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Abstract—Domain Name System (DNS) is one of the pillars
of today’s Internet. Due to its appealing properties such as low
data volume, wide-ranging applications and encryption free, DNS
traffic has been extensively utilized for network monitoring. Most
existing studies of DNS traffic, however, focus on domain name
reputation. Little attention has been paid to understanding and
profiling what people are doing from DNS traffic, a fundamental
problem in the areas including Internet demographics and
network behavior analysis. Consequently, simple questions like
“How to determine whether a DNS query for www.google.com
means searching or any other behaviors?” cannot be answered
by existing studies. In this paper, we take the first step to identify
user activities from raw DNS queries. We advance a multi-
scale hierarchical framework to tackle two practical challenges,
i.e., behavior ambiguity and behavior polymorphism. Under this
framework, a series of novel methods, such as pattern upward
mapping and multi-scale random forest classifier, are proposed
to characterize and identify user activities of interest. Evaluation
using both synthetic and real-world DNS traces demonstrates the
effectiveness of our method.

I. INTRODUCTION

Domain name system (DNS) is indispensable to nearly all
Internet services because of its efficiency in mapping human-
friendly domain names into machine-readable IP addresses. It
has also been widely exploited by content delivery networks
(CDNs) [1,2] and cloud services to accelerate network perfor-
mance [3]. Due to its prevalence, DNS has been commonly
utilized as a vantage point for network monitoring [4]–[7].

Since most existing studies of DNS traffic focus on domain
name reputation (i.e., the likelihood to be benign or mali-
cious) [4,8,9], little attention has been paid to understanding
and profiling the purpose-driven user activities behind a se-
quence of raw DNS queries. In such an activity, a user behaves
with a semantic purpose that is human-understandable, mean-
ingful and scenario-specific, e.g., visiting a certain website and
using a specific mobile app. In this paper, we aim at identifying
user activities from raw DNS queries. Although seemingly
not difficult to achieve such a goal by inspecting application-
specific traffic (e.g., HTTP), it becomes challenging when only
raw DNS queries are used, which will be detailed in the next
paragraph. The benefits of studying this problem, as compared
to inspecting application-specific traffic, naturally inherit all
advantages of DNS traffic analysis, such as extremely low data
volume, wide-ranging applications, and encryption free. More
importantly, successfully solving the problem could endue

∗Jianfeng Li and Xiaobo Ma contributed equally to this work.
† Corresponding author.

DNS with a new paradigm in behavioral profiling, enriching
people’s traditional view on DNS traffic analysis.

Despite the benefits, the problem involves the following
technical challenges that are not tackled in the literature.

Behavior Ambiguity. Domain names queried in one user
activity may also be queried in other user activities, termed
as domain multiplexing, leading to the ambiguity in user
activity identification if one observes DNS queries separately.
For example, in almost all user activities related to Google
(e.g., Google play, Gmail, and Google plus), the domain
name www.google.com will be queried. Through observing
individual DNS queries, one cannot tell which user activity
a query for www.google.com comes from. Intuitively, we
can correlate multiple DNS queries during a period of time
and analyze the DNS query pattern therein to disambiguate
behaviors. However, the duration of the observation period,
referred to as time scale, is difficult to determine, since DNS
query patterns are often scale-sensitive. A small time scale
may lose the contextual information of different domain names
because just a few DNS queries fall into the time bin, while a
large time scale would introduce substantial noises (i.e., DNS
queries for irrelevant domain names). To make things more
complicated, the time scales appropriate for observing different
user activities may vary in a large range.

Behavior Polymorphism. To identify a user activity of in-
terest, one needs to collect DNS query samples for training
and extract the underlying DNS query patterns. However, it is
extremely difficult, if not entirely impossible, to collect DNS
query samples for training with sufficient sample diversity as a
result of user behavior polymorphism. We use polymorphism
to represent two practical phenomena. First, the underlying
patterns of a certain user activity, say A, may vary across
different end users. For example, when visiting a website,
different end users may browse different webpages, resulting
in different DNS query patterns. Even in the case of the
same webpage, the patterns of different end users may not
be completely the same due to the interferences of local DNS
caches. Second, the user activities that reuse domains names
of A can hardly be fully enumerated. Compounded by the
fact that we can only collect DNS query samples for training
from a limited number of end users, the former (resp. latter)
phenomenon causes the lack of positive (resp. negative) DNS
query samples, thus likely leading to false negatives (resp.
positives) in DNS query samples for testing. The samples are
positive if induced by A; otherwise negative.

To address behavior ambiguity, we propose a novel multi-
scale hierarchical characterization method to represent a se-
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quence of DNS queries, in favor of retaining contextual
behavioral information at various increasing time scales in a
bottom-up manner. The basic idea is that, at a certain time
scale, the characteristics of DNS queries within each time
bin (e.g., a feature vector describing the frequency of each
underlying DNS query pattern) are recursively aggregated from
those within multiple (successive) child time bins at a smaller
time scale, wherein the characteristics at the smallest time
scale within each time bin (e.g., a feature vector describing
the frequency of each domain name is queried) are derived
from raw DNS queries. A key technique before performing the
aggregation is to map all feature vectors at the smaller time
scale into underlying DNS query patterns, and then represent
these patterns using a compressed representation.

