
1

When Privacy Meets Usability: Unobtrusive
Privacy Permission Recommendation System

for Mobile Apps based on Crowdsourcing
Rui Liu, Student Member, IEEE, Jiannong Cao, Fellow, IEEE, Kehuan Zhang, Member, IEEE,

Wenyu Gao, Junbin Liang, and Lei Yang, Member, IEEE

Abstract— People nowadays almost want everything at their fingertips, from business to entertainment, and meanwhile they do not
want to leak their sensitive data. Strong information protection can be a competitive advantage, but preserving privacy is a real challenge
when people use the mobile apps in the smartphone. If they are too lax with privacy preserving, important or sensitive information could
be lost. If they are too tight with privacy, making users jump through endless hoops to access the data they need to get their work done,
productivity can nosedive. Thus, striking a balance between privacy and usability in mobile applications can be difficult. Leveraging the
privacy permission settings in mobile operating systems, our basic idea to address this issue is to provide proper recommendations
about the settings so that the users can preserve their sensitive information and maintain the usability of apps. In this paper, we propose
an unobtrusive recommendation system to implement this idea, which can crowdsource users’ privacy permission settings and generate
the recommendations for them accordingly. Besides, our system allows users to provide feedback to revise the recommendations for
getting better performance and adapting different scenarios. For the evaluation, we collected users’ preferences from 382 participants
on Amazon Technical Turks and released our system to users in the real world for 10 days. According to the study, our system can make
appropriate recommendations which can meet participants’ privacy expectation and mobile apps’ usability.

Index Terms—Mobile Privacy, Crowdsourcing, Permission, Recommendation

✦

1 INTRODUCTION

THE excitement around mobile platform has been en-
couraged by its unprecedented functionalities. People

can get almost everything done with their fingertips nowa-
days, from business to entertainment, from acquiring infor-
mation to ordering foods. However, everything comes with
a price. For mobile applications, one important cost is user’s
privacy. Whenever we want a mobile app to do something
useful for us, most likely we will have to give it some data
about ourselves, and once the data leave our hands, they
are out of our control and we totally rely on that app to
protect them. As a result, users always need to make trade-
offs between privacy controls and apps’ functionalities. If
the control is too tight, apps may not do anything useful. But
if the control is too loose, it may lead to a privacy disaster.

Unfortunately, it is a strikingly difficult task to make a
right decision and trade-off. Firstly, many users have not re-
alized the importance of protecting their private data. When

• Rui Liu is with Department of Computing, The Hong Kong Polytechnic
University, and Department of Information Engineering, The Chinese
University of Hong Kong, Hong Kong. E-mail: csrliu@comp.polyu.edu.hk

• Jiannong Cao is with Department of Computing, The Hong Kong Poly-
technic University, Hong Kong. E-mail: csjcao@comp.polyu.edu.hk

• Kehuan Zhang is with Department of Information Engineering, The
Chinese University of Hong Kong, Hong Kong.
E-mail: khzhang@ie.cuhk.edu.hk

• Wenyu Gao is with Department of Statistics, Virginia Polytechnic Insti-
tute and State University, USA. E-mail: wenyu6@vt.edu

• Junbin Liang is with Guangxi key laboratory of multimedia commu-
nications and network technology, School of computer and electronics
information, Guangxi university, China. E-mail: liangjb@gxu.edu.cn

• Lei Yang is with School of Software, South China University of Technol-
ogy, China. E-mail: sely@scut.edu.cn

you were using a mobile app, have you given a second
thought about your privacy? Most people will simply press
”Accept” on the screen of permission authorizations with-
out looking at the details when installing apps. Secondly,
although there are still lots of people who want to preserve
their private information and meanwhile use their mobile
apps smoothly [1], few of them have enough background
knowledge to make right decisions [2].

More importantly, existing solutions are not useful to
address the problem. For example, on Android, users can
choose to enable or disable Internet access for an app, but
since network connection is one essential part for most apps,
it is almost impossible to let users disable it while keeping
expected functionality. On iOS, if one permission is disabled,
the system will pop up an annoying message box asking
users to enable it from time to time.

To balance the privacy and usability of mobile apps and
overcome the existing difficulties, our basic idea is to pro-
vide recommendations to users about privacy permission
settings based on crowdsourced data. Our previous work
has proposed a mechanism to generate recommendations
for users to mitigate their privacy risk when they want to set
their privacy permissions of each mobile app [3]. This paper
will pay more attention to the balance between privacy and
usability. More specifically, we design and implement a sys-
tem that can not only generate recommendations for privacy
permission settings, but also improve the recommendations
by learning from users’ feedback.

Our system first collects users’ settings of privacy per-
missions of each mobile app and learns the similarities
among users in terms of privacy preferences and privacy

The following publication R. Liu, J. Cao, K. Zhang, W. Gao, J. Liang and L. Yang, "When Privacy Meets Usability: Unobtrusive Privacy Permission
Recommendation System for Mobile Apps Based on Crowdsourcing," in IEEE Transactions on Services Computing, vol. 11, no. 5, pp. 864-878,
1 Sept.-Oct. 2018 is available at https://doi.org/10.1109/TSC.2016.2605089.

This is the Pre-Published Version.

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

2

expectations on apps. Then, it calculates appropriate per-
mission settings for users based on such similarities. Finally,
our system can ask users’ opinions about our recommen-
dations when the apps access the data. Three options, i.e.,
agree, reject, and agree only this time, will be provided to a
user who can choose one based on his/her actual decisions.
The rationale behind our method is that: users who share
similar preferences on certain private data and/or privacy
expectations on apps are more likely to make similar deci-
sions in the related privacy items, and with feedbacks, the
system can improve the model of users’ privacy preferences
and expectations, thus can generate more accurate recom-
mendations.

In short, the work reported herein is an attempt to pre-
dict individual user’s mobile app permission settings and
also study actual permission settings based on individual
preferences. We believe that our results, while preliminary,
are particularly promising and offer the prospect of signif-
icantly reducing user burden while empowering them to
effectively control mobile app permission settings. We col-
lected users’ preferences from 382 participants on Amazon
Technical Turks and released our system to 26 users in the
real world for 10 days. According to the evaluation, our
system can make proper recommendations which can meet
participants’ privacy expectations and mobile applications’
usability requirements.

2 PRIVACY VS. USABILITY

Privacy is by no means a fad of modern society. In 1890,
two U.S. lawyers proposed a prevalent definition: private
life, habits, act, relations and the right to be alone [4].
With the proliferation of information technology, Wesin
proposed that privacy is the claim of individuals, groups,
or institutions to determine for themselves when, how, and
to what extent information about them is communicated to
others, and this came to be known as information privacy
[5]. These two acknowledged definitions both emphasized
that privacy to users should have the ability to express
themselves selectively. Moreover, as proposed by Bellotti
and Sellen [6], privacy definition is not static and monolithic
but should emphasize different aspects due to the coming of
new technologies, patterns of use, as well as development
of social norms. Thus, privacy protections of mobile apps
differ from person to person and from one app to another.
For example, some people care more about their contact
information, thus they may be loath to provide such data no
matter what kind of apps they are using. As the result, one
ideal approach seems to ask users for authorization every
time when any protected/cared information is accessed.
It, however, is almost an impossible mission due to the
usability of mobile users.

Usability of a mobile app can be defined as the extent to
which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction
in a specified context of use [7]. Effectiveness means the
accuracy and completeness with which users achieve spec-
ified goals. By efficiency, it means to minimize resources
expended in relation to the accuracy and completeness
with which users achieve goals. Satisfaction measures the
freedom from discomfort, and positive attitudes towards the

use of the product. Effectiveness, efficiency, and satisfaction
are three factors considered when we measure mobile apps’
usability. However, privacy concerns can sometimes be a
major obstacle for usability. For example, the reluctance of
sharing data could eliminate the effectiveness and efficiency
of the apps and the endless hoops to access the data also
destroy the users’ satisfaction.

So, the core problem here is the conflict between usability
and privacy protection, and it becomes extremely important
to get a good trade-off. For better understanding, we take
Android permission system as an example. To meet privacy
requirement of users, Android mediates application access
to different data or functions via a permissions mechanism.
The ideal situation is the mobile apps request the permis-
sions installation, and they only ask for permission to access
data they really need to carry out their functions. That
means users have chances to manage their privacy. If users
do not want some data to be disclosed, they can change the
permission settings. However, preserving the privacy also
inevitably leads to some usability problem.

If a user wants to manually control the personal data
usage on Android, he/she has to visit the corresponding
information so that they can know how to manage, which
will cost users a lot of time and contradict with effectiveness.
If a user trusts and leaves everything to Android, he/she
will have no awareness when some apps access the sen-
sitive information. In any case, privacy protection in the
fast-moving eco-system of mobile apps turns out to be a
Sisyphean task.

Motivated by the problem discussed above, this paper
proposes to build a system that can help users manage
privacy settings so that they can achieve optimal trade-
offs between usability and privacy, even if they do not
have much professional background. More details will be
elaborated in subsequent sections.

3 RECOMMENDATION MECHANISM

Our previous work has already proposed such a mecha-
nism [3], but in this work, we propose a new algorithm
that takes advantage of users’ demographic information and
permission classification to further improve its performance.

