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Abstract—People counting provides valuable information on
population mobility and human dynamics, which plays a critical
role for intelligent crowd control and retail management. Recent-
ly, people counting has been achieved via radio-frequency signals
as human presence can influence the propagation of wireless
signals, from which the information of the moving crowd can be
extracted. However, most of the existing studies using wireless
signals only apply to the scenario when people keep moving all
the time. Besides, they require labour-intensive training phase
for building the counting model.

In the Wi-Count system, we take another approach, which is
to count the people passing by the doorway with COTS WiFi
devices. It can not only detect the passing direction, but also
identify the number of people even when multiple persons pass
by concurrently without regulating passing behavior and pre-
trained counting model. The passing direction is recognized by
modeling the effects of the bi-directional passing behavior on
the phase difference of WiFi signals. In addition, the number of
passing people is obtained through an enhanced signal separation
algorithm for providing precise counting result. Extensive exper-
iments show the average accuracy on passing direction detection
and passing people counting are about 95% and 92% respectively.

I. INTRODUCTION

Driven by the developing human sensing technologies, the

environment becomes more intelligent for sensing and observ-

ing human presence, which helps to ensure sufficient resource

allocation and customized services. People counting provides

essential information for various applications and services,

e.g., crowd control for big events and marketing investigation

for retail sales. In particular, indoor activities require precise

people counting for analyzing the crowd behavior, such as the

visiting rush hours, so that they can discover more potentials

in the marketing and drive the business to grow.

Current practices towards people counting are mainly re-

alized in two ways, which are (1) counting people in the

certain area, and (2) counting people passing by the doorway.

On top of the above two means, existing techniques make

use of infrared sensors, cameras, devices and radio-frequency

signals for people counting. Infrared sensors [1], [2] deployed

at the doorway count the entering or exiting people based

on the assumption that people are moving through one by

one under certain time interval. So, it cannot count multiple

people passing by freely. Vision-based approach [3], [4] counts

people by image object detection. While its performance can

be weakened by object overlapping, poor lighting conditions

and dead zones. It also raises the privacy concern among

the massive customers for capturing their figures. For the

device-based approach [5]–[7], in which devices (e.g., mobile

phones or RFID tags) shall be distributed or carried, requires

active participation from the crowd. This could result in the

reluctance among people for being counted. Recent advances

in wireless human sensing witness the potential for using

wireless signals, such as WiFi [8]–[10], RFID [11] and UWB

radar [12] for human sensing and people counting. However,

these works are based on the premise that all the human objects

would keep moving all the time, which is unable to be met in

practice. Thus, the counting result can only provide a rough

estimate on the number of people, and it cannot be applied to

scenarios where most of the people do not move frequently. In

addition, they need extensive training phase for building the

counting model which can be difficult for being adaptive to

different environments.

In this paper, we propose the Wi-Count, to realize peo-

ple counting in a non-intrusive, low-cost and accurate way

by counting the people passing by the doorway: (1) Non-
intrusive: Wi-Count leverages the effects of the passing be-

havior on the propagation of wireless signals to detect human

presence, so it does not require people to carry any devices.

It allows the human object to pass by freely without active

cooperation for the counting process. (2) Low-cost: Wi-Count

saves the cost on devices and labour resources. On the one

hand, it only relies on the existing indoor WiFi infrastructure.

On the other hand, it does not require labour-intensive training

phase for building the people counting model. (3) Accurate:

Wi-Count is not only capable of precisely detecting the bi-

directional passing behavior for the single person, but also

counting the number of people when multiple persons pass by

the doorway at the same time.

Counting people passing by the doorway can be achieved by

analyzing the phase information in the received WiFi signals.

When people passing by, the human body, as a reflector, could

influence the propagation of wireless signals from the trans-

mitter to the receiver. To detect the binary moving direction,

i.e., entering and exiting, we model the passing behavior with

respect to the change of phase information. The phase infor-

mation can be extracted from the Channel State Information

(CSI), which is available on many commercial WiFi devices.

By performing theoretical analysis on the change of phase

information, we find that there are distinctive patterns on the

phase difference series for the entering and exiting behavior.

The following publication Y. Yang, J. Cao, X. Liu and X. Liu, "Wi-Count: Passing People Counting with COTS WiFi Devices," 2018 27th 
International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, 2018, pp. 1-9 is available at  
https://doi.org/10.1109/ICCCN.2018.8487420.

