes on the event level.

Given the identified changes to screens and widgets,
CHATEM can already derive quite a number of changes to the
event handling of the app. In particular, if a screen is added
to or removed from the base version app, all event handlers
related to the screen are added or removed; If a widget
is removed from the base version app, all event handlers
associated with that widget are removed; If a widget is added
to the updated version app, all event handlers associated with
the widget are added; It, however, is not always obvious how
modifications to a widget will affect the event handling of the
app.

Next, we introduce how CHATEM identifies changes to
event handling on modified widgets, based on the type of event
a handler handles and the target screen to which the handler
will transit the GUI.

2That is more than 50%.

Let w1 and w2 be two widgets from screens s1 and s2 (s2 =
ξ(s1), w2 = ξ(w1)), ε an event that can be triggered on them,
and two screens s′1 and s′2 the destination screens of triggering
ε on w1 and w2, respectively. Connection c2 = 〈s2, 〈w2, ε〉, s′2〉
is the derivation of connection c1 = 〈s1, 〈w1, ε〉, s′1〉, if and
only if s′2 = ξ(s′1). That is, the two connections c1 and c2 have
the derivation relation if and only if the destination screens
of the two connections have also the derivation relation.
Otherwise, CHATEM deems c1 as being removed and c2 as
being added.

In this way, CHATEM computes three more sets to capture
changes on the event handling level: C− is the set of connec-
tions that are removed; C+ is the set of connections that are
added; C× is the set of connections that are retained, but with
changes to their source widgets or destination screens.

C. Test Simulation and Change Impact Identification

The goal here is to identify ranges within test scripts that
need to be revised.

To understand how the extracted changes affect the ex-
ecution of test scripts, first we have to find out how each
test exercises the app, i.e., which screens and widgets a test
interacts with and which connections the test actions cover.
We discover such information through test simulation.

Given the ESM M = 〈Σ,S, {s0},T ,S〉 for a base ver-
sion app, a test script t and its sequence of test actions
[a1, a2, . . . , an] for the app, CHATEM starts from s0 and
constructs the simulation of t onM. The construction is done
in an iterative process which handles the simulation of one
action at a time. Let screen si be the currently active screen
of the app and ai = 〈li, ei〉 be the next action execute at the
beginning of an iteration, test simulation decides the widget
wi on si based on widget locator li, and then follows the
connection as defined by the handler for event ei on wi,
reaching a (possibly different) screen sj . The next iteration
of test simulation will then use sj as the active screen and
simulate action ai+1. The process continues until all the
actions in t have been processed. Note the above simulation
can always continue till the end of each test script, since all
test scripts are used for model construction (see Section IV-A).

During test simulation, we record for test action a the
following information: i) the active screen s right before a’s
execution, ii) the locator l used in a, iii) the type of the event
triggered by a, and iv) the destination screen s′. Base on the
recorded information, we are able to associate a connection
〈s, σ, s′〉 to a. In change extraction, we collected already the
changes applied to the screens, widgets, and event handling of
the base version app. By relating the associated connections
of test actions to the extracted changes, CHATEM can easily
identify which test actions are affected by the changes: If the
associated connection of an action is affected by changes, we
need to update the test action during test maintenance.

In particular, let S = 〈s0, σ0, s1〉, 〈s1, σ1, s2〉, . . . , 〈sn−1,
σn−1, sn〉 be the sequence of connections that t exercises on
M and Θ∆ (Θ ∈ {S,W ,C} and ∆ ∈ {+,−,×}) be the sets



capturing the changes, to identify test actions affected by the
changes, CHATEM goes through the following steps:

1. CHATEM adds to set R− ranges within S where all
intermediate screens are removed but both end screens are
retained. In other words, a sequence si, si+1, . . . , sj−1, sj (j−
i ≥ 2) is added if and only if screens si, sj ∈ S − S− but
sk ∈ S− (i < k < j). Since all the intermediate screens of the
sequence are removed, CHATEM needs to find a new action
sequence to navigate the updated version app from ξ(si) to
ξ(sj).

2. CHATEM also adds to set R− the single-action ranges
whose associated connections are removed from the base ver-
sion app. That is, test action ai with the associated connection
ci is added, as range 〈t, i, i+ 1〉, if and only if ci ∈ C−.