3.1 Overview
When you want to set the privacy permissions of a mobile
app on your smartphone but you do not know how to set
them appropriately, what will you do? Asking others or
searching the Internet for suggestions may be an immediate
and intuitive idea. This is exactly what we propose to do
in this paper: our system will, on your behalf, go and
collect opinions from a group of people who share similar
backgrounds, privacy concerns and expectations, etc., with
you and make the most proper recommendations for you.

A comprehensive investigation about recommendation
systems has been conducted [8]. According to the ad-
vantages of different recommendation algorithms and the
characters of our scenario, we choose collaborative filtering
methods to implement our idea. However, the recommen-
dation mechanism was originally designed to attract cus-
tomers to buy commodities in e-commerce markets, such as
Amazon and Taobao. In our case, we do not have customers

3

and commodities; rather we have smartphone users and
privacy permission settings. We consider that people with
similar backgrounds and habits may have similar privacy
preferences. Thus, we map each smartphone user to a cus-
tomer and each privacy permission setting to a commodity
so that the item- and user-based collaborative filtering al-
gorithms can play an expected role in our work. Further,
we combine these two algorithms based on conditional
probability with considering demographic and permission
group information. Such a hybrid algorithm can overcome
the intrinsic drawbacks and achieve better performance of
item- and user-based collaborative filtering algorithms.

According to our discussion of privacy and the idea
of the work, we initialized our recommendation algorithm
through crowdsourced users’ privacy permission settings
rather than some experts’ opinions. That is because we
believe user expectation should be the key to set the privacy
permissions of their mobile apps.

3.2 Collaborative filtering

We assume that there are K users and each user has M
apps. Each app holds N data access permissions. ri,a,g is
defined as the setting of data permission g of the app a
set by the user i. Users are allowed to set the privacy
setting by the dichotomous variable {0, 1}. More specifically,
ri,a,g = 0 denotes that the users are averse to share the
data with anyone, whereas ri,a,g = 1 means the participant
allows the disclosure of that information. However, the
users may not have sufficient understanding to different
privacy permissions when they want to make a setting.
It is also arduous for them to finish all of the privacy
settings. To address this issue, we take advantage of user-
based and item-based collaborative filtering algorithms. The
following two examples and Fig. 1 further illustrate these
two algorithms.

Example 1: Two users, i and j, both installed two apps a, b
in the smartphone, and each app holds two permissions g, h.
User i and j both allow app a to get the corresponding data
permissions, by setting ri,a,g = 1 & ri,a,h = 1 and rj,a,g =
1 & rj,a,h = 1. In this situation, we consider they may have
the similar privacy preferences. If user i set ri,b,g = 0 to
prohibit the access permission g of app b, user j is likely to
have the same choice on this setting.

Example 2: Two apps, a′ and b′, both are installed in
the smartphone carried by user i′ and user j′. The apps
a′ and b′ hold the permissions g′ and h′, respectively. If
users i′ and j′ both reject the data access, namely setting
ri′,a′,g′ = 0 & ri′,b′,h′ = 0 and rj′,a′,g′ = 0 & rj′,b′,h′ = 0.
In this case, permission g′ of app a′ and permission h′ of
app b′ can be considered as two similar ones because they
are both rejected by users i′ and j′. The more users do
this, the higher similarity the two permissions have. Thus,
when newcomers have negative opinions to the privacy
permission g′ of app a′, we will also recommend them to
reject the data access of permission h′ of app b′.

Examples 1 and 2 illustrate the basic idea of user-
based and item-based collaborative filtering approaches,
respectively. According to the examples, we make recom-
mendations by finding the users who have similar privacy
preferences and finding similar permission settings. Thus,

Privacy permission 1
for app a

User 1

User 2

Private

Private

Public

User 3

Private

Private

Public

Public

Private

Private

Privacy permission 2
for app b

Privacy permission 3
for app c

Privacy permission 1
for app a

Privacy permission 2
for app b

Privacy permission 3
for app c

Privacy permission 1
for app a

Privacy permission 2
for app b

Privacy permission 3
for app c

generated by the user-based
collaborative filtering

(a) User-based collaborative filtering algorithm

User 2

Private

Private

Privacy permission 1 for
an app a

User 1 User 3 User 2

Private

Privacy permission 2 for
an app b

User 1 User 3

User 4

Private

generated by the item-based
collaborative filtering

(b) Item-based collaborative filtering algorithm
Fig. 1. Generating recommendation of data access permissions for
Android apps is based on the user- and item-based collaborative filtering
algorithm.

we consider ways to calculate the similarity of users and
permissions. su(i, j) is defined as the similarity between
user i and user j. The similarity reflects how similar the
users i and j are, i.e., how many privacy setting permissions
the two users have in common. The more such settings, the
higher similarity between the users. Thus, we can calculate
the similarity su(i, j) by calculating the Pearson correlation
coefficient between users i and j as shown in Eq 1, judged by
their choices of permission settings. The possible similarity
values range from −1 to +1, where values near +1 indicate
a strong similarity. We select Pearson correlation coefficient
since the empirical analyses show that for user-based recom-
mender systems by far, the Pearson correlation coefficient
outperforms other measures, such as the measures based on
entropy and mean-squared difference, etc [8]–[11].

su(i, j) =

∑
a∈M

∑
g∈N

(ri,a,g − ri)(rj,a,g − rj)√ ∑
a∈M

∑
g∈N

(ri,a,g − r̄i)2
√ ∑

a∈M

∑
g∈N

(rj,a,g − r̄j)2

(1)
We obtain the set of similar users by applying a threshold

using top − Q strategy. The top − Q set of similar users to
user i, Su(i), can be generated according to Eq. 2

Su(i) = {j|rank su(i, j) ≤ Q} (2)

Likewise, we define si(g, h) as the similarity between the
privacy permission g and h. The similarity is based on
the existing users’ settings as illustrated in the Example
2. To calculate the similarity, we adopt the adjusted cosine

4

similarity measure, as shown in Eq. 3. We also select top−Q
similar items according to Eq. 4.

si(g, h) =

∑
i∈K

∑
a∈M

(ri,a,g − ri)(ri,a,h − ri)√ ∑
i∈K

∑
a∈M

(ri,a,g − ri)2
√ ∑

i∈K

∑
a∈M

(ri,a,h − ri)2

(3)
Si(g) = {h|rank si(g, h) ≤ Q} (4)

Similar to the Pearson correlation coefficient, results for the
adjusted cosine measure also range from −1 to +1, and +1
means strong similarity. In the formula, we subtract r̄i, the
average permission setting for user i, to take the differences
of permission setting behaviors between different users into
account. We adopt the adjusted cosine similarity to calculate
the similarity between permission settings because it has
been empirically proven that the adjusted cosine similarity
consistently outperforms the other metrics in the item-based
collaborative filtering approaches [8]–[11], and it eliminates
the effect of different behaviors between different users.

3.3 Fusion based on demographic and permission in-
formation

We propose a method that labels different users and permis-
sions and then fuses the user- and item-based algorithms
based on the labels. It is based on our observation that
demographic and permission classification data can provide
additional information about one specific user, thus leading
to better results in calculating similarities. The additional
information helps in reducing the data sparsity problem
caused by users’ unwillingness in providing some specific
answers, which is an obstacle to our work in real-world
deployment. Also, the demographic information and clas-
sification are getting more widely used in recommendation
systems, and the information can also be deployed to fuse
the user- and item-based collaborative filtering.

Our labels contain two pieces of information: demo-
graphic information from users and classification from per-
missions. Each user has his/her specific demographic in-
formation and each permission has its own classification.
Thus, each pair of < user, item > maps to one label
in the label space and forms the corresponding triplet
< user, item, label >. Therefore, considering users, items,
and labels jointly, we have a three-dimensional relation
< user, item, label >. This problem setup is similar to the
social tagging systems in the recommendation mechanism.
There are some recent works studying social tagging sys-
tems that model the three entities together by dimension
reduction in a three-order tensor, a generalization of ma-
trix to higher dimension [12]. In our scenario, our three-
dimensional relation < user, item, label > can be modelled
as a three-order tensor as well. However, the matrix un-
folding operations defined in the unified algorithm are not
appropriate here. The matrix unfolding operations consider
all the combinations of the elements in the remaining di-
mensions when unfolding one dimension. For example, a
three-order tensor A ∈ RI1×I2×I3 has its 1-mode matrix
unfolding A1 ∈ RI1×I2I3 . Unfortunately, this is not the
optima in our scenario. On the one hand, the labels in our
scenario are combinations of the demographic information

and permission classifications. They cannot be combined
with arbitrary items to predict users, and vice versa. On
the other hand, if we force those impossible combinations
to zero, the model sparsity will increase significantly.

As a result, to make it more fit to our scenario, we pro-
jected the three-dimensionalities to three two-dimensional
relations, < user, item >, < user, label >, and <
item, label >. In the projection, we separate our labels to
a set of user labels Lk and a set of permission labels Ln.
The user labels are generated according to demographic
information, such as age, gender, occupation, and activity
of mobile apps. These kinds of information can be regarded
as items in a sense. If two users have similar demographic
information, then we consider them having similar privacy
preferences just like they are similar on items. In this way,
when we calculate the similarities of users, items and labels
will play the same role. That is, the number of items N is
extended to N ′ = N + Lk. Likewise, a set of permission
labels Ln can be treated as users who only have interests on
some particular permissions as well. Therefore, as shown
in Fig. 2, the new set of users can be extended by item
labels, K ′ = K + Ln and the new set of items are extended
by user labels, N ′ = N + Lk. Thus, the new matrix for
recomputing the similarity su(i, j) using user-based collab-
orative filtering is represented in a K × N ′ matrix, and the
new matrix for recalculating the si(g, h) using item-based
collaborative filtering is denoted by a K ′ × N matrix. By
using projection rather than matrix unfolding operations,
we are using summation instead of multiplication for the
extended dimension. On the one hand, we are easy to
separate the two pieces of information contained in the
labels and put them to the ’right’ position. On the other
hand, we are creating fewer ’blanks’ for the new information
to fill in. That is, the model is more dense.