This is the Pre-Published Version.

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.



To identify the number of passing people, we treat each person

as independent reflectors, as they are different in shape and

walking habit. Then, the Independent Component Analysis

(ICA) algorithm is applied on the phase difference series of

all the subcarriers to reveal how many walking components

are involved, which indicate the number of people.

However, to achieve precise counting results, several chal-

lenges are remained to be solved. First of all, the phase infor-

mation extracted from the COTS WiFi devices suffers from

different sources of noises, including phase difference ambi-

guity and random noises. This makes the observed passing

pattern unclear and inconsistent for further analysis. Second,

the human body is not a fixed-shape reflector while walking.

It can result in fluctuations in the received phase information,

which causing troubles for extracting the pattern for passing

direction detection. Furthermore, the phase information on

some subcarriers can be interfered by adjacent subcarries,

leading to an ineffective result for using the signal separation

algorithm to identify the number of multiple passing people.

To address the above challenges, calibration on the phase

difference series is first performed to obtain clear phase

information. To eliminate the phase difference ambiguity, we

apply clustering algorithm on the phase difference time series

to recover the original phase difference information. To remove

the adverse effects of random noises and signal fluctuations

for passing direction detection, we apply Savitzky-Golay filter

[13] on the phase difference series for noise reduction. In

order to enhance the performance of the signal separation

algorithm for identifying the number of passing people, we

transform the phase difference series of all the subcarriers into

an input matrix. Afterwards, the input matrix is preprocessed

through Principal Component Analysis (PCA) to remove the

interference and correlation among adjacent subcarriers for

achieving a more precise counting result.

Extensive experiments show the average accuracy on pass-

ing direction detection and passing people counting are about

95% and 92% respectively.

The main contributions of our work are as follows:

• We propose Wi-Count, a non-intrusive, low-cost and ac-

curate approach for people counting with the COTS WiFi

devices. It only relies on the existing WiFi infrastructure

and counts the human object without constraints on the

moving behavior and labour-intensive model training.

• We present a model for detecting the bi-directional mov-

ing behavior based on the phase difference of WiFi signal.

The moving direction can be recognized from the pattern

of phase difference series.

• We apply source separation techniques for counting the

multiple persons passing by concurrently, so that we can

provide more accurate result for people counting and

detailed information for observing the crowd behavior.

II. RELATED WORK

There are various practices and studies into the problem

of indoor people counting. Current works can be classified

into four categories: (1) infrared-based approach; (2) vision-

based approach; (3) device-based approach and (4) RF-based

approach. In this section, we discuss the existing work on

people counting with respect to the above four categories.

A. Infrared-based Approach

Infrared-based approach counts the people by detecting

whether the light beam is blocked by people. Generally,

multiple sets of infrared sensors are deployed for detecting

the entering or existing directions passing by the door [1],

[2]. However, they are only applicable to the single-person

passing scenario, which means that they cannot tell the exact

number of people when two or more people come across the

beam at the same time. Thus, barriers are usually set around

the door to allow only one person passing at a time, leading

to extra deployment cost and inconvenience for the people.

B. Vision-based Approach

Vision-based approach uses pattern recognition techniques,

e.g., face [3] and head-shoulder detection [4], [14], to count

human objects. Much work has been done to improve comput-

er vision techniques for human detection [15]. Since people

can dress up in different styles, many studies try to improve

the robustness of the human detection algorithms with the

help of machine learning. However, the dead zones and object

overlapping still lead to the ineffectiveness for vision-based

approach to get accurate counting result. In addition, people

are reluctant to be captured by cameras everywhere, which

could intrude their privacy without being notified.

C. Device-based Approach

Device-based approach realizes people counting by the

means of spreading devices or sensors in the crowd, e.g., RFID

tags [16] or mobile phones [5]–[7]. Audio signals, Bluetooth

and WiFi connection information are all used for tracking and

counting the crowd in indoor and outdoor environment. On

the one hand, the device-based approach raises the cost on

people counting by allocating large number of devices. On

the other hand, it requires people’s active participation by

operating the devices so that they can be detected, such as

open the Bluetooth link or run a specific app.

D. RF-based Approach

Recently, RF-based human sensing has seen great potentials

and possibilities on various applications, including localiza-

tion, activity and gesture recognition and vital sign monitoring.