To deal with behavior polymorphism, we perform DNS
query sample recognition and expansion. On one hand, we pro-
pose a semi-supervised method to recognize unknown positive
samples by exploring their co-occurrence relation with labeled
samples. The proposed method could effectively reduce false
negatives caused by the lack of positive samples. On the other
hand, we generate (artificial) negative samples that encircle
(i.e., close to but not within) regions of positive samples. In
this way, the outliers, which are away from these regions in
feature space, tend to be labeled as negative samples, hence
expanding the diversity of negative samples and meanwhile
mitigating the risk of false positives.

To the best of our knowledge, our work constitutes the
first effort towards identifying user activities from raw DNS
queries. We mainly make the following contributions:

• We propose a novel multi-scale hierarchical charac-
terization method for DNS queries to recursively describing
DNS query behavioral information at various increasing time
scales in a bottom-up manner. With increased time scales, the
characterization can gradually extract different DNS query pat-
terns involving contextual behavior information with different
visibility and granularities. The proposed characterization can
also be used in other similar problems.

• To identify user activities based on the characterization,
we devise a multi-scale random forest (MRF) classifier, which
identifies user activities in a top-down manner (i.e., from
large time scales to small ones) with increased granularities.
MRF can not only accurately identify user activities, but also
recognize unknown DNS query patterns of user activities with
the help of a semi-supervised method.

•We build a working system to identify user activities from
DNS traces. Experiments using both synthetic and real-world
data demonstrate that our system can effectively and accurately
identify user activities. We also demonstrate how our methods
can be applied in user dynamics surveillance.

Roadmap. Section II describes the problem. Section III
presents the multi-scale hierarchical characterization of DNS
queries, and Section IV details multi-scale identification of
user activities. We report experimental results in Section V,
survey related work in Section VI, and conclude in Sec-
tion VII.

II. PROBLEM DESCRIPTION

Our goal is to identify user activities of one’s interest and
locate the time period when they occur. Fig. 1 shows our

Fig. 1: A motivating example of user activity identification.

two-stage procedure with the example of identifying the user
activity of “visiting Amazon website”.

Stage 1: We collect DNS traces of end users on the border
of the network (or at the DNS server). For each end user
whose behavior is known, we label their traces of DNS queries.
Specifically, along a series of τ -sized time bins, we assign each
time bin a binary label that indicates the presence (red shaded)
or the absence (blue shaded) of “visiting Amazon website”.
Labels can be decided using information from various sources,
such as deep packet inspection and browser plug-ins that
monitor web activities, depending on the specific user activities
of interest. Using the labeled traces, we derive the multi-scale
hierarchical characterization and train a multi-scale random
forest classifier in Sections III and IV respectively.

Stage 2: For each of the remaining end users with unlabeled
traces, leveraging the models trained in stage 1, we identify
the presence/absence of the user activity “visiting Amazon
website” in all its τ -sized time bins.

III. MULTI-SCALE HIERARCHICAL
CHARACTERIZATION OF DNS QUERIES

To identify user behavior from DNS queries, an immediate
demand is to formally characterize the queries, facilitating the
representation of all possible underlying behavioral patterns.
To this end, we propose the multi-scale hierarchical character-
ization to represent the queries, in favor of retaining contextual
information at various time scales.

A. Representing DNS Query Dynamics at Multiple Time Scales

Fig. 2 exemplifies a trace of DNS queries from an end-user,
where each bar represents a DNS query. Let A be the user
activity of interest occurring between t1 and t2 (red shaded),
and D = (a, b, . . . , i) be the list of domain names. The entire
period is divided into a series of τ -size time bins. Assume
that a, b, c, d are domain names queried in A. However, these
domain names are also queried when A is absent (e.g., t3 to
t4 and t5 to t6). Other domain names (e.g., e, f , g) that are
not queried by A but DNS queries for them are interleaved
during the same period when A occurs. DNS query dynamics
in the time bin Wt is denoted by a vector xt, where xt(j)
counts the number of DNS queries that fall into Wt for the
jth domain name in D. For example, DNS query dynamics in
W1 is denoted by x1 = (1, 1, 0, 0, 1, 0, 0, 0, 0).

Note that a small value of τ achieves fine-grained char-
acterization but renders the loss of contextual information of
different domain names. An extreme case is completely losing
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Fig. 2: An illustration of the multi-scale hierarchical characterization of DNS queries.

the contextual information if τ is less than the minimal time
interval between DNS queries, because at most one query falls
into each time bin. However, a large value of τ may ignore
the inner fine-grained information within each time bin. For
example, if we increase τ such that the interval from t1 to t2
falls in the 1st time bin and that from t3 to t4 falls into the
2nd time bin, DNS query dynamics between t1 and t2 cannot
be distinguished from that between t3 and t4 by observing
domain name combination a, b, c, d. Moreover, a large value
of τ may introduce substantial noises (i.e., DNS queries for
irrelevant domain names). Last, characterizing DNS query
dynamics at a fixed time scale cannot effectively distinguish
different user activities. For example, in Fig. 2, x1 is the DNS
query dynamics of A, whereas x12 is not. However, we have
x1 = x12 = (1, 1, 0, 0, 1, 0, 0, 0, 0).

