
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

A Novel Demand Dispatching Model for
Autonomous On-Demand Services

Lei Yang, Xi Yu, Jiannong Cao, Fellow, IEEE, Wengen Li, Yuqi Wang, Michal Szczecinski

Abstract—Recent on-demand services, such as Uber and DiDi, provide a platform for users to request services on the spot and for
suppliers to meet such demand. In such platforms, demands are dispatched to suppliers round by round, and suppliers have autonomy
to decide whether to accept demands or not. Existing approaches dispatch a demand to multiple suppliers in each round, while a
supplier can only receive one demand. However, by using these approaches, pended demands can not be fully dispatched in a round
specially when suppliers are not sufficient, and thus need to wait for many rounds to be dispatched, leading to long response time. In
this paper, we propose a novel demand dispatching model, named by many-to-many model. The novelty of the model is that a supplier
could receive multiple demands in a round, such that the demand has high chance to be dispatched and answered within short time.
More specifically, we first learn the probability distribution function of the response time of a supplier to a given demand, by considering
the features of both the demand and the supplier. Taking the learned results as input, our model generates an optimal matching
between the demands and suppliers to minimize the overall response time of the demands via solving an optimization problem.
Experiments on real-world datasets show that our model is better than the start-of-art models in terms of successful acceptance rate
and response time.

Index Terms—demand dispatching, on-demand services, response time prediction

F

1 INTRODUCTION

R ECENT on-demand services, such as Uber, Didi Chux-
ing and GoGoVan in Hong Kong, provide a platform

for users to request services on the spot and for suppliers
to meet such demand. Didi Chuxing, for example, allows its
users to call for taxies on demand through mobile apps. The
demand is dispatched by the platform to the drivers, who
decide whether or not to accept them. If multiple drivers
are willing to serve, the order will be assigned to one of
them according to pre-established policies. Future energy
systems [1] can also be considered as on-demand services, as
multiple suppliers, including power stations, energy stores,
and mobile charging stations, compete to satisfy energy
demand from their customers.

One fundamental problem for these emerging on-
demand services is demand dispatching, i.e., to determine
for the demand which suppliers it should be dispatched to.
Existing works on demand dispatching can be classified
into two modes: one is Server-Assigned Demand mode
(SAD), the other is Supplier-Selected Demand mode (SSD).
In SAD mode, the sever matches supplier and demand
directly in order to achieve some evaluation metrics, e.g.,
maximizing the number of assigned demands with some
given constraints. While in SSD mode, suppliers can select
demand from all demands in the on-demand service plat-
form. However, SSD mode always lets unpopular demands
unserved for a long time and leads to low efficiency of

• L. Yang and X. Yu are with the School of Software Engineering, South
China University of Technology, China.
Email: sely@scut.edu.cn, secruddev@mail.scut.edu.cn

• J. Cao, W. Li and Y. Wang are with the Department of Computing, The
Hong Kong Polytechnic University, Hong Kong.
E-mail: {csjcao, cswgli, csyqwang}@comp.polyu.edu.hk

• M. Szczecinski is with GoGoVan, Hong Kong.
E-mail: michal@gogotech.hk

demand dispatching [2] [5]. Thus, the demand dispatching
model focused in this paper is in the scope of SAD mode.

Existing solutions in SAD mode [4] [15] [30] have been
proposed for the traditional supply and demand system,
which directly assign a request to a particular supplier, and
assume that the supplier must accept it. In autonomous on-
demand services, in contrast, the suppliers are autonomous
in deciding whether to accept the request. The rejection
would happen when a supplier is not interested at the
assigned demand [5] [6] [29]. We need to develop new
approaches for the autonomous on-demand services by
considering the supplier’s preference to the demand.

Zhang et al. [6] proposed a one-to-many dispatching
model based on the estimation of a supplier’s acceptance
probability towards a particular demand. In this model,
demands are dispatched round by round. In each round,
a demand will be dispatched to several suppliers, and a
supplier can only receive one demand. If a demand is not
accepted by any supplier, it will enter the next round of
dispatching until it is accepted or canceled. However, the
performance of this model becomes poor during peak hours
when the suppliers are not sufficient. In this scene, the
pended demands could not be fully dispatched in a round,
and thus need to wait for many rounds to be dispatched,
leading to long response time. Furthermore, since a supplier
can only receive one demand in a round, if he/she happens
to reject the demand, the supplier will get idle in this round,
which results in high empty-loading ratio for the suppliers.