Many kinds of wireless signals, such as WiFi [8]–[10], RFID

[11] and UWB radar [12], have been leveraged for people

counting. Since the presence of human object can affect the

propagation of the wireless signals in the air, human sensing

can be realized without attaching any sensor on the body. Due

to the multipath effects of wireless signals, the moving object

can still influence the propagation of the wireless signals even

if they are in the none line-of-sight areas.

Existing work using RF signals for people counting lever-

ages the RSS or CSI of the wireless signals to learn the



relationship between the number of moving people and the

variation in the wireless signals. Researchers in [17] deploy

wireless sensor networks and estimate the rough crowd density

based on the RSS with clustering algorithm. In [8], they count

the people walking between the WiFi transmitter and receiver

based on the RSS measurements. [9] finds out the monotonic

relationship between the CSI measurements and the number

of moving people in the certain area and count the crowd with

Grey Verhulst Model. [18] proposes to derive the number of

people through the statistical distribution of CSI measurements

and applies semi-supervised regression algorithm to obtain the

counting result. In [11], dozens of RFID tags are attached to

the wall for counting the moving people.

The common limitation of the above methods is that they

can only work when the human objects in the certain area keep

moving, so the estimated results could be inaccurate when

people have less mobility. Furthermore, they require extensive

training phase for building the counting model which requires

calibration for being adaptive to different indoor environments.

Our work also utilizes the wireless signals, i.e., WiFi, but from

a different angle, which is to count the people passing by

the doorway and convert this information as the number of

people inside the certain areas. We can detect the bi-directional

passing behavior and identify the exact number of passing

human objects, so that to achieve precise counting result and

obtain more information on human dynamics.

III. MODEL FOR PASSING PEOPLE COUNTING BASED ON

WIFI PHASE DIFFERENCE

This section first introduces preliminary knowledge for the

Channel State Information of WiFi signals, and then performs

theoretical analysis on the effects of the passing behavior to

the propagation of wireless signals. Afterwards, a model is

built for detecting the bi-directional passing behavior based

on the phase difference time series.

A. Preliminaries on CSI

In modern wireless network, the whole network spectrum is

divided into orthogonal subcarriers using Orthogonal Frequen-

cy Division Multiplexing (OFDM). The PHY layer informa-

tion, Channel State Information, underlying in each subcarrier

reflects the linear combined effects, e.g., reflection and scatter-

ing of the wireless signals along different propagation paths.

Thus, the CSI can be represented as follows [19]:

H(f, t) =

n∑
i=1

ai(f, t) · e−jψ(f,t), (1)

where f denotes the central frequency of each subcarrier,

n is the number of propagation paths. |ai(f, t)| and ψ(f, t)
represent the amplitude and phase values respectively. For m
subcarriers, the CSI matrix for a given period is

H = [H(f1, t), H(f2, t), ..., H(fm, t)]. (2)

In our work, we use the phase information for passing

people counting. The phase information ψ(f, t) captured by

the COTS network interface card, e.g., Intel 5300, contains the

timing and phase offset [20], [21]. As a result, the measured

ψ̂j for the subcarrier j can be expressed as

ψ̂j = ψj + 2π · fj · αj + βj + Z, (3)

in which ψj is the real phase, αj and βj are the timing

and phase offset caused by Carrier Frequency Offset (CFO),

Sampling Frequency Offset (SFO) and Packet Detection Delay

(PDD). βj is a constant value for the same NIC and Z denotes

the minor random noises in the phase values. The phase errors

in ψ̂j make it difficult to observe the real effects of the passing

behavior from the phase information, so we need to remove

those phase deviations for further use.

B. Model for Counting Passing People

In terms of the propagation of wireless signals, there are

different multipaths traveling from the transmitter (Tx) to the

receiver (Rx) except for the Line-of-Sight (LoS) path, due to

the presence of multiple reflectors in the environment. As

illustrated in Fig. 1(a), there are LoS path and multipaths

reflected by the Reflector 1 and Reflector 2. For the ith path,

the phase shift can be represented as

ψi = {li/λ} mod 2π, (4)

where li is the length of propagation path, λ is the wavelength

of the wireless signal. Suppose that Reflector 2 is a moving

object, then the received wireless signals consist of static

propagation paths (Ps) and dynamic paths (Pd). Therefore,

the overall phase change ψ in the received signals is the

combination of static and dynamic shift of the phase values.