We propose a multi-scale hierarchical characterization for
DNS query dynamics based on decision tree. Our characteriza-
tion improves the distinguishability by capturing the structural
differences between user activities at different time scales. To
this end, we construct hierarchical time bins as shown in Fig. 2
and recursively characterize DNS query dynamics in these time
bins. Let n be the number of time scales (n = 3 in Fig. 2).
For the kth time scale, the tth time bin is denoted by T kt .
If k = 1, we have T 1

t = Wt; otherwise, T kt ranges from
(t − 1)τ

∏k−1
j=1 αj to tτ

∏k−1
j=1 αj , where αj ∈ N is the time

scale inflation ratio from the jth time scale to the (j+1)th time
scale. We refer to time bins at the jth time scale (j < k) as
the child time bins of T kt if they fall into the range of T kt , and
T kt as the parent time bin of these child time bins accordingly.
For example, in Fig. 2, we have α1 = α2 · · · = αk = 2. Note
that all inflation ratios do not need to be equal. To characterize
DNS query dynamics in hierarchical time bins, we define query
pattern abstraction at each time scale.

Definition 1. A query pattern abstraction (QPA) at the kth
time scale is an elementary entity to characterize the DNS
query dynamics in time bins at the kth time scale.

A QPA at the 1st time scale is a DNS query. It is denoted
by an integer, i.e., the index of domain name in D. At the
kth time scale (k > 1), a QPA is a compressed representation
of DNS query dynamics in the corresponding child time bin
at the (k − 1)th time scale. We characterize the DNS query

dynamics in each time bin by counting the numbers of different
QPAs in this time bin. QPAs in each time bin are therefore
aggregated into a vector dubbed QPA-vector. We construct
multi-scale characterization by recursively aggregating QPAs
into QPA-vector and mapping QPA-vector to the QPA at a
larger time scale. Formally, we denote the ith QPA in T kt by
ykt (i). Aggregating all QPAs in T kt yields the QPA-vector in
T kt , denoted as xkt . Specifically, QPAs and QPA-vectors are
derived recursively as follows. At the 1st time scale, we have
x1
t = xt. At the kth time scale (k > 1), we have

ykt (i) = PUMk−1(xk−1
t′ ), (1)

where 1 ≤ i ≤ αk−1 and t′ = αk−1t−αk−1 + i. Assume that
there are mk different QPAs at the kth time scale. xkt is an
integer vector consisting of mk elements. We have

xkt (j) =

αk−1∑
i=1

1{ykt (i) = j}, (2)

where 1{·} is the indicator function. Take an example from
Fig. 2. The QPA-vector x1

1 = (1, 1, 0, 0, 1, 0, 0, 0, 0) is mapped
into the QPA y2

1(1) = 1 via PUM1. Aggregating QPAs
y2
1(1) = 1 and y2

1(2) = 2 yields the QPA-vector in T 2
1 , i.e.,

x2
1 = (1, 1). In (1), PUMk−1(·) is the pattern upward mapper

at the (k − 1)th time scale, which is constructed based on
decision tree (see Section III-B).

By leveraging QPA-vectors at different time scales, we
can distinguish DNS query dynamics of A from that of other
user activities at some proper time scales. For example, DNS
query dynamics of A (between t1 and t2) can be distinguished
from that between t3 and t4 at all time scales. It can also be
distinguished from DNS query dynamics between t5 and t6 at
the 2nd and 3rd time scales. In addition, our characterization
is noise-tolerate since it is immune to the impact of irrelevant
domain names.

B. Mapping QPA-Vector into QPA at A Larger Time Scale

To map the QPA-vector at the kth time scale into the QPA
at the (k + 1)th time scale, we construct the pattern upward
mapper PUMk(·) in a supervised manner. We collect training
traces of DNS queries from end users. These traces are labeled



to indicate the presence/absence of A. Formally, a labeled
trace of DNS queries can be expressed by S = {st}Mt=1,
where st = 〈xt, at〉 is the sample extracted from the time
bin Wt and at = 1 (resp. at = 0) indicates the presence (resp.
absence) of A in Wt. We derive training data of PUMk (for
k = 1, 2, . . . , n) from each labeled trace. Specifically, training
data induced by a labeled trace comprises a series of samples,
where the tth sample, denoted by bkt = 〈xkt , ekt 〉, consists of
a feature vector xkt and a label ekt . The feature vector xkt is
the QPA-vector in T kt . Obviously, xkt depends on PUMk−1.
Therefore, we recursively construct training data of pattern
upward mappers from small time scales to large ones. The label
ekt is derived by ekt =

∨te
j=ts

aj , where ts = 1+(t−1)
∏k
i=1 αi

and te = t
∏k
i=1 αi. Note that ekt = 1 (resp. ekt = 0) indicates

the presence (resp. absence) of A in the parent time bin of T kt .
Integrating samples extracted from all labeled traces yields the
training set of PUMk, denoted by Bk = {bki }

Mk
i=1.