3. CHATEM adds to set R× the single-action ranges whose
associated connections are modified between the base and
updated versions. That is, test action ai with the associated
connection ci is added, as range 〈t, i, i + 1〉, if and only if
ci ∈ C×.

At the end of this step, CHATEM produces two sets R× and
R− of ranges within the test scripts that need to be updated
and replaced, respectively.

D. Maintenance Action Construction and Application

Given set R− of ranges within test scripts to be re-
placed, maintenance action construction involves mainly build-
ing an alternative connection sequence c, ..., c′ in M′ for
each range r = 〈t, x, y〉 ∈ R−, such that c.source =
ξ(t[x].source) ∧ c′.destination = ξ(t[y].destination). For
that purpose, CHATEM performs a breadth-first search onM′
for a path from ξ(t[x].source) to ξ(t[y].source). If the search
is successful, the result connection sequence will be used to
guide the construction of the replacement test actions for range
r. If no such path can be found, the maintenance of test t is
unsuccessful and all test actions following the range r in t
will be discarded. To make the maintenance action easy to
understand, CHATEM restricts that alternative paths should
have no more than MAXPATHLENGTH (set to 2 by default)
connections.

For each single-action range a = 〈l, e〉 in R×, let s be the
source screen of a and w the widget that a interacts with, if
locator l resolves to the derivation of w in M, no change to
the action is required. Otherwise, CHATEM revises a to use
a locator based on ξ(w).

Since new behaviors may be added due to the changes,
CHATEM also implements a simple random approach to
extend the test scripts after maintenance by triggering events
on added widgets or covering added screens.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of CHATEM in maintaining
GUI test scripts, we conducted experiments that applied
CHATEM to 16 mobile apps. This section reports on the ex-
periments and provides preliminary evaluations of CHATEM’s
effectiveness.

A. Implementation

Although the underlying technique should be applicable to
maintenance of tests written in different script languages, the
current implementation of CHATEM targets scripts based on
the Robot Framework for testing GUIs of Android apps. In
particular, the Appium open source test automation framework
and the AppiumLibrary are used in CHATEM to drive and
communicate with the Android app under testing. For future
work, we will add also support for other GUI testing frame-
works.

The CHATEM technique is not concerned with the construc-
tion of ESMs of the Android apps. Nevertheless we created
a prototype tool based on GATOR3 to facilitate the model
construction process in an semi-automatic way.

All the experiments ran on an Ubuntu 16.04 machine with
3.1 GHz Intel dual-core CPU and 16 GB of memory. CHATEM
was the only computationally-intensive process running during
the the experiments. CHATEM spent less than one minute to
finish maintaining all the test scripts of each app.

B. Measures

Since CHATEM and ATOM [6] essentially serve the same
purpose, i.e., to automatically maintain scripts for GUI testing
of Android apps, we adopt in this work the same three
measures for performance as used in [6]. Such design enables
us to directly reuse the experimental results from [6] for
comparison between CHATEM and ATOM.

The three measures are screen coverage preservation (SCP),
connection coverage preservation (CCP), and test action
preservation (TAP). For the completeness of this section, we
briefly explain the rationale behind the measures. Detailed
definitions of the measures can be found in [6]. SCP and CCP
measure how many percentage of screens and connections
covered by the original test scripts on the base version app
are still covered by the tests on the updated version app after
maintenance. The higher the SCP and CCP, the more behaviors
of the app are still tested. TAP measures how many percentage
of the actions in the original test scripts are rescued into the
updated tests. The higher the TAP, the more we preserve from
previous testing effort.

Based on these measures, we designed our experiments to
answer the following research questions:
• RQ1: How effective is CHATEM in test scripts mainte-

nance, in terms of SCP, CCP, and TAP, respectively?
• RQ2: How does CHATEM compare with ATOM in terms

of effectiveness in test script maintenance?

C. Subjects

To facilitate the comparison with previous work, we include
the 11 Android apps that were used for the evaluation of
ATOM [6]. We also select 5 more production apps from the
subjects for evaluating Gator3 [7]. Therefore, in total we use
16 Android apps for the evaluation. Table I lists all the apps
and briefly describes each app.