Users Items

Labels

U
se

rs
Items User Labels

Ite
m

 L
ab

el
s

Item-based Collaborative Filtering
U

se
r-b

as
ed

 C
ol

la
bo

ra
tiv

e
Fi

lte
rin

g

project

Fig. 2. The three-dimensional matrix user-item-label is projected as
three two-dimensional matrixes, user-item, user-label, and item-label.

We fuse the similarities su(i, j) and si(g, h) based on
probability to generate a more robust similarity and over-
come the data sparsity problem. More specifically, we pro-
vide different weights to the two similarities su(i, j) and
si(g, h) and form a unified similarity. In this case, the user-
based and item-based collaborative filtering approaches are
only two special cases in the unified form.

Assume we want to make a recommendation for user x
about the privacy setting of permission z of app y, namely
calculating rx,y,z . In light of the previous illustration, a
user-based collaborative filtering approach only considers
privacy settings provided by the users who have similar
privacy preferences. Thus, we define the existing privacy
settings for calculating rx,y,z as a set, US, USx,y,z =
{ri,y,z|i ∈ Su(x)}. Likewise, an item-based collaborative

5

filtering approach considers privacy settings to items. We
also define a set, IS, ISx,y,z = {rx,a,g|g ∈ Si(z)}. The
similarity fusion algorithm considers these two sets jointly,
i.e., UIS, UISx,y,z = {ri,a,g|i ∈ Su(x), g ∈ Si(z)}.

When we scrutinize the privacy settings provided by
users, we find they have totally different preferences to
the same permission. Some users always have the sensitive
attitude to the data usage, while others rarely shut down the
permission due to their intrinsic traits. Some permissions
are always shut down, simply because they have been
set by some sensitive users. To eliminate such effects, we
normalize the collected privacy settings by removing the
average value, as shown in Eq. 5.

px,y,z(ri,a,g) = ri,a,g − (ri − rx)− (ra,g − ry,z) (5)

px,y,z(ri,a,g) serves as a normalizing function of the privacy
setting of the permission z of the app y set by the user x,
based on the existing crowdsourced privacy setting ri,a,g .
ra,g and ry,z are the mean of the privacy setting of permis-
sion g of app a and the privacy setting of permission z of
app y, respectively. The sample space of the privacy permis-
sion settings should be defined as Φr = {∅, 0, 1, 2, ..., r}. In
our case, there are actually three options, i.e., Φr = {∅, 0, 1}.
∅ means that the privacy settings have not been set so far,
0 expresses that users regard the information as private,
and 1 represents that users allow the disclosure of this
information. Therefore, ri,a,g denotes a privacy setting of
permission g of app a, which is provided by user i, over the
sample space Φr . Then, given a set of normalized settings,
Ωx,y,z , we will can calculate the probability of rx,y,z with
the condition P(rx,y,z|Ωx,y,z), where Ω is given in Eq. 6.

Ωx,y,z = {px,y,z(ri,a,g)|ri,a,g ̸= ∅} (6)

Now taking both user- and item-based recommendation
algorithms into consideration, i.e ri,a,g ∈ (US, IS), we get
the conditional probability presented in Eq. 7. That is, if
we know ri,a,g ∈ (US, IS), we can eventually obtain the
conditional probability of rx,y,z , conditioning on the set Ω.

P(rx,y,z|Ωx,y,z) = P(rx,y,z|{px,y,z(ri,a,g)|ri,a,g ∈ US ∪ IS})
(7)

Eq. 7 indicates that the probability of rx,y,z depends only on
ri,a,g . Thus we can write Eq. 7 for short as P (rx,y,z|Ωx,y,z) =
P (rx,y,z|ri,a,g ∈ US ∪ IS). We introduce two independent
binary indicators I1 and I2 to present the dependency of
ri,a,g on set US and IS. That is, I1 = 1 corresponds to
dependency on the set US while I1 = 0 indicates indepen-
dency. Likewise, I2 = 1 states ri,a,g depends on the set IS
while I2 = 0 indicates ri,a,g is independent of IS. Therefore,
given the two sets US and IS, we can derive Eq. 8 based on
the indicators I1 and I2.

According to the definition of indicators I1, I2, ri,a,g
is independent to US if I1 = 0 and is irrelevant to IS
when I2 = 0. Thus, P(rx,y,z|I1 = 1, I2 = 0, US, IS) =
P(rx,y,z|US), and P(rx,y,z|I1 = 0, I2 = 1, US, IS) =
P(rx,y,z|IS). Obviously, we cannot generate any recom-
mendation without the sets US and IS, which means
P(rx,y,z|I1 = 0, I2 = 0, US, IS) = 0. When we consider the
sets US and IS jointly, these two sets can be regarded as a

new set UIS. Namely, P(rx,y,z|I1 = 1, I2 = 1, US, IS) =
P(rx,y,z|UIS). Thus, we can obtain Eq. 9.

P(rx,y,z|US, IS)

=
∑
I1

∑
I2

P(rx,y,z|I1, I2, US, IS)P(I1, I2|US, IS)

= P(rx,y,z|I1 = 0, I2 = 0, US, IS)P(I1 = 0, I2 = 0|US, IS)

+ P(rx,y,z|I1 = 1, I2 = 0, US, IS)P(I1 = 1, I2 = 0|US, IS)

+ P(rx,y,z|I1 = 0, I2 = 1, US, IS)P(I1 = 0, I2 = 1|US, IS)

+ P(rx,y,z|I1 = 1, I2 = 1, US, IS)P(I1 = 1, I2 = 1|US, IS)
(8)

P(rx,y,z|US, IS) = P(rx,y,z|US)P(I1 = 1, I2 = 0|US, IS)

+ P(rx,y,z|IS)P(I1 = 0, I2 = 1|US, IS)

+ P(rx,y,z|UIS)P(I1 = 1, I2 = 1|US, IS)
(9)

For easy computation, we use two parameters λ and δ
in Eq. 10, assuming P(I1 = 1|US, IS) = λ and P(I2 =
1|US, IS) = δ. According to Eq. 10, ri,a,g depends on both
sets US and IS, i.e., UIS, when λ = 1 and δ = 1. Likewise,
ri,a,g has 0.5 probability dependent on US, if λ = 0.5; the
set IS also can play a half role when δ is 0.5.

P(rx,y,z|US, IS) = P(rx,y,z|US)λ(1− δ)

+ P(rx,y,z|IS)(1− λ)δ

+ P(rx,y,z|UIS)λδ (10)

Afterwards, we can get the estimated privacy settings rx,y,z ,
as presented in Eq. 11. We can determine the parameters λ
and δ through iterations in the experiments.

r̂x,y,z =
Φr∑
t=1

tP(rx,y,z = t|US, IS)

=
(Φr∑
t=1

tP(rx,y,z = t|UIS)λδ
)

+
(Φr∑
t=1

tP(rx,y,z = t|US)λ(1− δ)
)

+
(Φr∑
t=1

tP(rx,y,z = t|IS)(1− λ)δ
)

(11)

Now we need to estimate the conditional probability in
Eq. 11, namely, P(rx,y,z = t|UIS), P(rx,y,z = t|US), and
P(rx,y,z = t|IS). The basic idea of the estimation is to
calculate the likelihood of rx,y,z to be similar with ri,a,g
based on the sets US, UI , and UIS. Hence, we make use
of the similarity between users to calculate the likelihood
based on US, as shown in Eq. 12. Likewise, the similarity
function si(.) is used to compute the likelihood based on
the set IS, as presented in Eq. 13.

P(rx,y,z = t|US) =

∑
∀ri,a,g :(ri,a,g∈US)∧(rx,y,z=t) su(i, x)∑

∀ri,a,g :ri,a,g∈US su(i, x)
(12)

P(rx,y,z = t|IS) =
∑

∀ri,a,g :(ri,a,g∈IS)∧(rx,y,z=t) si(g, z)∑
∀ri,a,g :ri,a,g∈IS si(g, z)

(13)

6

Calculating the likelihood based on UIS is a little tricky.
We consider the probability estimation as a combination of
the similarity function su(.) and si(.). More specifically, we
use Euclidean distance to produce the similarity function, as
illustrated in Eq. 15.

P(rx,y,z = t|UIS)

=

∑
∀ri,a,g :(ri,a,g∈UIS)∧(rx,y,z=t) sui(ri,a,g, rx,y,z)∑

∀ri,a,g :ri,a,g∈UIS sui(ri,a,g, rx,y,z)
(14)

sui(ri,a,g, rx,y,z) =
1√

(1
su(i,x)

)2 + (1
si(g,z)

)2
(15)

Now, we can get the results,

r̂x,y,z =
∑
ri,a,g

px,y,z(ri,a,g)W
i,a,g
x,y,z (16)

where

W i,a,g
x,y,z =


su(i,x)∑

ri,a,g∈US su(i,x)
λ(1− δ) ri,a,g ∈ US

si(g,z)∑
ri,a,g∈IS si(g,z)

(1− λ)δ ri,a,g ∈ IS

sui(ri,a,g,rx,y,z)∑
ri,a,g∈UIS sui(ri,a,g,rx,y,z)

λδ ri,a,g ∈ UIS

(17)
So far, we have elaborated the process of recommenda-

tion based on the crowdsourced privacy settings. The only
thing is to determine the parameters λ and δ. When we
deploy the system in the real world, we find these two
parameters, λ and δ, reaching their optima at 0.7 and 0.5,
respectively. According to the illustration of the algorithm,
the parameters are determined by the dataset, which means
they are adaptive. More details are presented in Section 5.3.