Note that the QPA-vector xkt is an integer vector, thus can
be represented in tree-based structure. Fig. 3 illustrates a tree-
based representation of QPA-vector at the 1st time scale. Let
T be the set of QPA-vectors. T is divided into different
partitions with the splitting of tree. Each partition of QPA-
vectors corresponds to a unique path from root to leaf. All
these paths constitute the set Uβ , where β is the depth of tree.
The information gain caused in the splitting of tree is

IG(T ,Uβ) = H(T )−
∑
uj∈Uβ

|L(uj)|
|T | H(L(uj)), (3)

where L(uj) returns the subset of T corresponding to the path
uj and H(·) is the information entropy. We rewrite (3) as

IG(T ,Uβ) = H(T )−
∑
uj∈Uβ

|L(uj)|
|T | g(

∑
vi
1:β

=uj |L(vi)|pi
|L(uj)| )

−
∑
uj∈Uβ

|L(uj)|
|T | g(

∑
vi
1:β

=uj |L(vi)|(1− pi)

|L(uj)| ),

(4)

where vi ∈ Uβ+c, g(x) = x log x, and pi is the probability
that a QPA-vector in L(vi), say xkt , has the label ekt = 1. It
is worth noting that g(·) is a convex function. According to
Jensen’s inequality, we have

IG(T ,Uβ) ≤ H(T )−
∑
uj∈Uβ

∑
vi
1:β

=uj |L(vi)|g(pi)

|T |

−
∑
uj∈Uβ

∑
vi
1:β

=uj |L(vi)|g(1− pi)

|T | = IG(T ,Uβ+c).

(5)

a=1 a=0

b=1 b=0 c=1 c=0

d=1 d=0
... ...

... ...

...

Fig. 3: Representing QPA-vector in tree-based structure.
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Fig. 5: Basic idea of introducing artificial negative samples.

To map a QPA-vector at the kth time scale to a QPA at the
(k+ 1)th time scale, we need to analyze whether and to what
extent this QPA-vector can indicate the presence/absence of A
at the (k+1)th time scale. According to (5), the splitting of tree
results in reduction in entropy, or equivalently the uncertainty
of telling whether A occurs in the parent time bin at the (k+
1)th time scale given a QPA-vector at the kth time scale.

A path from root to leaf distinguishes a (sort of) QPA-
vector(s) from those corresponding to other paths. For exam-
ple, in Fig. 3, the path in red distinguishes QPA-vectors in
T 1
1 , T 1

11, and T 1
12 from those in other time bins in Fig. 2. This

observation inspires us to employ the path as the compressed
representation of QPA-vectors. Increasing β enhances the
discrimination of a QPA-vector, while rendering an exponential
growth of the number of unique QPA-vectors. Even through
a complete splitting, i.e., β = dim(xkt ), some QPA-vectors
belonging to different user activities (e.g., QPA-vectors in
T 1
1 and T 1

12) are still indistinguishable. We refer to such
QPA-vectors as the ambiguous QPA-vectors, which will be
handled in two steps. First, we seek the optimal compressed
representation of QPA-vector that maximizes the information
gain using a decision tree trained with Bk. Second, we take
advantage of the contextual behavior (i.e., other QPAs in the
parent time bin) to distinguish ambiguous QPA-vectors. This
process essentially further splits these ambiguous QPA-vectors,
leading to further entropy reduction according to (5).

Fig. 4 illustrates pattern upward mapping from the QPA-
vector at the kth time scale to the QPA at the (k + 1)th time
scale. By applying the decision tree, QPA-vectors of samples in
Bk are divided into partitions associated to different leaf nodes.
Let Φ1,Φ2, . . . ,ΦN be these partitions, which are arranged in
the decreasing order of information entropy. If the entropy of
a partition is positive, this partition is called an ambiguous
partition. Otherwise, if a partition only consists of positive
samples (resp. negative samples), it is called a positive partition
(resp. negative partition). QPA-vector in positive partitions can
independently indicates the presence of A. It means that the



contextual characteristics is not needed on the presence of
such a QPA-vector. To reduce the feature dimension (i.e., the
number of unique QPAs) at the (k+1)th time scale, we merge
positive partitions as one (denoting them by the same index).
That is, we map QPA-vectors in positive partitions into the
same QPA. Likewise, QPA-vectors in negative partitions can
independently indicate the absence of A. All of them can be
mapped into the same QPA. To further reduce the feature
dimension, we leave out this QPA because it can be naturally
represented by the absence of all other QPAs. Therefore, we
leave out negative partitions (denoted by “null”). Consequently,
partitions can be expressed by Φ1,Φ2, . . . ,ΦN ′ , where N ′

is the final number of partitions. We conduct pattern upward
mapping using these partitions. Given a QPA-vector at the kth
time scale, say xkt , if it falls into Φi, we obtain PUMk(xkt ) = i.
In Fig. 4, the resulting QPA at the (k + 1)th time scale is 1,
since the QPA-vector at the kth time scale falls into Φ1.

C. Enhancing The Discrimination of Pattern Upward Mapping

In practice, the user activities that reuse domain names
of A can hardly be fully enumerated, hence leading to the
lack of diversity of negative samples. Insufficiency of negative
samples may degrade the discrimination of pattern upward
mapping. Fig. 5 shows the distribution of training data in
two-dimensional feature space. Positive samples are located in
xk = (1, 1), whereas negative samples are all concentrated in
xk = (0, 0). Since decision tree maximizes the information
gain via the splitting of samples, the hyperplane to split
positive and negative samples can be either hyperplane 1
in Fig. 5(a) or hyperplane 2 in Fig. 5(b). Further splitting
will not happen since no information gain can be obtained
from any further splitting. Thus, xk = (1, 1) cannot be
distinguished from xk = (1, 0) or xk = (0, 1). This is because
of the over-generalization of decision tree. Consequently, a
QPA-vector without labels may be erroneously treated as a
positive sample if domain names queried in this QPA-vector
is a subset of domain names queried in the QPA-vectors that
have been labeled as positive samples in training set. Such
a disadvantage degrades the discrimination of pattern upward
mapping, potentially leading to the increase of false positives.