To address aforementioned issues, we propose a nov-
el demand dispatching model, named by many-to-many
model. The novelty of our model is allowing a supplier
to receive multiple demands in each round of dispatching.
As a result, more demands would be dispatched out in a
round. The demands have high chance be answered within

The following publication L. Yang, X. Yu, J. Cao, W. Li, Y. Wang and M. Szczecinski, "A Novel Demand Dispatching Model for Autonomous On-Demand
Services," in IEEE Transactions on Services Computing, vol. 15, no. 1, pp. 322-333, 1 Jan.-Feb. 2022 is available at https://doi.org/10.1109/TSC.2019.2941680.

This is the Pre-Published Version.

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

fewer rounds. Our model brings an additional challenge to
quantify the supplier’s response behaviour when he/she
receives multiple demands, i.e., which demand the supplier
would accept and how long the response time is. To solve
the challenge, we use the probability distribution of the
supplier’s response time to represent his/her behavioural
pattern toward the demand. Note that although ride-sharing
[7] can improve the efficiency of on-demand system, to
make the problem easy to solve, we will not consider ride-
sharing.

Specifically, we first learn the probability distribution of
a supplier’s response time to a given demand based on the
historical data sets. Based on the one-to-one response time
pattern, we then infer the probability distribution of the
response time in the many-to-many model by considering
the competition of the demands as they are dispatched to
the same supplier. With the probability distribution, we
formulate the demand dispatching into a combinational
optimization problem that aims to minimize the overall
response time for the demands. However, the exponentially
large solution space of the many-to-many model makes it
difficult to find the exact optimal solution. We make a con-
straint on the maximum number of demands that a supplier
can receive to reduce the solution space, and propose an
efficient heuristic to solve it. Our contributions are listed as
follows.

• We first have a 3-dimensional classification of de-
mand dispatching models, and show that this is the
first work that uses a many-to-many model to solve
the demand dispatching problem for autonomous
on-demand services.

• We use the probability distribution of response time
to quantify the supplier’s behaviour pattern toward
the demand, while existing work uses the coarse-
grained binary acceptance probability. Accordingly
we develop an approach to predict the probability
distribution of response time based on the historical
data sets.

• We formulate the many-to-many dispatching prob-
lem, and develop a heuristic algorithm with high
efficiency.

• We conduct extensive experiments using the real-
world datasets from a large van-calling platform at
Hong Kong. The results show that our proposed
many-to-many model outperforms the state-of-art
models significantly in both the success rate and
response time.

2 BACKGROUND AND PROBLEM STATEMENT

In this section, in order to introduce the background of de-
mand dispatching, we classify existing works firstly. Next,
we introduce representative works in these categories and
state the problem scope in this paper.

2.1 3D Classification of Demand Dispatching
The works on demand dispatching can be classified accord-
ing to three dimensions, which have been shown in Fig.1.
The first dimension means that the demand is dispatch-
ing in real-time mode (R) or batch mode (B). In real-time

�

��	�(�	(�(�(�)

����)(
-�(�	(�(�(�)

������

�

��	�	(�(�(�)

����)(
-�	(�(�(�)

������

No rejection
(NR)

Rejection aware
(RA)

Real-time
(R)

Batch
(B)

�

��	�	(�(�(�)

����)(
-�(�	(�(�(�)

������

�

��	�(�	(�(�(�)

����)(
-�	(�(�(�)

������ Our model

X

Y

Z

Server
responding mode

Demand supplier
constraints

Rejection

Fig. 1: The classification of works on demand dispatching

mode, the dispatching server operates immediately when a
new request (demand/supplier) appears [5]. While in batch
mode, demands are dispatched periodically every short
time interval. The former responds to each demand, and
the latter responds to temporal accumulated demands [5].
The second dimension represents that whether a on-demand
service has taken the rejection of supplier into consideration
(NR and RA). Rejection is common in on-demand service, if
a supplier have no interest in a demand, he/she will reject it.
Furthermore, we use autonomous to represent rejection aware
in this work.