3http://web.cse.ohio-state.edu/presto/software/gator/



TABLE I
DESCRIPTION OF THE MOBILE APPS AS SUBJECTS.

App Brief Description Base version Updated version
Bilibili A video sharing website. 4.12.1 4.13.0
GNotes A simple note app. 1.0.2 1.0.3
Wannianli A calendar app. 4.4.2 4.4.6
YoudaoNote A cloud-based note app. 5.1.0 5.2.0
Wechat Phonebook A phonebook app. 3.5.1 4.2.0
Changba A Karaoke app. 6.7.1 7.0.0
Baidu Music A music player. 5.6.6.1 5.7.0.3
365 Calendar A calendar app. 6.0.2 6.2.3
Ctrip An online travel agent. 6.15.2 6.16.0
WizNote A cloud-based information management app. 7.1.0 7.1.6
TickTick A to-do list app. 2.6.6 2.6.7
APV A file management app. 0.4.0 -
NotePad A simple note app. 1.3 -
OpenManager A server management app. 2.1.8 -
SuperGenPass A password-generation app. 2.2.2 -
BarcodeScanner A barcode scanner app. 4.4 -

TABLE II
MODEL INFORMATION

App Base version Updated version
S C S C

Bilibili 19 41 15 25
GNotes 18 38 16 33
Wannianli 14 40 15 42
YoudaoNote 19 44 19 45
Wechat Phonebook 14 27 13 26
Changba 19 69 19 64
Baidu Music 16 34 14 29
365 Calendar 19 42 18 40
Ctrip 19 34 19 34
WizNote 15 29 13 25
TickTick 15 33 17 36
APV 7 18 6 18
NotePad 10 29 10 27
OpenManager 11 24 11 24
SuperGenPass 8 23 8 23
BarcodeScanner 9 17 9 17
Total 232 542 222 508

For the 11 subject apps from [6], we reuse the same test
scripts and the same base and updated version apps as were
used in [6] to run CHATEM, which enables us to make a direct
comparison on the basis of existing results [6].

As for the remaining 5 apps, their corresponding versions
from [7] are used as the base version, and two graduate stu-
dents with over three-year experience in Android development
were asked to modify the GUIs of the apps to produce the
updated versions. The graduate students had no knowledge
about the scripts for testing the apps, which are also adopted
from [7]. The process described in Section IV-A is then
employed to prepare the ESMs for the base and updated
versions of each app.

Detailed information about the test scripts used in the
experiments can be found in [6] and [7], respectively. For
space reasons, we do not reproduce the same information in
this paper.

D. Experimental Results

This section reports the result of our experiments to answer
the question listed in Section V-B.

RQ1: Effectiveness of CHATEM. Table IV summarizes the
values of measures that we use for evaluating the effectiveness
of CHATEM. For each app, the table lists the SCP, CCP, and
TAP of the maintenance result. Each entry in column SCP is

in form x(y/z), where x is the value of the measure, y is the
number of shared screens that are covered by the scripts after
maintenance, and z is the number of shared screens covered
by the original scripts in the base version app. Values listed in
column CCP are similar as those in column SCP, but regarding
shared connections. Each entry in column TAP is also in form
x(y/z), where x is the value of the measure, y is the number of
extra test actions retained by the maintenance process, and z is
the number of test actions that would be lost if no maintenance
is performed.

From the table, we can see that CHATEM is able to achieve
SCP and CCP values larger than 0.8 for all the subject apps,
and the overall SCP and CCP values are larger than 0.95,
which strongly suggests that CHATEM is effective in retaining
the coverage of the ESM during test maintenance. Also, TAP
values are larger than 0.6 for all but one app, and the overall
TAP value is close to 0.8, which indicates that CHATEM
is effective in rescuing test actions that would be lost if no
maintenance is performed.

CHATEM is effective in retaining the coverage of screens
and connections and rescuing test actions during test script

maintenance.

RQ2: Comparison with ATOM. Table IV also presents
the maintenance results of ATOM [6] on the same set of
subject faults. The values for the top 11 apps are reproduced
from [6], while those for the bottom 5 apps are gathered after
applying the tool on the 5 apps. Values of the same measure
from different tools are listed side by side to facilitate the
comparison.