To tackle this problem, we construct artificial negative
samples in training data to encircle the regions of positive
samples. Any outlier away from regions of positive samples
tend to be viewed as negative samples, thereby overcoming
the insufficiency of negative samples. Fig. 5(c) illustrates how
artificial negative samples (in red) improve the discrimination
of pattern upward mapping. By leveraging these artificial
negative samples, feature space is partitioned to maximize
the information gain. In the partitioned feature space, feature
vector xk = (1, 1) can be distinguished from xk = (1, 0)
and xk = (0, 1). Let Ψk be a set comprising QPA-vector
of all positive samples in Bk. Artificial negative samples are
constructed by modifying QPA-vectors in Ψk, as is elaborated
in Algorithm 1. Let Lk = η · |Ψk| be the number of artificial
negative samples to construct. We set η = 0.1. The output of
Algorithm 1 is the set of artificial negative samples B′k.

IV. MULTI-SCALE USER ACTIVITY IDENTIFICATION

Using the multi-scale characterization, we devise the multi-
scale random forest (MRF) classifier to recursively identify
whether A occurs in each time bin at different times. We also

Algorithm 1 Generating artificial negative samples.
Input: Ψk, Lk
Output: B′k
1: B′k ← ∅
2: for l = 0, 1, . . . , Lk do
3: Pick a random QPA-vector xk ∈ Ψk

4: Pick a random index i ∈ [1, dim(xk)] with the probability

qi =


1∑

j 1{xk(j) > 0} , xk(i) > 0,

0, xk(i) = 0.

5: Generate a feature vector x̃k as

x̃k(j) =

{
0, j = i,

xk(j), j 6= i.

6: ẽk ← 0
7: B′k ← B′k ∪ {〈x̃k, ẽk〉}
8: end for

propose a semi-supervised method to recognize unknown DNS
query patterns of A to facilitate user activity identification.

A. Identifying User Activity at Different Time Scales
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Fig. 6: The framework of multi-scale random forest classifier.
As shown in Fig. 6, the characterization of DNS query

dynamics is hierarchical from small time scales to the large
ones. In contrast to characterization, we identify user activities
in a recursive fashion from large scales to the small ones,
leading to gradually fine-grained identification. We conduct
multi-scale identification of user activities by leveraging the
MRF, where we construct a random forest (RF) classifier at
each time scale. The RF for the kth time scale is denoted by
MRFk. Because the predicted result of MRFk depends on that
of MRFk+1, we refer to MRFk for k = 1, 2, . . . , n− 1 as the
conditional RF.

To train MRFk, we extract training data from labeled DNS
traces. Let Sa = {st}Mt=1 be a labeled trace of DNS queries,
where st = 〈xt, at〉 is an original sample extracted in Wt.
Let Gka = {gkt }

Nka
t=1 be a set consisting of candidate samples

of MRFk induced by Sa, where gkt = 〈xkt , zkt 〉 comprises a



feature vector xkt and a label zkt . For the feature vector, xkt is
recursively derived from (2). For the label, we have z1t = at
and zkt = ∨tej=tsaj for k > 0, where ts = 1 + (t− 1)

∏k−1
i=1 αi

and te = t
∏k−1
i=1 αi. Let Rka be the training set of MRFk

induced by Sa. At the largest time scale (i.e., k = n), Rna
contains all samples in Gna , i.e.,Rna = Gna . At the kth time scale
(k < n), Rka contains a portion of samples in Gka . Specifically,
we have Rka = {〈xkt , zkt 〉 ∈ Gka | ∨

te
j=ts

zkj = 1} for k < n,
where ts = bt/αkcαk + 1 and te = dt/αkeαk. Integrating
samples extracted from all labeled traces yields the training
set of MRFk, denoted by Rk = {rki }

Nk
i=1.

Once the MRF has been trained, we use it to identify
user activities. Given the DNS query trace of an end user,
we first obtain their multi-scale hierarchical characterization
using PUM1,PUM2, . . . ,PUMn−1. At the kth time scale, we
obtain QPA-vectors x̂k1 , x̂

k
2 , . . . for the time bins T k1 , T

k
2 , . . .,

respectively. Then, we identify the presence/absence of A from
large time scales to the small. Specifically, the predicted label
ẑkt = 1 (resp. ẑkt = 0) indicates the presence (resp. absence)
of A in the time bin T kt . When k = n, we have

ẑnt = MRFn(x̂nt ); (6)

when k < n, we have

ẑkt =

{
MRFk(x̂kt ), if ẑk+1

dt/αke = 1,

0, if ẑk+1
dt/αke = 0.

(7)

In (6) and (7), MRFk(x̂kt ) returns the predicted label of x̂kt by
applying MRFk.

B. Recognizing Unknown DNS Query Patterns of A

In practice, training data extracted from a limited number of
end users may not cover all DNS query patterns of A. That is,
positive samples may be insufficient in reflecting the diversity
of A’s DNS query patterns. It potentially increases the risk
of false negatives in user activity identification. To overcome
this challenge, we propose a semi-supervised method to further
recognize unknown DNS query patterns of A, i.e., DNS query
patterns belonging to A but not involved in the training data.