ψ = {
∑
i∈Ps

ls +
∑
i∈Pd

ld

λ
} mod 2π (5)

To detect the bi-directional passing behavior of the human

object, we employ one transmitting antenna and two receiving

antennas, which are available on commercial WiFi devices,

and use the phase difference between the two receiving anten-

nas to indicate the passing direction. As shown in Fig. 1(b), the

transmitting and receiving antennas are horizontally displayed,

and the distance between Rx1 and Rx2 is d. Then, the phase

difference ψ21 between Rx1 and Rx2 can be formulated as

ψ21 = ψ2 − ψ1 = {Ls2 + Ld2
λ

− Ls1 + Ld1
λ

} mod 2π

= { (Ls2 − Ls1) + (Ld2 − Ld1)
λ

} mod 2π

= {L0 + d · sinθ
λ

} mod 2π,

(6)

where Ls =
∑
i∈Ps

ls, Ld =
∑
i∈Pd

ld. L0 is the difference

between Ls1 and Ls2 , representing the static phase shift caused

by the static propagation paths, and the difference for the

length of dynamic paths between the two receivers is mainly

induced by the moving targets, which is d·sinθ, where θ is the

angle of arrival of the wireless signals reflected by the human

object to the two receiving antennas. However, the measured
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Fig. 1. (a) Propagation of wireless signals in indoor environment. (b) Model of applying phase difference for passing direction detection (c) Deployment of
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phase information includes several sources of errors, so the

reported phase difference ψ̂21 is formulated as

ψ̂21 = ψ̂2 − ψ̂1

= ψ21 + 2πf ·Δα+Δβ +ΔZ.
(7)

For the above equation, Δα equals to zero, as the two

receiving antennas on the same NIC card use the same clock

and same down-converter frequency. So, 2πf · Δα can be

removed, then ψ̂21 can be shortened as

ψ̂21 = ψ21 +Δβ +ΔZ

= {L0 + d · sinθ
λ

+Δβ +ΔZ} mod 2π.
(8)

In Eq. (8), Δβ is a constant value for the same NIC and

ΔZ is the random noise with minor influence on the phase

values. So, the change in the phase difference mainly resides

in d · sinθ. When the human object moves towards left, i.e.,
entering the area, θ will increase within the range (0, π/2).
If we let d approximate to the wavelength of the wireless

signal, then the phase difference between Rx1 and Rx2 will

monotonically increase as d · sinθ goes up. Conversely, θ will

decrease from π/2 to 0 when the human object moves to the

right, i.e. exiting the area, making the phase difference decline.

Therefore, we can identify the bi-directional passing behavior

via the increasing and decreasing trend in the phase difference.
To verify the proposed model, we deploy WiFi devices in

indoor environment as shown in Fig. 1(c). The transmitter and

receivers are displaced horizontally in the entrance/exit area,

with one-meter distance apart. The two receiving antennas

are placed 12cm apart from each other since the wavelength

of 2.4GHz WiFi signals is around 12.5cm. The receiving

antennas are equipped with directional antennas, orienting to

the entrance/exit area, to avoid the disturbance of other moving

objects on the received signals in the environment. We plot the

phase difference when the person enters and exits the room

in Fig. 2(a)-(b). The presence of the four separate time series

is caused by the four-way phase ambiguity, which will be

removed later. Despite of this, we can observe that there is an

increasing trend in the phase difference series for the entering

behavior, and a decreasing trend for the exiting behavior.

IV. OVERVIEW OF WI-COUNT

The proposed system, Wi-Count, consists of three modules,

i.e., phase collection and calibration, bi-directional passing be-
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Fig. 2. Raw phase difference for (a) entering the door and (b) exiting the
door. Phase difference after phase ambiguity removal for (c) entering the door
and (d) exiting the door.

havior recognition and identification of the number of people

passing by. The overview of the system is depicted in Fig. 3.

In the first module, the phase information is extracted

from the CSI measurements along with the phase difference

time series between two receiving antennas. Then, the phase

ambiguity will be removed with cluster-based algorithm, i.e.,
k-means, for the recovery of the original phase difference

series, which will be articulated in the next section.

For the second module, the aim is to recognize the entering

and existing direction. As the phase difference involves ran-

dom noises and fluctuations caused by the periodic moving

legs, it is first smoothed to get the general trend for the pattern

extraction. For the settings in Fig. 1(c), if there is an increasing

trend in the phase difference series, then the human object is

entering the room. By contrast, the human object is exiting the

room if the pattern presents a decreasing trend. We calculate

the derivatives of the smoothed phase difference and detect

the presence of local maximum or minimum to recognize the

increasing and decreasing pattern.