From the table, we can see that, although ATOM already
does a good job in achieving high SCP, CHATEM is able to
match, and sometimes even outperform, ATOM. As for CCP,
CHATEM performs as good as or better than ATOM on all
apps. In terms of TAP, the performance of CHATEM is almost
the same as that of ATOM.

To quantify the difference in maintenance performance with
CHATEM and ATOM, we performed a pair-wise compari-
son of the SCP, CCP, and TAP measures. In particular, we



TABLE III
TEST SCRIPTS FOR BASE VERSION

App Scripts number MinTestActions MaxTestActions Total number of test actions State Coverage Connection Coverage
Bilibili 16 4 21 233 1 1
GNotes 9 8 34 197 1 0.89
Wannianli 9 9 27 125 1 0.93
YoudaoNote 12 9 17 140 1 0.83
Wechat Phonebook 7 4 10 48 1 0.92
Changba 27 6 22 353 1 1
Baidu Music 20 4 14 114 1 1
365 Calendar 10 5 45 218 1 0.97
Ctrip 13 5 30 247 0.94 0.94
WizNote 12 16 28 260 1 0.96
TickTick 15 4 21 161 1 1
APV 9 10 14 105 1 1
NotePad 14 7 13 133 1 1
OpenManager 13 6 10 104 1 1
SuperGenPass 10 8 15 107 1 1
BarcodeScanner 8 7 11 71 1 1
Total 204 4 45 2616 0.99 0.96

TABLE IV
EXPERIMENTAL RESULTS

APP SCP CCP TAP
ATOM CHATEM ATOM CHATEM ATOM CHATEM

Bilibili 1(14/14) 1(14/14) 1(24/24) 1(24/24) 0.26(35/134) 0.26(35/134)
GNotes 0.94(15/16) 1(16/16) 1(30/30) 1(30/30) 0.87(138/159) 0.89(141/159)
Wannianli 1(14/14) 1(14/14) 1(32/32) 1(32/32) 0.95(91/96) 0.95(91/96)
YoudaoNote 0.95(18/19) 1(19/19) 1(31/31) 1(31/31) 0.91(116/128) 0.91(116/128)
Wechat Phonebook 0.85(11/13) 0.92(12/13) 0.91(17/19) 1(19/19) 0.95(37/39) 0.95(37/39)
Changba 1(16/16) 1(16/16) 0.98(55/56) 0.98(55/56) 0.74(97/131) 0.74(97/131)
Baidu Music 1(14/14) 1(14/14) 1(29/29) 1(29/29) 0.90(79/88) 0.90(79/88)
365 Calendar 0.88(14/16) 0.88(14/16) 0.92(34/37) 0.92(34/37) 0.65(31/48) 0.65(31/48)
Ctrip 0.95(18/19) 1(19/19) 0.91(30/32) 1(32/32) 0.96(50/52) 0.96(50/52)
WizNote 1(13/13) 1(13/13) 1(24/24) 1(24/24) 0.93(82/88) 0.93(82/88)
TickTick 0.93(14/15) 1(15/15) 1(32/32) 1(32/32) 0.73(16/22) 0.73(18/22)
APV 1(6/6) 1(6/6) 1(16/16) 1(16/16) 0.89(34/38) 0.89(34/38)
NotePad 1(9/9/) 1(9/9) 0.96(24/25) 1(25/25) 0.79(50/63) 0.79(50/63)
OpenManager 1(11/11) 1(11/11) 1(24/24) 1(24/24) 1(39/39) 1(39/39)
SuperGenPass 1(8/8) 1(8/8) 1(22/22) 1(22/22) 1(49/49) 1(49/49)
BarcodeScanmer 1(9/9) 1(9/9) 1(17/17) 1(17/17) 1(29/29) 1(29/29)
Total 0.96(204/212) 0.98(209/212) 0.98(441/450) 0.99(446/450) 0.81(973/1203) 0.81(978/1203)

performed two-sided Wilcoxon Rank Sum paired tests to
check whether the differences are statistically significant. The
result p-values are 0.15, 0.18, and 0.18 for SCP, CCP, and
TAP, respectively, suggesting the differences in performance
between the two techniques is not significant.

The overall performance of CHATEM is comparable with
that of ATOM.