3.4 Revision based on feedback
The aforementioned method can generate the initial recom-
mendations for each user. Our system also allows users
to provide their feedbacks and then re-generates the rec-
ommendations accordingly. The feedbacks in our system
include approval, rejection, and temporal approval. For
example, we recommend user i to shut down privacy per-
mission g of app a, i.e., ri,a,g = 0. If the user holds the
approval or rejection opinion, PriVs can update that users’
privacy preference with ri,a,g = 0 or ri,a,g = 1 respectively
since the user already presents clear feedback. When a user
chooses temporal approval as his/her opinion to a specific
recommendation, we will count the times this user chooses
this option. Then, the tricky part is how this number will
impact the value of ri,a,g .

We map the times to a value ranging from 0 to 1. The
idea is based on our observations when our system was
used by some voluntary users: 1) the users have little un-
derstanding about the privacy settings and corresponding
recommendations when they select temporal approval for
the first or second time; 2) the users become confirmed
about their privacy settings and the recommendations after
they select temporal approval for just several times; 3) the
users eventually steady themselves. These observations also
match the common sense. Therefore, the weight should be
small at the very beginning, increasing rapidly along with
times growth, and stable eventually. The growth rate should
be increasing first and then decreasing, and the highest rate

should be achieved in the middle. This is because at the
beginning, as users become familiar with our app, their
decisions are becoming more trustable. However, after some
trials, we have already gained much information about
that user. As he/she makes more decisions, our additional
information gained from him/her is decreasing and finally
goes to zero as the user steadies his/her choice. Therefore,
the mapping relation should be an ’S’ shape. Thus, we
take advantage of logistic function to calculate the weight
as logistic function describes the ’S’ shape well. A typical
application of the logistic equation is a common model of
population growth. The population growth can be mapped
to the weight increase. As shown in Eq. 18. x0 is the x-value
of the sigmoid’s midpoint, L is the curve’s maximum value,
and k is the steepness of the curve.

f(x) =
L

1 + e−k(x−x0)
(18)

Therefore, the whole process of revising recommenda-
tions is illustrated as follows:
(1) To provide an unobtrusive recommendation for users’
privacy permission settings, a user-interface in PriVs will
be invoked to show the requesting permissions when the
app was touched to launch by users. For example, when
a user opens a popular game app, all the permissions are
requested by this app and corresponding recommendations
will be listed in the user-interface in our prototype system,
as shown in Fig. 4(g).
(2) The users will figure out the permissions in use and
the corresponding recommendations made by PriVs. They
can provide their opinions about the recommendations, by
approving, rejecting, or temporal approving. Taking the
same example, the users can click AGREE button to approve
the recommended permission settings of coarse location
information as feedback, as shown in Fig. 4(g) as well.
(3) We revise the corresponding user-permission matrix
directly when a user chooses to approve or reject. We apply
the logistic function to calculate the weight value based on
the times of selecting the temporal approval and revise the
matrix accordingly. In the example, a user have already ap-
proved our recommendation of coarse location information
three times. In the fourth time PriVs will ask for a formal
grant, as shown in Fig. 4(h).
(4) The user-interface will not be popped up any more after
stablilization but PriVs allows users to keep revising the
recommendations for their privacy permission settings to fit
different scenarios and get better performances.

So far, we have elaborated on the process of revising
the recommendations based on the crowdsourced privacy
settings. We need to determine the parameters L, k and
x0. According to the scenario, L should be 1 since we are
mapping the times to a score between 0 and 1. When we
deploy the system in the real world, we find the remaining
two parameters k and x0 reach their optima at 1 and 3.5,
respectively. More details are presented in Section 5.3.

4 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we describe the design and the implementa-
tion of PriVs, including both smartphone side (i.e., app side)
and server side.

7

Server

Mobile Storage
(internal and external)

 Server Database
(inbuilt)

App Permissions
change the privacy permissions of each app
CheckSelfPermission()
RequestPermissions()
OnRequestPermissionsResult()
PackageManager.PERMISSION_GRANTED
PackageManager.PERMISSION_DENIED

App Setting Module based on
Xposed Framework

change the privacy permissions of each app
loadPermissionsList()
PermissionSettings()
PublishResults()
XposedMod.java
�.-�)(�-(�	�
�
�������

Android M

User info
Repository

Crowdsourced &
Recommendation

Repository

Crowdsourced &
Recommendation

Repository
All user info
Repository

Get the app when the user
is running it.

Retrieve the permissions
of different apps

1. Set privacy permission settings of each mobile app
2. Apply recommendations generated by PriVs
3. Provide feedbacks of recommendations

An
dr

oi
d

ol
de

r t
ha

n
M

InteractionActivity
send feedbacks & receive recommendations

pushDataThroughJson()
pullDataThroughJson()

Preparation for collecting users’
permission settings and feedback

of recommendations

User Interfaces
e.g., Fig. 4�������

Interaction
with users

function supporting

Mobile Application

Collecting and integrating
crowdsourced privacy settings

Crowdsourced data collection
Crowdsourced data integration
Crowdsourced data persistence

Providing recommendations

User-based collaborative filtering
Item-based collaborative filtering
User & item-based collaborative filtering
Recommendations generation

Revising recommendations

Reinforcement according to users’ feedbacks
Revise the recommendations for users

Transfer the data of
privacy settings

Transfer of

recommendations
Transfer

recommendations

Fig. 3. The implementation architecture of PriVs

4.1 System Framework
We have three goals when designing the system. First, it
should be able to help users to make proper decisions about
privacy settings. Second, the recommendation algorithm
can evolve and improve its suggestions by leveraging user
feedback. Third, the system should help the users to make
such decisions unobtrusively, i.e., without breaking users’
old habit or keeping interrupting users’ normal activities.

To interact with a user, a mobile app needs to be de-
ployed on his/her smartphone, which has following fea-
tures. Firstly, it will automatically scan all apps installed on
that smartphone and identify each app with its full name.
Secondly, the app provides an interface that allows users to
view, set or change permission settings. Thirdly, the app can
receive recommendations from server and apply them auto-
matically, and if it is preferred, allow user to express their
feedback on accepting or overriding such recommendations.
Finally, our system should not pose any privacy threat by
itself, since its ultimate goal is to protect users’ privacy.

The server side of our system has three key compo-
nents. The first component aims to pre-process the data
collected from user, e.g., data validation and classification.
The second part focuses on generating recommendations,
and the third one is responsible to receive users’ feedback
and leverage them to generate more user-specific (thus more
accurate) recommendations. All information, including the
raw crowd-sourced data, processed results, user feedback,
is kept in a database at server side. According the design
of mobile app and server side, we implement PriVs, as

presented in Fig. 3

4.2 PriVs App

As mentioned in Section 4.1, the app running on users’
smartphones should have the following four features. First,
it should allow users to set and change privacy permission
settings which are among the data sources used to calculate
recommendations. Second, it can receive recommendations
from server and apply them on users’ smartphones. Third,
it should provide an interface to collect user feedback to
improve future recommendations. Last but not least, this
app should work in an unobtrusive way, i.e., without in-
terrupting users’ normal operations or disturbing users too
frequently.

We achieve all goals with a mobile app design de-
picted in Figure 3. Browsing of apps and permissions is
built with standard APIs in official Android SDKs. For
example, function PackageManager.getInstalledPackages(0) can
retrieve installed apps in the smartphone. Function Package-
Info.requestedPermissions can scrutinize the privacy permis-
sions of each app. Such a method will return all data usages
of the app. To get current foreground app, we invoke the
function ActivityManager.getRunningTasks. According to the
develop document of Android, this function was deprecated
in/after Android 5.0. The alternative method is to use
ActivityManager.RunningAppProcessInfo and UsageStatsMan-
ager.queryUsageStats to obtain the current app.

Since it is arduous for users to read all of these permis-
sion details, we have done some optimizations to organize
permissions into groups and only focus on those having
been mostly abused. With information from various sources,
including Android permission groups [13], a survey given
in [14], some online technical comments [15], [16] and re-
search paper [2], [17]–[20], we summarized thirteen groups
of mostly abused permissions and sensitive data, as well as
their security implications, as shown in Table 1. Each group
has a number of permissions. For example, the network
group may include the permissions of accessing the cellular
network, Wifi network information, and full internet.

In order to change permission settings of other apps,
our PriVs app needs to run at a system level process,
which is a reasonable assumption considering that device
manufactures like Google or Samsung generally have such
privilege and they may integrate our solutions into their
products. For evaluation purpose, we achieve this goal on
a ”rooted” Android phone. For security reasons, we do not
advocate users to root their smartphones because that could
lead to other more serious security problems.

There are two different methods to change permission
settings, depending on Android versions. For latest smart-
phones coming with Android M or later, PriVs app can
leverage existing mechanisms to change and apply recom-
mended permission settings directly. For devices with OS
versions earlier than Android M, there is a framework called
Xposed Framework [21] with which PriVs app can apply
recommended permission settings.