To obtain an accurate counting result, we need to consider

the multi-person scenario and count the number of people

when multiple persons enter or exit the room concurrently.

Multi-person scenario is quite common in shopping malls or

exhibitions, where people would like to hang out with their

friends. Capturing this information also provides opportunities
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for group detection and human dynamics analysis. To count

the number of passing people, we treat each of the human

objects passing by the doorway together as an individual

component that affects the propagation of the wireless signals.

Then, the overall received signals are the linear combination

of the effects from different components. To provide enough

input source signals, the phase difference series from all

the subcarriers are regarded as different observations and

leveraged for the formation of the input matrix. Then, the

Independent Component Analysis (ICA) is applied on the

input matrix to separate each component.

V. SYSTEM DESIGN

In this section, we first preprocess the raw phase difference

time series and then detect the moving direction with the

calibrated phase difference time series based on the proposed

model. At last, we perform multi-person passing identification

to count the concurrent passing people.

A. Phase Ambiguity Removal

For existing COTS wireless network interface card, the four-

way phase ambiguity causes the real phase difference to be

θ, θ + π/2, θ − π/2 or θ − π for 2.4GHz wireless signals

[22] (5GHz wireless signals have two-way phase ambiguity).

In Fig. 2(a)-(b), the real phase difference is separated into

four groups with π/2 spacing. One way to retrieve the real

phase difference is to compare the difference between two

consecutive phase values. If the difference is around π/2 or

π, then it is expected to experience a phase shift and we can

add the corresponding shift to the current phase to retrieve the

original phase value. However, there are many outliers and

noises in the phase difference, making the above approach

ineffective in dealing with the phase ambiguity.

Here, we apply clustering algorithm to address the above

problem. We gather certain amount of phase difference sam-

ples, for example, 100 samples and apply k-means clustering

algorithm on them. For the four-way phase ambiguity, there

would be four clusters with the spacing of each cluster’s

centroid to be π/2. Then, we sort the four centroids and choose

the highest one as the baseline so that the samples in the

other three clusters can add π/2, π and 3π/2 respectively;

and then they can be integrated into a single time series.

The recovered phase difference series after phase ambiguity

removal are shown in Fig. 2(c)-(d).
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Fig. 4. Phase difference series after denoising for (a) entering behavior and
(b) exiting behavior. Derivatives on the phase difference series of (c) entering
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B. Bi-directional Passing Behavior Recognition

In Fig. 2(c)-(d), the raw series of the phase difference

exhibit specific patterns for entering and exiting behavior.

However, the human body is not a flat reflector with fixed

shape while walking; leg movement also affects the wireless

signals periodically, leading to fluctuations in the received

signals. In order to extract the increasing and decreasing trend

from the phase difference, we first apply Savitzky-Golay filter

[13] on the phase difference. Savitzky-Golay filter is based on

the least-squares polynomial approximation, which can smooth

noises and maintain the contour of the time series. Here, we set

the polynomial order as 3 and the length of frame as 50. The

filtered phase difference series are illustrated in Fig. 4(a)-(b).

Then, a threshold is set to segment out the phase difference

series affected by the moving behavior. As in Fig. 4(a)-(b), the

series between the two vertical dashed lines are the affected

series. To detect the increasing and decreasing trend from the

phase difference series, we first calculate the first derivative

of each sample points and smooth the derivatives with median

filter. Then, the presence of peak or valley in the first derivative

will be detected. Fig. 4(c)-(d) shows the smoothed derivatives

of the affected series. The peak in the Fig. 4(c) corresponds

to the increasing trend, while the valley in Fig. 4(d) reveals

the decreasing trend. After finding out the specific pattern in

the phase difference, we can detect whether the human object

is entering or exiting the room.

C. Multi-Person Passing Identification

When multiple persons enter the room together, there is

a similar pattern, an increasing trend as the single-person

scenario. However, to get accurate counting result, we need

to identify how many people are passing by the door at the

same time. In fact, multi-person scenario is quite common in

shopping malls and other indoor places where people can hang

out with their friends. By identifying the multi-person passing

behavior, it can also help to observe group behavior and human

dynamics. Thus, after recognizing the passing direction, we

need to figure out the exact number of passing people.
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Fig. 5. Separated components when (a) one person enters the door; (b) two persons enter the door and (c) three persons enter the door.