E. Threats to Validity
In this section, we outline possible threats to the validity of

our study and show how we mitigate them.
Construct validity: Threats to construct validity are mainly

concerned with whether the measurements used in the exper-
iment reflect real-world situations.

In this work, we focus on the screen and transition coverage
preservation as well as test action preservation. While these
measures are useful in that they reflect how many app func-
tionalities are still tested and how many test actions retained
after maintenance, the measures are not concerned with the
screens and transitions that are not covered by tests in the base
version app. To take into account also the overall coverage
information, new measures need to developed, which we leave
for future work.

Another threat here concerns the construction of the models
for the apps. Even with the help of tools, model extraction

remains a non-trivial task. In this work, GATOR was able
to produce initial models of reasonably good quality, which
reduces significant amount of manual work for model con-
firmation. But different people may come up with different
models in the end, and the amount of manual effort required
may be very different with other apps. In view of the latest
advancements in both tool and technique development for
Android app modeling, we plan to investigate on ways to
combine the strengths of various tools and techniques to
produce high quality GUI models for Android apps.

A third threat to construct validity lies in the fact that test
actions are considered preserved if they are executable after
maintenance. Such criteria, however, might be too weak: a
maintained test action may exercise a completely different
functionality than before, and when that happens, the original
test action is preserved on only the syntax, but not the seman-
tics, level. Next, we plan to develop a more comprehensive
measure that considers both syntactical and semantical aspects
of test actions for evaluating the effectiveness of maintenance.

Internal validity: Threats to internal validity are mainly
concerned with the uncontrolled factors that may have also
contributed to the experimental results.

The main threat to internal validity is in the possible faults
in the implementation of our approach. To mitigate the threat,



we review our code and experimental scripts to ensure their
correctness before conducting the experiments.

External validity: Threats to external validity are mainly
concerned with whether the findings in our experiment are
generalizable for other situations.

Android apps used as subjects in this experiments may pose
threats to external validity. The 11 Android apps from [6] were
closed-source production apps and originally selected from a
Chinese Android app market. To mitigate the problem, we
also included 5 subject apps from existing research work [7].
Nevertheless, these subjects may not be representative of all
the mobile apps. As future work, we plan to carry out more
extensive experiments on also other apps from various sources.

VI. RELATED WORK

Four research areas are closely related to this work: model-
based GUI testing, Android GUI test generation, change
acquisition, and test scripts maintenance. This section provides
a brief review of the existing work in each area.

A. Model-based GUI testing

The application of CHATEM involves creating a GUI Model
of the app under test(AUT) to represent its behavior and
using the GUI Model to automatically generate test cases.
Researchers have proposed various approaches to test gener-
ation. Reverse engineering techniques, such as GUI crawling
and GUI ripping, are often used to generate GUI models of
the AUT for GUI testing. Amalfitano et al. [8] present an
approach for model-based GUI testing which is based on a
crawler that automatically creates the GUI model of the AUT,
and generates test cases that can be automatically executed.
Tool support for the proposed approach was also provided.
Memon et al. [9] propose to use Event-flow Graphs (EFG) for
modelling possible event sequences that may be executed on
a GUI and present Regression Tester to create EFG based on
dynamic analysis.

Static analysis techniques were also used to build GUI
Models for the AUT. Yang et al. [7] proposed the GATOR
system to create the window transition graph (WTG) for
apps, which extracts windows, events and callbacks from
apps through both static and dynamic analysis of the android
application. One of the key contributions of their work is in
the analysis of the run-time stack for collecting information
about the currently active window.

B. Android GUI test generation

Various GUI test techniques for android apps have been
proposed to ensure their quality. Gao et al. [10] give a
review of testing approaches for mobile apps. Approaches
have been proposed for various goals and environments. Since
most mobile apps are event-driven, many approaches construct
models for mobile apps, e.g., using techniques reviewed in
Section VI-A, and use the models to guide test generation.

Wu et al. [11] propose an approach to generate gesture
events for android applications. In existing event generation
techniques, gestures are generated randomly or enumerated

to cover all possible cases. To reduce the amount of gesture
sequences one has to examine, they present a static analysis
technique to obtain the gesture information about every UI
component’s potentially relevant gestures. Miguel et al. [12]
propose an approach to generate test cases based on the GUI
and usage-model of Android apps.