The key functions of PriVs mobile app are depicted in
Fig. 4, which is composed by snapshots of the app in Nexus
4. When users first launch PriVs, they are allowed to set
privacy permission settings through user-interfaces like Fig.

8

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 4. PriVs app runs in Android platform. (a) PriVs can scan various apps installed in a smartphone; (b) PriVs will list all the permissions of
different apps (the permissions are based on our summary); (c) PriVs allows users to find out how many apps use a particular permission and
express their privacy preferences; (d) PriVs also can list the permissions usage of different apps; (e) The statistical results are presented to the
participants, which can be taken as a reference for their privacy preferences; (f) PriVs can receive and apply the recommendations generated by
our algorithm. (g) When an app is requesting various permissions, PriVs will pop up a interface for users to collect their feedbacks with regarding to
these permissions; and (h) A dialog will pop up to remind users when they choose to approve our recommendation temporarily.

TABLE 1
Summary of most abused permissions and data

Classification of the Most Abused Permissions & Data

• Location (The permissions that allow accessing the device location,
such as fine and coarse location. It can lead location-based attacks
or malware, or sending location-based ads.)
• Phone (The permissions that are associated with telephony fea-
tures, e.g., phone states information and IMEI. The abuse of these
permissions will lead privacy risk of mobile apps.)
• Contacts (The permissions are related to user’s contacts. The abuse
of these permission may disclose the contacts information.)
• Calendar (The permissions are related to user’s calendar. The
permission may release users’ schedule.)
• SMS (The permissions are related to user’s SMS messages. Send-
ing text messages without users’ awareness for subscribe additional
services may leave users with unexpected charges.)
• Sensors (The permissions are associated with accessing camera,
capturing images/video from the device or accessing vibrator func-
tion. They can stop the functions to prevent users’ awareness.)
• Network (The permissions are associated with accessing various
kinds of network. These permissions can disclose information by
network and drain smartphones’ battery.)
• Apps Running (The permissions are associated with the running
apps. The abuse of these permissions will lead the information for
running apps and allow malicious apps boot automatically.)
• Storage (The permissions related to the shared external storage,
e.g., permission of modification internal and external storage. Apps
steal information or save data on internal and external storage.)

4(a) - 4(d). After this initialization, the recommendations can
be generated, revised and applied automatically, which can
avoid endless users’ intervention. The results are based on
crowdsourced users’ settings, as shown in Fig. 4(e). In Fig.
4(e), users can apply the recommendations generated by
PriVs by only touching the ”APPLY” button. Fig. 4(g) and
4(h) present the way to collect feedback.

4.3 PriVs Server
The server is designed to analyze data collected from users,
then generate and return recommended settings back. As
shown in Fig. 3, the server contains three key components
that are used for collecting crowdsourced data, generating
recommendations, and revising recommendations respec-
tively. In the first part, the server mainly focuses on col-
lecting and preprocessing the crowdsourced users’ settings.
In generating recommendation part, the server takes input
from previous stage and applies methods depicted in sec-
tion 3. The output of this step will be sent back to PriVs
app. In the recommendation revising part, the server gets
feedback from users and updates the existing recommenda-
tions using the method illustrated in section 3.4.

The server system is deployed in an IBM server and built
as three-tier architecture which is composed of an applica-

9

tion tier, a domain logic tier, and a data persistence tier.
More specifically, the application tier is a web-front which
is implemented with HTML, JavaScript and third-party
libraries and provides a user friendly interface. The domain
logic tier is implemented with Java EE and Enterprise Beans
framework to analyze collected data. To improve robustness
and configurability, the web application is built with mature
frameworks including Spring, Struts and Hibernate. The
recommendation algorithm is also deployed at this tier to
generate recommendations. At data persistence tier, all data
are persisted in a MySQL database.

5 EVALUATION AND FINDINGS

5.1 Experiment Design and Data Collection
The evaluations and findings are based on crowdsourced
data collected from our experiments on Amazon Mechanical
Turk and 10-days user study. We published a task on the
Amazon Mechanical Turk1 for three weeks, and 382 partic-
ipants completed our task. In the task, we asked the par-
ticipants to answer a questionnaire to indicate their privacy
preferences about various types of mobile apps. In order to
get a better understanding, we prepared two questionnaires,
survey A and survey B. Survey A was used to get the
privacy preferences of participants towards various apps
widely, while Survey B was used to collect fine-grained
participants’ preferences on certain privacy permission re-
quests from some particular mobile apps. 200 participants
completed survey A and 182 participants finished survey B.

We have performed some statistical analyses on the
background of all participants, and found that they are
more or less evenly distributed in terms of age, gender,
work/professional background, which shows that the data
are unbiased and the analysis results should be convincing.
Among all the participants, 243 participants are male, and
139 participants are female. 226 participants are 20-29 years
old, and 115 participants are 30-39 years old. The remainder
of the participants are either 10-19 or above 40. All of
the participants came from various backgrounds, such as
energy, materials, consumer staples, health care, finance,
information technology, etc. More information about the
distribution of the participants in survey A and survey B
is shown in the Table 2.

5.2 Accuracy
During the evaluation, we will use a metric defined in
Eq. 19 to measure the accuracy (or effectiveness) of the
proposed recommendation algorithm, where Rp denotes all
the privacy permission settings the participants have chosen
in the Amazon Mechanical Turk, and Ri represents the
recommendations of the corresponding privacy permission
settings provided by PriVs.

Accuracy(i) =
Rp ∩Ri

Ri
(19)

To evaluate the accuracy of recommendations produced
by PriVs, we followed the standard practice by splitting
the data into two sets: one for training and the other for

1. https://www.mturk.com/mturk/preview?groupId=
3PBTVBPQ8T1PENG33V3IMPSHIB9LG1

0%

25%

50%

75%

100%

Male
Female

(a)

0%

25%

50%

75%

100%

10−19
20−24

25−29
30−40

40+

(b)

0%

25%

50%

75%

100%

IT in S&P
IT Non in S&P

Others

(c)

0%

25%

50%

75%

100%

R
arely

Som
etim

es
Frequently
Very often

(d)

0%

25%

50%

75%

100%

S
ocializing

S
hopping

A
ccom

plishing
D

iscovery
A

rrangem
ent

M
e−Tim

e
S

elf−E
xpr

(e)

0%

25%

50%

75%

100%

D
eliberately

N
orm

ally

H
astily

(f)

Comparison of Units Sold by Year

DESCRIPTION RARELY SOMETIMES FREQUENTLY VERY OFTEN

Survey A 60% 70% 74% 76%

Survey B 62% 76% 78% 79%

Survey A & B 68% 78% 82% 83%

0%

25%

50%

75%

100%

Rarely Sometimes Frequently Very often

Survey A Survey B Survey A & B
�1Fig. 5. The accuracy of recommendation generated by PriVs based on

the participants’ feedbacks from Amazon Mechanical Turk. The results
are presented according to (a) the participants’ genders (b) the partic-
ipants’ ages (c) the participants’ backgrounds (d) the time participants
spent on the smartphone (e) the most frequent activities of participants
and (f) the attitudes of participants

testing. This is done at multiple granularity levels in order
to get more complete results that can be cross-verified. For
example, we split data from survey A into two sets and
perform the tests, and do the same on data from survey B.
We also use the data from survey A as training set and data
from survey B as test set, and vice versa.

All the results are demonstrated in Fig. 5. The overall
accuracy of the recommendations made by PriVs is about
78%, which means most recommendations are accurate and
appropriate and thus have been accepted by users. It also
shows that the results with combined data sets both from
survey A and survey B are better than those when each data
set is used independently, which means PriVs can give more
accurate recommendations when the data set is larger.

We presented the results according to participants’ gen-
der, age, background, time spent on smartphones, favourite
activity on smartphones and attitude to the survey, as shown
in Fig. 5(a)-5(f). Fig. 5(a) demonstrates the recommendations
provided by PriVs for male participants can achieve slightly
higher accuracy than those for females. There is no obvious
evidence to support that males have better understanding
on the privacy permission of mobile apps. However, what
we found is that female participants’ most frequent activ-
ities on smartphones are shopping and socializing. It may
suggest that female users do not pay enough attentions
to personal information on the smartphone since shopping
and socializing always request personal information for
functioning. Another finding is that accuracy rises gradu-
ally with the increase of participants’ ages. One potential
explanation is that some young people have ambiguous
perceptions about their privacy permissions of their mobile

10

TABLE 2
Statistics of participants in Amazon Mechanical Turk

Participants Numbers in
Survey A

Percentage in
Survey A

Numbers in
Survey B

Percentage in
Survey B

Remarks

Male 133 66.5% 110 60.4% We believe gender is an im-
portant factor.Female 67 33.5% 72 39.6%

10-19 4 2% 6 3.3% There are two groups 20-24
and 25-29, since we think the
people of 20-29 are more di-
verse and we separate them

20-24 45 22.5% 43 23.6%
25-29 69 34.5% 70 38.5%
30-40 64 32% 51 28%
40+ 18 9% 12 6.6%

Energy 9 4.5% 6 3.3%

This taxonomy is based on
Global Industry Classifica-
tion Standard (GICS). The
people from different voca-
tion will have different pri-
vacy preferences.