Theoretically, we can treat each human object as indepen-

dent reflectors to the wireless signals. The overall received

wireless signals are the linear combination of different sources

of reflected signals. Although some people would walk closely

with each other, their moving behavior can still result in

distinctive effects on the reflected signals as human objects

are different in shape and walking habits. Previous work has

leveraged the gait difference for human identification using

wireless signals [23], [24], indicating that wireless signals

can reveal different walking patterns. Therefore, we apply

source separation techniques on the phase difference series

to see how many separated sources are affecting the wireless

signals. Here, we decompose the phase difference series with

Independent Component Analysis (ICA) [25].

For the source separation problem, its target is to separate

the mixed signals into individual sources. To separate n
sources from the mixed signals, there must be at least n
observations as the input. Denote x = [x1, x2, ..., xn] as the

input and s = [s1, s2, ..., sm] as the source signals, then

the mixed input signals can be represented as the linear

combination of the source signals: x = As. A new matrix W
is created to represent the estimated source signals as follows:

ŝ = Wx,W = A−1. Then, by estimating W, we can obtain

the separated source signals ŝ. However, we only have one set

of transceivers to get the phase difference series, while there

would be two or more people passing by the door. To get

enough source signals, we use the phase difference of multiple

subcarriers as different source signals. For the Intel 5300 NIC,

it can report 30 subcarriers. We assume that no more than five

people could pass by concurrently due to the space limitation,

so we only need to retrieve five components as the outputs of

ICA. We then transform the phase difference series of all the

30 subcarriers into an input matrix with size 30 ∗ k (k is the

number of sample points). The input matrix x is:

x =

⎡
⎢⎢⎣
Δψ1,1 Δψ1,2 ... Δψ1,k

Δψ2,1 Δψ2,2 ... Δψ2,k

... ... ... ...
Δψ30,1 Δψ30,2 ... Δψ30,k

⎤
⎥⎥⎦ (9)

Intuitively, the more sources of observation are captured,

the better separation result can be attained. However, due to

the hardware imperfection in the COTS WiFi devices, some of

the subcarriers contain noises and interferences from adjacent

carriers. A possible way is to apply smoothing algorithms to

denoise the input matrix, but the side effect is that the minor

changes in the signals caused by multiple persons’ moving

behavior will be removed as well. Besides, since the carrier

frequency difference between two consecutive subcarriers is

quite small, we need to consider the effect of the correlation

among different subcarriers on the result of ICA.

To enhance the performance of ICA, we leverage Principal

Component Analysis to discard the dimensions with less

dominance by analyzing the eigenspace [26]. Furthermore, we

can also remove the pair-wise dependency among subcarriers.

Denote the eigenvectors of the covariance matrix of the input

matrix as R, so that RT (x∗xT )R = Λ, where Λ is the diagonal

matrix of eigenvalues. The smallest q eigenvalues indicate the

noise space En, and we discard the eigenvectors in Rn and only

employ the eigenvectors Rs in the signal space Es as the input

for ICA. The eigenvectors whose eigenvalues account for less

than 5% of the sum of all eigenvalues are discarded. Then,

the estimated source signals can be derived as: ŝ = W ∗ RTs .

Here, we apply the FastICA algorithm which can perform

ICA efficiently on the preprocessed input matrix [27]. For

the estimation of W, FastICA employs the approximation

of negentropy to maximize the nongaussianity, which is a



Fig. 6. Average difference among all the difference between consecutive
values for difference number of passing people

measure of independency among different sources. For the

input parameter of the FastICA algorithm, we set the number

of separated components to be five owing to the upper limit of

the number of people. As an example, we show three sets of

separated sources in Fig. 5 with different numbers of people

entering the room. For the raw phase difference series, there

are more variations in the signals for more passing people.

For one-person case (Fig. 5(a)), the first component reflects

the entering behavior, while others are all noises. For the two-

person case (Fig. 5(b)), the first component is the general

trend of entering behavior, the second one reveals the walking

behavior of the second human object. Similarly, when there

are three human objects, the separated sources will have three

effective components representing the entering and walking

behavior, as shown in Fig. 5(c). Therefore, we can count the

number of passing people by detecting effective components

from the separated components.