Our basic assumption is that DNS queries occurring to-
gether with the user activity A are probably the DNS queries
of A. Thus, recognizing unknown DNS query patterns of A
can be transformed into analyzing the co-occurrence of DNS
queries and A. To this end, we capture unlabeled traces of
DNS queries from large-scale end users. By applying the
methods proposed in Section III and Section IV, we obtain the
predicted label ẑkt (for k=1,2,. . . ,n and t = 1, 2, 3, . . .) for each
time bin in these traces. Let D′ be the list of domain names
that are involved in these unlabeled traces but not belonging
to D. When recognizing unknown DNS query patterns, we
consider domain names in D′. Let kc be the largest time scale
for co-occurrence analysis. We refer to a time bin T kt (for
1 ≤ k ≤ kc) as a relevant time bin (resp. irrelevant time bin)
if ẑkct′ = 1 (resp. ẑkct′ = 0), where t′ = dt/

∏kc
j=k αje.

Assume that there are m′k unique QPAs at the kth time
scale. Let γki be the ith unique QPA and Γki be a vector
recording the presence/absence of γki in each time bin at the
kth time scale. If γki occurs in T kt , we have Γki (t) = 1;
otherwise we have Γki (t) = 0. We quantify the co-occurrence

of γki and A using Fisher score:

FS(γki ) =
nR(µR − µ)2 + nI(µI − µ)2

σ2
, (8)

where nR (resp. nI ) is the number of relevant time bins (resp.
irrelevant time bins), µR (resp. µI ) is the mean value of Γki (t)
in relevant time bins (resp. irrelevant time bins), and µ (resp.
σ) is the mean value and standard deviation of Γki (t) over all
time bins. We define the dominant co-occurrence QPA below.

Definition 2. A dominant co-occurrence QPA at the kth time
scale is a QPA, say γki , which is significantly concurrent with
the user activity of interest such that FS(γki ) ≥ εk. (εk is the
co-occurrence threshold at the kth time scale)

We refer to the QPA-vector in a relevant time bin as a
dominant co-occurrence QPA-vector if there is at least one
dominant co-occurrence QPA in this relevant time bin. If the
QPA-vector in T kt is a dominant co-occurrence QPA-vector, it
will be labeled by ckt = 1; otherwise, it is labeled by ckt = 0.
The QPA-vector xkt and its label ckt constitutes a sample
〈xkt , ckt 〉. Similar to the method in Section III-B, we recursively
train pattern upward mappers PUM′1,PUM′2, . . . ,PUM′kc−1 to
characterize DNS query dynamics associated to domain names
in D′. Similar to the method in Section IV-A, we train multi-
scale random forest classifier MRF′1,MRF′2, . . . ,MRF′kc to
recognize dominant co-occurrence QPA-vectors. Note that pat-
tern upward mappers and multi-scale random forest classifier
here are only applied in relevant time bins.

Given a trace of DNS queries from an end user, we first
conduct the characterization of DNS queries and user activity
identification to obtain the predicted label ẑkt . According to
ẑkct , the relevant time bins are thus identified. We conduct
dominant co-occurrence QPA-vector recognition in these rele-
vant time bins. When ĉkt = 1, we recognize that QPA-vector in
time bin T kt is a dominant co-occurrence QPA-vector. Finally,
we conclude that A occurs in T kt if ẑkt = 1 or ĉkt = 1.

V. EVALUATION AND APPLICATION

We evaluate the effectiveness of our method using both
synthetic data and real-world DNS traces, and then demon-
strate its application in surveilling different user activities.

A. Evaluation on Synthetic Data

To examine whether our method can address the challenges
presented in Section I, we first perform evaluation using
synthetic data in the form of DNS queries, enabling us to de-
liberately embed challenges within the data for comprehensive
evaluation. Consider a user activity (e.g., visiting a website),
denoted as A, which consists of two operations A1 (e.g.,
visiting one webpage) and A2 (e.g., visiting another webpage).
Suppose A1 triggers a burst of DNS queries for domain names
a and b, and A2 for domain names c and d. Assume the
occurrences of A1 is a Poisson process, and so is A2. This is
a reasonable assumption commonly used to model end users’
DNS querying behavior [10] and other human behaviors [11].

We aim at identifying A in the following four typical
scenarios, wherein scenarios 1 and 2 involve the challenge
of behavior ambiguity, and scenarios 3 and 4 involve the
challenge of behavior polymorphism.
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(a) Scenario 1: reusing domain names associated with A.
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(b) Scenario 2: reusing domain names associated with one operation of A.
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(c) Scenario 3: unknown reusing of domain names associated with A.
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(d) Scenario 4: unknown domain name queries of A.

Fig. 7: Accuracy of identifying user activities in typical scenarios.

TABLE I: Evaluating the accuracy of identifying user activities of visiting websites. Each number denotes the F-score.