Materials 4 2% 6 3.3%
Industrials 19 9.5% 22 12.1%

Consumer Discretionary 13 6.5% 7 3.9%
Consumer Staples 12 6% 17 9.3%

Health Care 24 12% 17 9.3%
Finance 28 14% 21 11.5%

IT in Security & Privacy 27 13.5% 25 13.7%
IT in non Security & Privacy 40 20% 39 21.4%

Tele Services 15 7.5% 19 10.4%
Utilities 9 4.5% 3 1.7%

Rarely (0-1hr) 7 3.5% 9 4.9% This time indicates the par-
ticipants’ habits in smart-
phone in a sense.

Sometimes (1-2hr) 49 24.5% 49 26.9%
Frequently (2-4 hr) 79 39.5% 56 30.8%
Very often (4+ hr) 65 32.5% 68 37.4%

Socializing 78 39% 59 32.4% This taxonomy is based on
Seven Shades of Mobile study,
conducted by InsightsNow
for AOL and BBDO, 2012.
More then 1000 US smart-
phone users are involved.

Shopping 23 11.5% 16 8.8%
Accomplishing 10 5% 14 7.7%
Arrangement 11 5.5% 13 7.1%

Discovery 25 12.5% 22 12.1%
Me Time 41 20.5% 35 19.2%

Self-expression 12 6% 23 12.6%
Seriously completed 113 56.5% 119 65.4% The participants who hastily

completed our task make no
contribution to the results

Normally completed 80 40% 61 33.5%
Hastily completed 7 3.5% 2 1.1%

apps. We investigated the participants with background in
information technology with a focus on privacy & secu-
rity and other related areas. The recommendation accuracy
(around 90%) for the participants with information security
background is higher than all of the others, which results
from their better understandings about the privacy permis-
sion settings in smartphones. Due to the same reason, users
from other areas have lower accuracy of recommendations.
Fig. 5(d) indicates that PriVs does not provide very proper
advice to people spending less time on smartphones. They
may have inadequate knowledge about smartphone apps
since they do not spend much time on them. As shown in
Fig. 5(e), people who like to use some accomplishing (e.g.,
managing finances, health and productivity) or arrange-
ment (planning for upcoming events) apps will get more
accurate recommendations from PriVs due to their existing
and crowdsourced permission settings. In the last subfigure
Fig. 5(f), we can see that people who completed our task
in Amazon Mechanical Turk in a rush cannot get accurate
recommendations for their privacy permission settings since
they just finished the task without any attention.

5.3 Parameter Estimation

There are two parameters, λ and δ, in Eq. 17. Since the
exact values of both parameters are calculated from data
from real world deployments, it is important to know their
stability and scalability. By stability, we mean the optimal
value of a parameter will not change greatly with data in
different sets. By scalability, we mean the optimal value of a
parameter will not change greatly with the dataset sample

size. The optimal value here is defined as the value that will
lead to minimum Mean Absolute Error (MAE) [22] shown in
Equation 20 where L denotes the total number of predicted
permission settings. The basic idea of MAE is to calculate
the average absolute deviation of predictions to the ground
truth data. In our study, several sub-datasets with different
size and content were generated randomly from original
testing dataset, and we computed the mean absolute error
of our recommendation results to the actual selections of the
participants for each sub-dataset under different parameter
values. In order to remove impact of the other parameter,
we first tested λ by setting δ to zero, and later nail down λ
to test δ. The results are shown in Fig. 7.

MAE =

∑
x,y,z |rx,y,z − r̂x,y,z|

L
(20)

Fig. 7(a) presents MAE of recommendation results by
varying λ from zero to one under multiple datasets with
different sizes (i.e., with 5, 20, 50 and 80 participants respec-
tively). It shows that our recommendation algorithm can
achieve minimal mean deviation error when λ falls range
between 0.4 and 0.6, and further calculations will output
0.5 as the optimal value for λ. The data in Fig. 7(a) also
show that the optimal value of λ is fixed around 0.5 under
different datasets and different sample sizes, thus such an
optimal value is stable and can scale well with different
datasets.

The results of parameter δ are given in Fig. 7(b), which
shows that the optimal value of δ is also pretty stable
and scales well. More specifically, its optimal value is 0.7,
because under all cases, our recommendation algorithm

11

will always achieve minimal MAE when δ equals to 0.7,
even though the datasets contents and sizes have changed
dramatically.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

The times of user choose to temporal approve

Th
e

co
rre

sp
on

di
ng

 w
ei

gh
t

0 1 2 3 4 5 6 7 8 9 10

The users have no clear idea when they
select temporal approve for 1-2 times

The users may be sure about their
section of temporal approve after 4 times

Fig. 6. The curve of logistics function and the meaning of different part.
The users have no clear idea when they select temporal approve for 1-2
times but they may be sure about their section of temporal approve after
4 times

There are two parameters k and x0 in Eq. 18 in Section
3.4. Recall that x0 is the x-value of the sigmoid’s midpoint
and k is the steepness of the curve, so we calculate the
average times of each users choosing the temporal approval
as their opinions. According to the 10-days user study, the
average value is 3.5 times. Therefore, we set x0 = 3.5. Due
to the same reason, we think the users who choose temporal
approval for more than 6 times to a particular permission
would like to approve the PriVs’s recommendation. So, we
set the parameter k = 1 to fulfil the requirement of this
situation. The plot based on these parameters are shown in
Fig 6. In the figure, the value is low at the very beginning
since the users have little understanding to their opinions.
The value is gradually rising as increase of times. The value
is close to 1 when the times are larger than 6, which meets
the results of the 10-days user study.

5.4 Scalability
To better understand the scalability of both parameters, i.e.,
how the number of participants would impact the optimal
value of λ and δ, some additional experiments were done
and the results are given in Fig. 7(c). It shows that: when the
dataset size is small, the optimal values of both parameters
will change greatly. However, when the dataset size is larger
than 50, their optimal values become very stable and will
stick to 0.5 and 0.7 respectively. This means: we need only
to learn the optimal parameter values once with a big initial
dataset, and such learned optimal values can be effective for
a later real world deployment in large scale.

●

●

●

●
● ● ●

●

●
●

●

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1
lambda

M
ea

n
A

bs
ol

ut
e

E
rr

or

●

5 users
20 users
50 users
80 users

(a)

●

●

●
● ● ●

●
● ●

●

●

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1
delta

M
ea

n
A

bs
ol

ut
e

E
rr

or

●

5 users
20 users
50 users
80 users

(b)

●

●

● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

5 20 50 80 100120140160180200
Number of Users

O
pt

im
al

 V
al

ue
 (

10
0

us
er

s)

● lambda
delta

(c)
Fig. 7. Parameters estimation of the recommendation algorithm. (a)
the impact of lambda (b) the impact of delta (c) the impact of size of
participants

5.5 Usability
To improve the usability of PriVs, the PriVs app can be
a proxy tool, which can accept and apply the recommen-

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

Insistence

Change

Yes No
Activiate Proxy Function

U
sa

ge
 o

f P
ro

xy
 F

un
ct

io
n

disable the proxy
function in the third round

enable the proxy
function in the third round

Fig. 8. Scatter plot showing the distribution of participants using the
proxy function. Two participants disable the proxy function and four
participants enable the proxy function in the third round.

dations generated by PriVs automatically on behalf of the
users. This proxy function can be activated or deactivated
at any time, which at least implicitly indicates the level of
usability of PriVs. We separate the 10-days user study into
three round: 1-3 day is the first round, 4-6 day is the second
round, and the 7-10 day is the third round. We monitor
the users’ activities about proxy activation and deactivation
during the user study. Fig. 8 shows the results of the proxy
activation recordings of the second and third round. More
than 50% of the participants activated the proxy function
in the second round. This means they trust the results
generated by PriVs and embrace its usability after using it
for a while. Further, more participants enabled the proxy
function in the third round than disabled it. Approximately
18% of the participants did not use the function during the
study. Finally, after the study, we asked the participants to
answer a questionnaire on how they feel with regard to
their privacy in participatory sensing. Eleven participants
responded.

Many participants noted that PriVs increased their
awareness for their privacy concerns of their mobile apps.
As examples, we would like to share the following two
characteristic comments from participants:

”I never know about how to set my privacy permission
since I use my mobile phone. PriVs really can help me to
handle this.”

”The work is well done cause how to use my apps
perfectly and keep the my information safety is a problem
bothers me a lot.”

6 RELATED WORK

We review some related works from two perspectives,
technique-centric and human-centric, and conduct a taxon-
omy of the representative ones.

6.1 Technique-centric privacy preserving

Technique-centric methods mainly focus on preserving pri-
vacy using technique according to different context for vari-
ous goals. Before protecting privacy, we need to understand
what caused the privacy risk. Thus, the methods about
detecting and analyzing the potential privacy risk of mobile
apps have emerged, such as static analysis and dynamic
analysis. The former one analyzes the source code of mobile
apps to generate a control flow graph (CFG) rather than
actually executing the apps, while the latter one monitors
the mobile apps when the apps are running. LeakMiner

12

is tool to detect disclosure of sensitive information on An-
droid based on static analysis [23]. AndroidLeaks is a static
analysis framework for finding potential leaks of sensitive
information in Android apps on a large scale [24]. Static
analysis for android permissions can figure out the flaws
when the apps are granted more permissions than they
actually need [25]. TaintDroid is a dynamic taint tacking
and analysis system, which involves some aforementioned
methods to simultaneously track multiple sources of sensi-
tive data [26]. It can provide realtime analysis by leveraging
Android’s virtualized execution environment and detect the
predefined nine situations of the information as taint.