The last dimension indicates that whether the demand
and supplier are divisible. A demand is divisible only if
it can be served by multiple suppliers simultaneously, and
a supplier is divisible only if he/she can serve multiple
demands at the same time. For example, we consider the
non-ride-sharing mode in Uber. In this mode, a demand can
only be assigned to one supplier, and a supplier can only
serve one demand at the same time. So the demand and
supplier in this application are both indivisible. On the other
hand, if we consider ride-sharing, the supplier becomes
divisible since he/she can serve multiple demands at the
same time. In cooperative Electric Vehicle (EV) charging, a
discharging EV (supplier) can supply electricity for multiple
EVs simultaneously and a charging EV (demand) can also
get electricity from multiple EVs simultaneously, so the
demand and supplier in this application are both divisible
[8].

Because the three dimensions are independent of one
another, a wide variety of demand dispatching schemes can
be created by combining properties from each. An XX-YY-
ZZ string expresses a kind of demand dispatching model,
in which XX represents server responding mode (R or B),
YY stands for whether the model considers rejection (NR
or RA), and ZZ symbolizes the constraints of demand and
supplier (DDSD, DDSI, DISD or DISI).

2.2 Representative Works

In R-NR-DISI, the problems can always be considered as
online bipartite matching. The majority of them focuses on

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

Demand Demand DemandSupplier Supplier Supplier
(a) (b) (c)

Fig. 2: One-to-many dispatching model

Demand Demand DemandSupplier Supplier Supplier
(a) (b) (c)

Fig. 3: Many-to-many dispatching model

one-sided online matching, while in [4], the authors consid-
ered two-sided online task assignment. In other aspects of R-
NR-* (in which * represents those situations with non-fixed
attributes and can be any combination of properties along
the dimension), many works also appeared. The supplier is
divisible if he/she has a capacity, which is the maximum
number of demands that can be assigned to him/her [9]. In
some works [10], if the platform receives a demand which
needs to be performed multiple times or needs multiple sup-
pliers to serve collaboratively, then this demand is divisible.

Problems in R-RA-* mode have been widely studied, in
which the method of contextual multi-armed bandit [14] is
always used to capture the rejection behaviour of suppliers.
In these problems, the features of demand and supplier
are considered as the contextual features of multi-armed
bandit, and each arm of it represents a supplier. When
the platform receives a demand, it needs to select one or
multiple suppliers to finish this demand [2]. And in some
works, a supplier who is serving a demand may also receive
a demand [3], so demands and suppliers in such modes can
either be divisible or indivisible.

B-NR-* is also a well studied research field. Most works
in this field only consider the information of demands
and suppliers in current time slot, and we call them the
greedy solutions. In B-NR-DISI, the problem can always
be formulated as a weighted bipartite matching problem.
To overcome the shortcoming with greedy solution, [11]
considered to predict the features of demands and suppliers
in next time slot. In B-NR-DISD, [12] proposed a demand
assignment model which gave demand with low location
entropy high priority in order to improve the global effi-
ciency of model. When problem comes to B-NR-DDSI, the
representative work [13] assigns workers to spatial tasks
such that the completion reliability and the spatial/temporal
diversities of spatial tasks are maximized. In DDSD, [8]
proposed a cooperative EV charging framework, in which
a charging EV can get electricity from multiple discharging
EVs simultaneously, and a discharging EV can also serve
multiple charging EVs at the same time.

Only a few works have studied the problems in B-RA-
DISI mode [6], and our problem studied in this paper is in
the category. Few works study the other aspects of B-RA-
* as far as we know. Due to the possible rejection by the
supplier to a demand, a demand is always dispatched to
multiple suppliers in order to increase the overall successful
acceptance rate for the demands. Fig.2 shows the working
process of demand dispatching model in [6], which contains
three steps. First, the platform collects features of demands
and suppliers in this round, and then gets the acceptance
probability of each supplier to each demand. After that, the
platform performs the one-to-many demand dispatching al-
gorithm and finally dispatches each demand to a set of sup-
pliers (shown in Fig.2a). One-to-many means that a demand
can be dispatched to multiple demands, but a supplier can
only receive one demand for further selection. In the second
step, each supplier has received the demand dispatched to
him/her, and either accept or reject this demand (Fig.2b). In
the third step, the platform will select one from the suppliers
who have accepted the demand according to pre-established
policy, and assigns him/her to the demand (Fig.2c).