User Activities of

Visiting Website

MNB SVM RF MRF (our method)

1st time scale 1st time scale 1st time scale 1st time scale 3rd time scale 5th time scale 7th time scale 9th time scale

Baidu 0.6555 0.6779 0.6818 0.8635 0.9061 0.9368 0.9500 0.9362

Taobao 0.5939 0.8236 0.8721 0.8969 0.9074 0.9039 0.9320 0.9624

Jingdong 0.9224 0.9160 0.9461 0.9531 0.9532 0.9598 0.9652 0.9630

QQ 0.7995 0.5153 0.8019 0.8206 0.8881 0.9158 0.9555 0.9813

Netease 0.8833 0.9192 0.9066 0.9340 0.9234 0.9070 0.9102 0.8866

Amazon 0.4615 0.8462 0.7143 0.9565 0.9474 0.9333 0.9333 0.9231

Sohu 0.9838 0.9822 0.9830 0.9839 0.9718 0.9462 0.9259 0.9545

Youku 0.7368 0.7931 0.9000 0.9333 0.9130 0.9231 0.9375 0.9565

iQIYI 0.7888 0.8760 0.8800 0.9242 0.9636 0.9896 0.9959 0.9936

ifeng 0.5161 0.6857 0.6857 0.9231 0.9412 0.9231 0.9167 0.9000

Scenario 1: Reusing domain names associated with A. All
domain names associated with A, (i.e., a, b, c, d) are also
queried by another user activity B, which consists of four
operations that trigger DNS queries for domain names a, b,
c, and d, respectively. Since each operation triggers a query
for only one domain name, thereby not inducing a query burst
(see DNS queries between t3 and t4 in Fig. 2).

Scenario 2: Reusing domain names associated with one opera-
tion of A. For example, different from scenario 1, user activity
B in this scenario reuses domain names a and b triggered by
A1 (see DNS queries between t5 and t6 in Fig. 2).

Scenario 3: Unknown reusing of domain names associated
with A. We simulate the user activity B querying for a and c
in the testing data, and B is not present in the training data.

Scenario 4: Unknown domain name queries of A. We add new
operations A3 and A4 for A in the testing data. A3 and A4

trigger DNS queries for domain names e and f , respectively.

To simulate the situation that the above scenarios are in
a realistic network, we introduce background DNS queries
(irrelevant to A and B) that follow Poisson arrivals as noises.
We also consider the impact of local DNS caches on DNS
queries. That is, a domain name will not be queried if it has

been cached in a local host and the cache record does not
expire. τ is set to be 300 seconds, and inflation ratio is set to
be 2 for all time scales.

Given a user activity of interest, identifying its presence/ab-
sence can be viewed as a binary classification problem in
each time bin. Therefore, we consider binary classifiers that
have been extensively used, including multinomial naive Bayes
(MNB) classifier, support vector machine (SVM) classifier,
and random forest (RF) classifier, as benchmark methods. At
the kth time scale, we construct a feature vector by counting
numbers of DNS queries for different domain names in D
for each time bin. These feature vectors are the input of the
classifiers. We choose F-score (aka. F1 score) as the evaluation
metric, because it can integrally reflect recall and precision in
a single statistic. F-score ranges from 0 to 1, where bigger
values indicate higher accuracy.

Figs. 7(a) to 7(d) report the experimental results in scenar-
ios 1 to 4, respectively. In scenarios 1 and 2, we answer two
questions: i) is our method effective in overcoming behavior
ambiguity? ii) can benchmark methods also cope with behavior
ambiguity at a proper time scale? In scenarios 3 and 4, we
evaluate all methods in the face of unknown DNS query
patterns in the testing data.



As shown in Fig. 7(a), MRF outperforms all benchmark
methods, since it consistently identifies user activities with the
F-score closer to 1 across all time scales. On the other hand,
benchmark methods not only achieve noticeably degraded
performance, but also have inconsistent performance across
different time scales. Specifically, as the time scale increases,
SVM and RF have decreased F-score, while MNB has an
opposite trend. The former is because of the loss of behavioral
information when the time scale is large. The latter is caused
by MNB‘s independence assumption of DNS query arrivals
for different domain names.

In Fig. 7(b), MRF is still the best. Note that benchmark
methods have lower accuracy at small time scales (e.g., the
1st and 2nd time scales). It is caused by reusing domain
names associated with one operation of A, which triggers
a burst of DNS queries for different reused domain names.
Specifically, benchmark methods cannot distinguish between
DNS query behaviors containing a single burst (i.e., at a small
time scale), but can distinguish in the case of multiple bursts
(i.e., at a large time scale). In addition, the accuracy of SVM
decreases drastically as the time scale increases. It is because a
larger time scale will introduce substantial noises and SVM is
not robust against noises compared with other methods. This
observation can be observed in all scenarios.

Fig. 7(c) demonstrates the effectiveness of introducing
artificial negative samples when reusing domain names is
not present in training but exists in testing. We can see that
MRF successfully recognizes the unknown negative samples
in testing and achieves a high accuracy in identifying A.
However, MRF without introducing artificial negative samples
(i.e., MRF-n) and other benchmark methods fail to accomplish
this task. Fig. 7(d) shows the performance in scenario 4. We
can learn that MNB, SVM, RF, and MRF have decreased
accuracy at small time scales, since they cannot recognize
DNS query behaviors of new operations of A. Fortunately,
the enhanced MRF (i.e., MRF-e) proposed in Section IV-B
can effectively handle this situation by recognizing the DNS
query behaviors co-occurring with positive samples.

To summarize, our method can distinguish between user
activities by exploiting their differences at multiple time scales.
On the contrary, a proper time scale for benchmark methods is
difficult to determine, since it may differ across user activities
and even is time-varying in the same user activity. Compared to
all benchmark methods, our method is also much more robust
against new patterns of DNS query behaviors in testing.