After detecting the privacy risks, some technologies and
mechanisms are proposed to mitigate or even eliminate
the risks. The existing works involve permission removal,
access control and data mock. Permission removal has been
proposed to mitigate the privacy leak in Android smart-
phone [20]. It is a kind of reverse engineering process which
aims to remove an app’s permissions to a resource when the
permissions are unrelated to the application. The repack-
aged app can run in the smartphone again. Access control
provides a different perspective of detecting and protect-
ing privacy in smartphone. FlaskDroid provides mandatory
access control on Android’s middleware and kernel layers
to prevent information disclosure [27]. AppIntent provides
a framework which tries to control data transmission to
prevent Android applications from stealing sensitive data,
meanwhile identify if transmission is from users’ intentions
[28]. TrustDroid is designed to isolate data and commu-
nication at different layers of the Android software stack,
including the middleware layer, kernel layer and network
layer [29]. AppFence is a method which aims to empower
users to protect their data from exfiltration by permission-
hungry applications [30]. Data mock also plays an important
role in preserving privacy since some applications cannot
run without accessing specific information. TISSA [31] and
MockDroid [32] can provide artificial data instead of real
one to the applications such that they can still function.
In this case, there is no risk for users because the data are
fake. However, due to the same reason, applications cannot
provide competent services to users.

6.2 Human-centric privacy preserving

Human-centric methods focus on finding the balance be-
tween privacy and usability, which have the similar objec-
tive to our work. For this, we first need to understand users’
privacy and then help them to preserve their privacy.

Understanding users’ privacy is the key of human-
centric methods, which is a claim of individuals, groups,
or institutions to determine for themselves when, how, and
to what extent information about them is communicated
to others [33]. Therefore, privacy of mobile apps should
emphasize that users should have adequate awareness and
understanding to their personal and sensitive information.
According to a recent survey [34], Android users hold
quite different viewpoints due to their demographic charac-
teristics, privacy awareness, and reported behaviors when
installing mobile apps. It is probably surprised for users to
realize data collection and distribution activities of smart-
phone apps [35]. Thus, it is challenging to recognize users’

perceptions of whether a given action is legitimate, or how
the action makes them feel with respect to privacy. A model,
privacy as expectations, is proposed to capture people’s
expectations of privacy [36]. Appprofiler shows an approach
to provide users with knowledge for decision-making about
Android apps through analyzing privacy-related behaviors
of apps and users’ opinions [37]. After understanding user’s
perceptions, it is also important to assess privacy risk and
predict user’s privacy preferences so that we can help users
to preserve their privacy. An approach is proposed for
assessing the privacy risk of Android users based on impact
valuation from users and their profiles [38]. Super-Ego is
a crowdsourcing framework which can predict the users’
privacy preferences for different locations on the basis of
the general user population [39].

6.3 Taxonomy and Comparison

Table 3 gives a taxonomy of some representative existing
works, as well as ours, with regard to the perspective, ob-
jective, summary. Considering perspective, we categorized all
the existing works into two groups, technique-centric and
human-centric. Taking objective into account, there are three
main categories, privacy detection and analysis, privacy
protection and understanding users’ privacy. In summary,
we abstract the work and highlight the main contribution.

We also add our work, PriVs, into this taxonomy as a
comparison. According to this table, we illustrate our work
is unique so far since we are the only one focusing on both
understanding users’ privacy and privacy protection. That
means our work is the only one which aims to protect users’
privacy based on their own opinions, preferences, attitudes.

7 DISCUSSION

In this section, we discuss some potential limitations in our
work, which may be argued.

Firstly, we initialize the recommendation mechanism
according to the collected users’ privacy permission settings
rather than the experts’ opinions. This is something about
our motivation, which is elaborated in Section 2 as well,
i.e, seeking a balance between usability and privacy. We
believe so far there is no absolute right answer for the
people who want to set their privacy permission, even some
answers provided by experts because individual opinion
differs from person to person [40]. Thus, in our system, we
initialize our recommendation mechanism based on settings
collected from each individual instead of experts. However,
this does not necessary mean that experts’ opinions are
totally excluded. Actually there are two ways to incorporate
them into our system. First, experts are also users, thus their
opinions can enter system in the same way as other regular
users and impact other users. Second, it is possible to set up
a pool of expert users whose opinions may have relatively
larger weights when generating recommendations. We will
leave the latter approach as our future work.

Secondly, we discuss the parameters in the recommenda-
tion approach in Section 5.3. We determined the parameters
according to the MAE of recommendations. Also, according
to our illustration, the number of participants also influ-
ences the performances of recommendation algorithms. The

13
TABLE 3

Comparison with existing works

Perspective Objective Summary
Leakminer
[23]

Technique-centric privacy detection
and analysis

It is an automatic and static taint analysis method. After analyzing 1750 apps, it
can identify 145 real leakages in this app set.

AndroidLeaks
[24]

Technique-centric Privacy detection
and analysis

24350 Android apps were examined, 57299 potential privacy leaks in 7414
Android apps were found.

Taintdroid
[26]

Technique-centric Privacy detection
and analysis

30 popular Android apps were examined, 68 instances of potential misuse of
users’ privacy were found across 20 apps.

FlaskDroid
[27]

Technique-centric Privacy detection
and analysis

It provides mandatory access control simultaneously on both Android’s
middleware and kernel layers. Empirical testing is based on the security models,
testbed of known malware and synthetic attacks.

AppIntent
[28]

Human-centric Privacy detection
and analysis,

Privacy protection

It is an analysis framework, which can provide a sequence of GUI manipulations
corresponding to the sequence of events to determine if the data transmission is
user intended or not.

MockDroid
[32]

Technique-centric
Human-centric

Privacy protection It is a modified version of the Android which allows a user to provide artificial
data instead of real one to the apps such that they can still function (possibly with
reduced functionality).

Privacy as
expectations
[36]

Human-centric Understanding
users’ privacy

It is a system which captures users’ expectations of what sensitive resources
mobile apps use through crowdsourcing. It found that both users’ expectation and
the purpose of sensitive resources can affect users’ feelings and their decisions.

Appprofiler
[37]

Human-centric Understanding
users’ privacy

It can make informed decisions about the applications they install, which creates
a knowledge base of mappings between API calls and fine-grained
privacy-related behaviors to generate high-level behavior profiles.

PriVs Human-centric Understanding
users’ privacy,

Privacy protection

It is an unobtrusive system, which can crowdsource users’ privacy permission
settings and generate recommendations for them accordingly so that they can
preserve their sensitive data and maintain the apps’ usability.

research issue about participant selection for generating
recommendation algorithm is proposed, which is out of
scope of this article and will be the future work.

Thirdly, there are more then 400 participants involved in
our work to help us conduct the experiments and improve
our research. Intuitively, the more people participate, the
better the results will be. However, we cannot recruit as
many participants as possible due to the time and resource
limitation. Even though, we try our best to get more users
involved. All the information about the participants are
shown in Table 2. We avoid the statistical bias of the
population, which can make our results more convincing.
Also according to the our finding in Section 5.3, our current
sample size is adequate to obtain good results.

Finally, we have two data sources of our experiments as
shown in Section 5. One is based on Amazon Mechanical
Turks, while the other is based on the real deployment.
In nature, both of them are based on the real users in the
world. In the Amazon Mechanical Turks, we can get more
participants in easily, which is significant to our work. In the
real deployment, people will use our app and provide more
feedback to us since we can have the face-to-face survey,
which also can help us to improve our work. That is the
reason why we conduct two sorts of evaluations.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented an unobtrusive recommendation
system for smartphone users to set their privacy permis-
sions. Based on our idea about privacy and usability in
mobile apps, the system can provide recommendations to
users according to their preferences through crowdsourcing,
and then revise the recommendations due to their feedback
so that the system can find the balance between the privacy
and usability. To evaluate our work, we published tasks on
the Amazon Mechanical Turk and collected the feedbacks
of 382 participants. Further, we implemented and deployed
the system for 26 people usage during 10 days as a case
study. The evaluation is based on the feedback from the

Amazon Mechanical Turk and the case study shows that
our system can provide proper recommendations that fit
the user’s individual perception of privacy, and is accepted
by the users as a convenient tool due to the usability. In the
future work, we plan to consider experts’ opinions into our
existing system and deploy the system in a large scale, like
potential open dataset and app store.

ACKNOWLEDGMENTS

This work is supported by HK RGC GRF Grant
PolyU152244/15E, 14217816, and NSFC Key Project No.
61332004, NSFC Grant No. 61572415, 61502312.

REFERENCES

[1] B. Liu, J. Lin, and N. Sadeh, “Reconciling mobile app privacy and usability
on smartphones: could user privacy profiles help?” in Proceedings of the 23rd
international conference on World Wide Web. ACM, 2014, pp. 201–212.

[2] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and D. Wether-
all, “A conundrum of permissions: installing applications on an android
smartphone,” in Financial Cryptography and Data Security, 2012, pp. 68–79.

[3] R. Liu, J. Cao, L. Yang, and K. Zhang, “PriWe: Recommendation for privacy
settings of mobile apps based on crowdsourced users’ expectations,” in
IEEE International Conference on Mobile Services, 2015, pp. 150–157.

[4] S. D. Warren and L. D. Brandeis, “The right to privacy,” Harvard law review,
vol. 4, no. 5, pp. 193–220, 1890.