The way to determine how many effective components exist

comes from the observation that the points in the effective

component are consistent with each other, while the random

noises are distributed out-of-order. So, the difference between

two consecutive points of effective components is smaller than

that of the noises. We add all the difference between two

consecutive points and obtain the average value. The average

differences for effective components and random noises are

shown in Fig. 6. It shows that the average difference of effec-

tive components is much smaller than that of random noises.

As there is always one effective component, we use it as the

benchmark (Dbase), if the difference of other components (i)
meets the requirement Di > α · Dbase, then the components

would be regarded as random noises. Here, the parameter α
is set to be 3 empirically. Then, the number of people is the

number of the effective components.

VI. EVALUATION

In this section, we first introduce the deployment of Wi-

Count and the data collection phase. Then the evaluation

metrics are given for passing direction detection and number

of passing people identification, and the counting performance

is evaluated under different settings and scenarios.

A. Deployment and Data Collection

To evaluate the performance of our approach, we implement

our system with commercial off-the-shelf devices, i.e., a TP-

Link wireless router, a laptop equipped with Intel 5300 NIC.

Rx1 Rx2Tx

Fig. 7. Wi-Count deployment in real environment

There are three antennas on the Intel 5300 NIC, we only

use the first two as the receivers and the antenna on the TP-

Link wireless router is regarded as the transmitter. They are

horizontally placed around the doorway with 1-meter distance.

The CSI information is extracted through the CSI tool [28]

which modifies the firmware under Linux system for exposing

the CSI information.

We collect phase difference series under the above de-

ployment in real environments. Figure 7 shows examples of

the deployment environment of our system. We recruit 8

volunteers, including 5 males and 3 females, and make them

enter and exit the rooms back and forth. They are required

to move with different walking speeds, i.e., slow, normal and

fast walking. For the multi-person scenario, they enter and

exit the room in two group patterns, i.e., one after another or

side by side. We spent around 20 days distributed in three

months for the data collection phase. While collecting the

phase information, the sampling rate is set to be 100p/s,
200p/s and 400p/s respectively.

B. Evaluation Metrics

To evaluate the performance on passing direction detection

and number of passing people identification, the following

metrics are defined accordingly.

Evaluation on Passing Direction Detection: There are two

possible results for detecting the passing direction, which

are entering and exiting. We define the accuracy of passing
direction detection as the ratio between all the correct instances

and the total number of instances for each case.

Evaluation on Multi-Person Passing Identification: To e-

valuate the performance of the source separation method on

counting the number of people passing by, we define the

error of multi-person counting as the difference between the

estimated number of people and the real number of people,

and the accuracy of multi-person counting as the percentage

of the correctly identified instances over the total number of

instances for different number of passing people.

C. Passing Direction Detection

The performance of passing direction detection is evaluated

with different scenarios, i.e., walking speed, sampling rate and

number of people under two environments. In the following,

the accuracy on passing direction detection will be discussed

in detail in terms of the impact of walking speed, sampling

rate and the number of people.



1) Impact of walking speed: Volunteers are asked to enter

or exit the doorway with different walking speeds, including

slow (about 0.7m/s), normal (about 1m/s) and fast (about

1.3m/s) walking. The accuracy of passing direction detection

with different walking speeds is shown in Fig. 8(a). The

average accuracy among the three walking speeds is around

94%. The detection accuracy of slow and normal walking

speeds is quite similar with each other, while walking with

faster speed can lead to more detection failure. This is because

that the effective time series will be less affected by the

moving behavior when the object is moving too fast and

the corresponding time span will be shorter which makes the

extraction of the signal trend suffer from more disturbance.

2) Impact of sampling rate: In addition to the walking

speed, we also investigate the impact of different sampling

rates on the accuracy of passing direction detection. In fact,

the sampling rate is relevant to the walking speed. If the

sampling rate is too low, the effective time series of the

passing behavior will be too short to be detected. By contrast,

if the sampling rate is too high, then it can lead to more

noises in the wireless signals. Figure 8(b) depicts the accuracy

on passing direction detection under different sampling rates,

which are 100 packets per second (p/s), 200p/s and 400p/s. It

shows that the sampling rate of 200p/s can achieve the best

performance with around 95.5% detection accuracy. In our

case, the distance between the transmitter and two receivers is

about 1 meter. The sampling rate can be adaptively adjusted

with the change on the distance, like applying higher sampling

rate on longer distance scenario.