C. Change acquisition techniques

Grechanik et al. [4] propose an approach for test script
maintenance and implement a tool named REST. REST ex-
tracts the GUI Trees for the two versions of a GUI application,
where the root node of the tree corresponds to the application
window, leaf nodes correspond to the most primitive GUI
components like buttons and text fields, and the parent-child
relationship between nodes on the tree models the including
relationship between the corresponding components on the
GUI. Then REST identifies changes between the two trees,
locates test actions that directly or indirectly depend on the
modified GUI objects. Finally, REST raises warning against
the identified test actions. Testers need to manually examine
the reported test actions and repair them if necessary. Due to
the non-linear growth in time and memory cost caused by the
inherent complexity and implementation restrictions, REST is
only able to handle medium-sized applications with hundreds
of GUI components. Raina et al. [13] propose a tool for
automatically obtaining the changes of a web application. The
tool extracts changes in two steps: It first builds the DOM trees
of the two versions of the web application and compares the
two trees to obtain the changes of the new version application,
and then only tests the modified part of the web application.
Choudhary et al. [14] propose the WATER approach for web
application test repair. The approach is based on differential
testing. They execute the test scripts written for the base
version application on both two versions. According to an
analysis of the differences between the two execution, WATER
gives suggestions regarding how the test scripts should be
repaired. Xing et al. [15] propose an approach for detecting
structural changes between two models of a Java software
system. The approach outputs a change tree as the result, and it
handles not only moving, adding, removing, and renaming of
components, but also changes to attributes and dependencies.
They evaluate the correctness and robustness of the approach
using a real-world case study.

D. Test scripts maintenance

In regression testing, test scripts for the old version app
often become unusable on the new version app because of
changes implemented in response to evolved requirements.
Roser et al. [16] provide a survey showing that 31 regression
testing techniques have been proposed in the past 15 years, and
that most of the regression testing research [17]–[20] were
focused on test minimization. The goal of our work is to
maintain obsolete test scripts based on the changes. Because
of limitations of dynamic analysis techniques, Regression
Tester [9] has been used only in research work, but not to
generate test cases in real applications. Gao et al. [5] present



ScrIpT repAireR (SITAR) to repair unusable low level test
scripts. First, SITAR maps test scripts to event sequences and
the new version app to an annotated EFG, with test actions
that can not be mapped to any event assigned to NULL.
Then SITAR finds the events which were assigned to NULL
and replaces them with manually determined alternative paths
on the annotated EFG. User assistance is needed in making
decisions (e.g., confirmations, modifications and additions) in
the repair process.

Memon et al. [21] propose a method to obtain changes
by comparing the EFGs of two versions of an application,
assuming that the events and windows all have unique names
and that the windows and widgets are only renamed if their
functionality is changed. In our previous work [6], we get
changes manually and adopt fuzzy matching between models
and scripts. In this paper, we proposed a new approach to
automatically extract changes from two models. The rationale
behind such change is in that, although models for whole
apps are larger than those for only the changes, constructing
the model for an app will become more and more economic,
thanks to the latest developments in automatic model construc-
tion.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an approach, named CHATEM,
to automatically maintaining test scripts for regression GUI
testing. Given the event sequence models (ESMs) for two
versions of an Android app, CHATEM automatically extracts
the differences between the two GUIs, generates maintenance
actions for segments of affected test scripts, and applies those
actions to bring the test scripts in sync with the updated app.
Experimental evaluation of CHATEM on real world Android
apps shows that CHATEM is effective in maintaining test
scripts.

The usefulness of CHATEM largely depends on the avail-
ability and quality of ESMs for Android GUIs. At the current
stage, model construction is still a semi-automatic process that
involves both tool application and human confirmation. To
facilitate model construction, next we plan to develop a tech-
nique that brings several state-of-the-art model construction
tools together for the effect of synergy.

We conjecture that the maintenance results produced by
CHATEM are easier for programmers to understand and there-
fore more likely to be accepted, since the maintenance actions
are directly related to each segment of affected test scripts.
Due to limited time, we, however, were not able to conduct
experiments to prove or disprove the conjecture. In the future,
we plan to carry out user experiments using more subject apps
to find out what programmers like or dislike about the test
scripts maintained by CHATEM.
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