B. Evaluation on Real-World DNS Traces

Using real-world DNS traces from our campus network,
we further evaluate our methods in identifying user activities,
where the ground-truth of each user activity is uniquely iden-
tified by the website that an end user visits.

The dataset contains 10-day network traffic of 159 end
users (i.e., IP address without NAT) captured on the network
border. We extract DNS queries for each individual end user.
Meanwhile, we build the ground truth (i.e., which website an
end user is visiting) by analyzing traffic (e.g., URL in HTTP
request), and label it for each time bin at the 1st time scale. In
our dataset, DNS queries only account for 0.166% of the total
amount of network traffic in bytes. Identifying user activities

from raw DNS queries provides a light-weight and thus more
scalable solution to figure out what online users are doing.

Table I lists ten websites to identify in the first column.
These websites are the most popular in the dataset. Following
the same benchmark methods, parameter settings and evalu-
ation metric as in Section V-A, we perform evaluation with
four-fold cross-validation. Table I summarizes the results. For
each user activity associated with a website, F-score values of
MNB, SVM, and RF (at the 1st time scale) are presented from
the second column to the fourth column, respectively. F-score
values from the fifth column to the ninth column reveal the
accuracy of the MRF at increased time scales. We observe that
MRF consistently outperforms benchmark methods for every
user activity. Note that identifying user activities of visiting
“Baidu”, “Taobao”, and “QQ” is slightly less accurate than
identifying others. This is probably because domain names of
these websites provide many other network services, leading
to complicated domain multiplexing.

C. Application

Surveilling user dynamics, such as how the number of users
engaging in certain user activities varies within one day and
across days, facilitates many problems such as user interest
mining and content routing optimization.

We capture one-week DNS traces from more than 15, 000
users, and apply the proposed method in user dynamic surveil-
lance of visiting different websites, including “Baidu”, “QQ”,
“Taobao”, and “Youku”, in our campus network. To charac-
terize the within-day dynamics and day-to-day dynamics, we
divide the surveillance period into a series of time bins with the
duration of 300 seconds. We identify user activities and com-
pute the time-varying user number by counting users engaging
in different user activities in each time bin. Fig. 8 reports the
surveillance results. The numbers of users visiting different
websites exhibit a significant diurnal pattern within each day.
However, diurnal patterns have obvious “week effect”. That is,
diurnal patterns between weekdays and weekends tend to be
different. In weekdays, user numbers grow rapidly in the morn-
ing, fluctuate during daytime, and drop at night. In weekends,
the rapid growth of user numbers is put off to the afternoon.
We believe this is due to different human schedules between
weekdays and weekends. Moreover, diurnal patterns exhibit
difference across various websites. For example, the percentage
of users visiting “Baidu” at midnight is significantly larger than
that of users visiting any other website; the percentage of users
visiting “Youku” almost drops to zero at midnight.

VI. RELATED WORK

Most existing studies of DNS traffic essentially focus
on domain name reputation, for judging the likelihood of a
domain name to be benign or malicious. For example, Anton-
akakis et al. built the dynamic reputation of DNS to discover
the malicious use of DNS [4]; Jiang et al. identified suspicious
activities in failure DNS queries [6]; Bilge et al. detected
malicious domains by leveraging passive DNS analysis [7].

DNS caching behavior has also been studied, with an
application to remote population estimation via active DNS
cache probing. The basic idea is that, given a TTL value, a
domain name that is more frequently cached in a DNS server
tends to have a larger user base, and the cache entries can be
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Fig. 8: Surveillance of user dynamics.

remotely probed to infer the popularity of the domain name.
For example, Rajab et al. estimated website popularity and
botnet population in [12]; Ma et al. found that the exponential
distribution assumption in previous work is over-simplified and
proposed the H-EXP estimator to improve the accuracy [13].

A few studies focus on DNS-based user behavior mining.
Although our work falls into this category, it has different
research objectives. For example, Herrmann et al. tracked users
who have dynamic IP addresses and may migrate to new
IP addresses by exploring DNS characteristics to uniquely
identify a user [14]; Wu et al. leveraged probabilistic latent
semantic analysis to cluster users that exhibit similar DNS
characteristics, based on which they then recommend domain
names for users [15]. However, they do not consider what
activities a user in a cluster engage in.

A rich literature concerning what people are doing in
network traffic analysis exists, such as deep packet inspec-
tion [16]–[18], website fingerprinting in anonymity networks
[19,20]. Nevertheless, none studies this problem using raw
DNS queries. Besides effectively identifying user activities (of
visiting websites in our experiments), the benefits of using
raw DNS queries are significant. Specifically, DNS has low
data volume, thus light-weight and scalable when used in
identifying user activities in large networks. Moreover, it has
wide-ranging applications and is encryption free in normal
applications, thereby promising in facilitating user activity
identification of various types. In future work, we will apply
our methods to identify more types of user activities.

VII. CONCLUSION

This paper takes the first step towards identifying user
activities from raw DNS queries. We propose a multi-scale
hierarchical characterization of DNS queries and a multi-
scale identification method of underlying user activities. The
proposed methods can effectively identify user activities from
end users’ DNS queries with a high accuracy, and overcome
practical challenges including behavior ambiguity and poly-
morphism. Evaluations using both synthetic and real-word
DNS traces demonstrated the effectiveness of our methods. The
application of profiling user dynamics shows that our methods
are promising in network monitoring.
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