[5] A. F. Westin, “Privacy and freedom,” Washington and Lee Law Review, vol. 25,
no. 1, p. 166, 1968.

[6] V. Bellotti and A. Sellen, “Design for privacy in ubiquitous computing
environments,” in 3rd European Conference on Computer-Supported Cooperative
Work 13–17 September 1993, Milan, Italy ECSCW’93. Springer, pp. 77–92.

[7] C. Baber, P. Smith, M. Butler, J. Cross, and J. Hunter, “Mobile technology for
crime scene examination,” International Journal of Human-Computer Studies,
vol. 67, no. 5, pp. 464–474, 2009.

[8] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender systems:
an introduction. Cambridge University Press, 2010.

[9] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic
framework for performing collaborative filtering,” in Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in
information retrieval, 1999, pp. 230–237.

[10] P. Melville and V. Sindhwani, “Recommender systems,” in Encyclopedia of
machine learning. Springer, 2011, pp. 829–838.

[11] C. C. Aggarwal, Recommender Systems - The Textbook. Springer, 2016.
[12] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos, “A unified framework

for providing recommendations in social tagging systems based on ternary
semantic analysis,” IEEE Transactions on Knowledge and Data Engineering,
vol. 22, no. 2, pp. 179–192, 2010.

14

[13] “Android System Permissions Group.” http://developer.android.com/
reference/android/Manifest.permission group.html.

[14] X. Jiang and Y. Zhou, “A survey of android malware,” in Android Malware.
Springer, 2013, pp. 3–20.

[15] “12 Most Abused Android App Permissions.” http:
//about-threats.trendmicro.com/us/library/image-gallery/
12-most-abused-android-app-permissions, 2013.

[16] “92% of top 500 android apps carry security or pri-
vacy risk.” http://www.infosecurity-magazine.com/news/
92-of-top-500-android-apps-carry-security-or/, 2014.

[17] P. Gerber, M. Volkamer, and K. Renaud, “Usability versus privacy instead
of usable privacy: Google’s balancing act between usability and privacy,”
ACM SIGCAS Computers and Society, vol. 45, no. 1, pp. 16–21, 2015.

[18] C. Orthacker, P. Teufl, S. Kraxberger, G. Lackner, M. Gissing, A. Marsalek,
J. Leibetseder, and O. Prevenhueber, “Android security permissions–can we
trust them?” in Security and Privacy in Mobile Information and Communication
Systems, 2012, pp. 40–51.

[19] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
permissions: User attention, comprehension, and behavior,” in Proceedings
of the Eighth Symposium on Usable Privacy and Security. ACM, 2012, p. 3.

[20] Q. Do, B. Martini, and K.-K. R. Choo, “Enhancing user privacy on android
mobile devices via permissions removal,” in 2014 47th Hawaii International
Conference on System Sciences (HICSS). IEEE, 2014, pp. 5070–5079.

[21] “Xposed Module Repository.” http://repo.xposed.info/.
[22] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen, “Scalable

collaborative filtering using cluster-based smoothing,” in the 28th annual
international ACM SIGIR conference on Research and development in information
retrieval, 2005, pp. 114–121.

[23] Z. Yang and M. Yang, “Leakminer: Detect information leakage on android
with static taint analysis,” in Third World Congress on Software Engineering
(WCSE). IEEE, 2012, pp. 101–104.

[24] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: automatically
detecting potential privacy leaks in android applications on a large scale,”
in International Conference on Trust and Trustworthy Computing. Springer,
2012, pp. 291–307.

[25] J. Klein, M. Monperrus, A. Bartel, and Y. Le Traon, “Static analysis for
extracting permission checks of a large scale framework: The challenges and
solutions for analyzing android,” IEEE Transactions on Software Engineering,
p. 1, 2014.

[26] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “Taintdroid: an information flow tracking system for real-time
privacy monitoring on smartphones,” Communications of the ACM, vol. 57,
no. 3, pp. 99–106, 2014.

[27] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained manda-
tory access control on android for diverse security and privacy policies,” in
Usenix security, 2013, pp. 131–146.

[28] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang, “Appintent:
Analyzing sensitive data transmission in android for privacy leakage de-
tection,” in the 2013 ACM SIGSAC conference on Computer & Communications
Security, 2013, pp. 1043–1054.

[29] Z. Zhao and F. C. C. Osono, “Trustdroid: Preventing the use of smartphones
for information leaking in corporate networks through the used of static
analysis taint tracking,” in 7th International Conference on Malicious and
Unwanted Software (MALWARE). IEEE, 2012, pp. 135–143.

[30] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect data
from imperious applications,” in the 18th ACM conference on Computer and
Communications Security, 2011, pp. 639–652.

[31] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-stealing
smartphone applications (on android),” in Trust and Trustworthy Computing.
Springer, 2011, pp. 93–107.

[32] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading
privacy for application functionality on smartphones,” in 12th Workshop on
Mobile Computing Systems and Applications. ACM, 2011, pp. 49–54.

[33] V. M. Garcı́a-Barrios, “User-centric privacy framework: Integrating legal,
technological and human aspects into user-adapting systems,” in Interna-
tional Conference on Computational Science and Engineering, vol. 3, 2009, pp.
176–181.

[34] Z. Benenson, F. Gassmann, and L. Reinfelder, “Android and ios users’
differences concerning security and privacy,” in ACM CHI’13 Extended
Abstracts on Human Factors in Computing Systems, 2013, pp. 817–822.

[35] I. Shklovski, S. D. Mainwaring, H. H. Skúladóttir, and H. Borgthorsson,
“Leakiness and creepiness in app space: Perceptions of privacy and mobile
app use,” in the 32nd annual ACM conference on Human factors in computing
systems, 2014, pp. 2347–2356.

[36] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang, “Expectation
and purpose: understanding users’ mental models of mobile app privacy
through crowdsourcing,” in Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, 2012, pp. 501–510.

[37] S. Rosen, Z. Qian, and Z. M. Mao, “Appprofiler: a flexible method of
exposing privacy-related behavior in android applications to end users,”
in Proceedings of the third ACM conference on Data and application security and
privacy. ACM, 2013, pp. 221–232.

[38] A. Mylonas, M. Theoharidou, and D. Gritzalis, “Assessing privacy risks
in android: A user-centric approach,” in Risk Assessment and Risk-Driven
Testing. Springer, 2014, pp. 21–37.

[39] E. Toch, “Crowdsourcing privacy preferences in context-aware applica-
tions,” Personal and ubiquitous computing, vol. 18, no. 1, pp. 129–141, 2014.

[40] R. Liu, J. Cao, S. VanSyckel, and W. Gao, “Prime: Human-centric privacy
measurement based on user preferences towards data sharing in mobile
participatory sensing systems,” in 2016 IEEE International Conference on
Pervasive Computing and Communications, PerCom 2016, Sydney, Australia,
March 14-19, 2016, pp. 1–8.

Rui Liu is currently a research assistant in the
Department of Computing at The Hong Kong
Polytechnic University. He received MPhil de-
gree from The Hong Kong Polytechnic University
and the BSc degree from Northeastern Univer-
sity, China. He is an Outstanding Graduate in
Liaoning Province and a recipient of the Google
Excellence Scholarship. His research interests
include ubiquitous computing, mobile comput-
ing, and crowdsourcing. He is a student member
of IEEE.

Jiannong Cao is currently a chair professor and
the head of the Department of Computing at
Hong Kong Polytechnic University. He received
the BSc degree from Nanjing University, China,
and the MSc and PhD degrees from Washington
State University, USA, all in computer science.
His research interests include parallel and dis-
tributed computing, computer networks, mobile
and pervasive computing, fault tolerance, and
middleware. He co-authored 4 books, coedited
9 books, and published more than 300 technical

papers in major international journals and conference proceedings. He
is a fellow of IEEE, a member of ACM, and a senior member of China
Computer Federation.

Kehuang Zhang is an Assistant Professor with
the Information Engineering Department, The
Chinese University of Hong Kong. He received
the PhD degree in Informatics from Indiana Uni-
versity at Bloomington in 2012. His current re-
search focuses on system and software secu-
rity, including mobile computing security, cloud
computing, embedded system security. He is a
member of the IEEE and ACM.

Wenyu Gao is currently a PhD candidate in
statistics department of Virginia Polytechnic In-
stitute and State University. She received the
Bsc degree (double major in statistics and fi-
nance) from the University of Hong Kong in
2013, the MA degree in statistics from Columbia
University in 2014. Her research interests in-
clude machine learning, human-computer inter-
action and bayesian statistics.

Junbin Liang is currently a professor in Guangxi
University. He received BSc and MSc degrees in
Computer Science from the Guangxi University
in 2000 and 2005, respectively. He received his
PhD degree in Central South University of China
in 2010. His research interests include mobile
ad hoc networks, wireless sensor networks and
real-time programming language design.

Lei Yang is currently an associate professor at
School of Software, South China University of
Technology. He received the BSc degree from
Wuhan University, in 2007, the MSc degree from
the Institute of Computing Technology, Chinese
Academy of Sciences, in 2010, and the PhD de-
gree from the Department of Computing, Hong
Kong Polytechnic University, in 2014. During
2014 to 2015, he has been a postdoctoral fellow
at Department of Computing, Hong Kong Poly-
technic University. His research interest includes

mobile cloud computing, Internet of Things, and data analytics.