3) Impact of the number of people: The above experiments

are done with a single human object. Other than the single-

person scenario, we also explore the effect of the number of

people on the performance of passing direction detection. The

result is shown in Fig. 8(c) for 2, 3 and 4 human objects

moving in or out the door together. Although the accuracy

on passing direction detection drops with the rising of the

number of people, the result is still above 90%. More people

passing by the door induces more variations in the wireless

signals owing to the superposition of multiple human objects

as the reflector and various walking patterns, leading to more

misinterpretation on the pattern of the phase difference.

D. Multi-People Passing Identification

To evaluate the performance on people counting, both the

estimation error on the number of people and the overall

accuracy are calculated. Besides, we investigate the impact of

the PCA for the preprocessing of the input matrix to ICA, the

impact of the threshold for identifying effective components

and the group passing patterns on the counting result.

1) Impact of α: In the previous section, we set a threshold

α for identifying the effective components. Here, we try to find

out the optimal value of α. The value of α is iterated from

1 to 5 with the interval of 0.5, and the accuracy on counting

passing people is shown in Fig. 9(a). The accuracy goes up

when α changes from 1 to 2.5, and then experiences slight

fluctuation and reaches the highest peak when α is 3. Then,

(a) (b)

(c)

Fig. 8. Accuracy on passing direction detection with different (a) walking
speeds; (b) sampling rates and (c) number of people

（a）

（b） （c）

Fig. 9. Performance on multi-person passing identification (a) with difference
α; (b) with and without PCA and (c) with different group patterns

the accuracy decreases sharply after 4. From Fig. 6, we can

also draw the similar conclusions, the possible range for α is

between 2 to 4. Therefore, α is set to be 3 from empirical

observation and experiments.

2) Impact of PCA: To enhance the performance of ICA for

estimating the number of passing people, we employ principal

component analysis for preprocessing the input matrix. We

compare the counting performance with and without PCA, and

the result is shown in Fig. 9(b). With PCA, around 90% of the

counting result is correct, while the percentage goes down to

around 80% when the PCA is not applied. This implies that

simply using all the 30 subcarriers as the input matrix has

some adverse effects on the result since some subcarriers are

more vulnerable to noises rather than the moving behavior.

3) Impact of group passing pattern: Next, we investigate

how our counting method goes with different group passing

patterns. Volunteers are required to enter or exit the door with

two patterns, which are one by one and side by side. For the

one-by-one pattern, they are close to each other with around

0.5m spacing. While for the side-by-side pattern, there is less

vertical space among them. The error for the counting result is



illustrated in Fig. 9(c), which tells that there are more errors on

the estimation of the number of people when they are passing

side-by-side. This is due to the reason that, they may have less

distinctive vibrations on the wireless signals. However, since

people cannot completely copy other’s moving behavior, our

method can still figure out the exact number of people passing

by for most of the cases (85%).

VII. DISCUSSION

The presence of moving human objects will influence the

propagation of wireless signals. Therefore, we discuss the

effects of the surrounding human activities on the counting re-

sult. Directional antennas are employed, and the displacement

of the transmitter and receivers are only targeted at the passing

human object. Hence, the effects of the surrounding changes

will be lowered to the least. We allow several volunteers to

walk around in the room to see its effects on the wireless

signals received by the two antennas. Experiments are done

to evaluate the performance of passing direction detection and

multi-person passing identification. The average accuracy is

still around 90% for bi-directional passing detection and the

percentage of identifying the correct number of people is about

86%, indicating a decent performance with the surrounding

human activities.

VIII. CONCLUSION

In this paper, we propose a passing people counting system,

Wi-Count using WiFi signals. The number of people is counted

when human objects pass by the doorway in a low-cost,

accuracy and non-intrusive manner. Wi-Count can be deployed

with the existing indoor WiFi infrastructure, and people can be

detected without active participation and carrying any devices.

We present a physical model to represent the effects of the

bi-directional passing behavior on the wireless signals with

respect to the phase information. So, the passing direction can

be recognized by the specific pattern in the phase information.

Wi-Count not only detects the passing direction but also

counts the number of people when multiple persons pass

by concurrently through an enhanced counting algorithm,

so that to provide more precise counting results. Extensive

experiments verify the correctness of the physical model and

the performance of our people counting approach. The average

accuracy on passing direction detection and passing people

counting are around 95% and 92% respectively, and the system

is robust to the surrounding moving human objects.
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