2.3 Problem Statement

In the above one-to-many model [6], the successful accep-
tance rate of the demands in a dispatching round would
be not satisfactory especially when the suppliers are not
sufficient. Some of the demands may need to wait for many
rounds until it is successfully accepted by the supplier. So
we propose a many-to-many demand dispatching model,
where a demand is dispatched to multiple suppliers and
each supplier can also receive multiple demands. Fig.3
shows the working process of our dispatching model. In
the first step, our model collects the features of demands
and suppliers in this round, and then gets the predicted
behaviour pattern of each supplier to each demand. Next,
our model will make a many-to-many dispatching in order
to maximize some defined metrics. In the second step, each
supplier can perform two kinds of choices according to the
properties of the demand and his/her preference: 1) reject
all the demands he/she received; 2) select one demand
from all the demands he/she received. In the third step,
our model selects a supplier for the demand by a particular
filtering policy if multiple suppliers want to accept the ser-
vice. Normally for fairness among the suppliers, we assume
that the supplier who answers the demand at the first time
would serve the demand.

In this paper, we study the problem of demand dispatch-
ing in the first step (shown in Fig.3a) in order to satisfy the
following objectives.
• Successful acceptance rate. If a demand is accepted

finally by one of the suppliers, we name that the demand
has a successful acceptance. If a demand is dispatched to a
set of suppliers none of whom want to accept it, the demand
would have a unsuccessful acceptance. We hope that as
many demands as possible can be successfully accepted by
the suppliers.
• Response time. Response time is defined as the period

from the time when the demand is released to the time when
it is accepted by a supplier. The response time reflects the
supplier’s behaviour towards the demand. It depends on

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

Response Time Partitioning

Model TrainingDemand Features
Supplier Features

Prediction ModelComing Demands
Coming Suppliers

Many-to-One Response
Time Modeling

Many-to-Many Response
Time Modeling

Combinatorial
Optimization

Fig. 4: An overview framework of our solution

the properties of the demand and the supplier’s preference.
Our objective is to find a dispatching such that the aver-
age response time of the accepted demands is as short as
possible.

3 SOLUTION

We first present an overview framework of our solution
shown in Fig. 4. The framework consists of two parts:
prediction of the supplier’s response time to the demand,
and demand dispatching.
• Response Time Prediction. We learn the supplier’s

behaviour pattern to the demand from the historical data
set. Here behaviour pattern means that, given a demand
and a supplier, how likely it is for the supplier to accept
the demand? How much time it takes for the supplier to
accept the demand? In our solution, we use the response
time to model the supplier’s behaviour. If the response time
is extremely large, it means the supplier does not accept the
demand within a round of dispatching. The historical data
set includes information about the demand, the supplier
who accepts the demand, and the response time. Instead
of directly using regression models [16], we first divide the
continuous response time into several time ranges without
intersections [18], and then transfer the prediction problem
into a multi-classification problem. In prediction phase, the
multi-classifier outputs the response time probability, which
is represented by a piecewise function on the time ranges.

Since the prediction model might have changed after the
deployment, the response time distribution of each supplier
may not fully describe the real response pattern of him/her.
To overcome this shortcoming, our prediction model needs
to be updated continuously in real applications.
• Demand Dispatching Models. The probability dis-

tribution from the multi-classifier reflects the supplier’s
response pattern when the supplier receives one and only
one demand, where we call it one-to-one model. We assume
that the response time is infinite if a demand is rejected by a
supplier. However, if a supplier receives multiple demands,
his/her expected response time to a specific demand will
be affected by the other received demands. We call it many-
to-one model. For the same demand, the expected response
time of a supplier in many-to-one model is usually longer
than that in the one-to-one model due to two aspects: 1)
the supplier can only select one demand to accept, so there
will be a competitive game among the demands; 2) the
infinite response time of failed demands in this game. In
Section 3.2.1, we present how to calculate the probability
distribution of the response time in many-to-one model.

Meanwhile, a demand can be dispatched to multiple
suppliers in a many-to-many dispatching model. The re-
sponse time of a demand depends on the number of sup-
pliers who receive it. Normally if more suppliers receive
the demand, the expected response time will be shorter. We
present how to deduce the probability distribution of the
response time of a demand in the many-to-many model in
Section 3.2.2.

Note that although the deduced response time may not
fully describe the real response time probability distribution
in the proposed many-to-many model, it is still an effective
way to model it when we have no historical data for many-
to-many model. Based on the probability distribution, we
formulate the demand dispatching problem as a combina-
torial optimization problem. The problem decides for each
demand to whom it should be dispatched such that the
expected response time of all the demands is minimized.

3.1 Response Time Prediction

3.1.1 Data Sources and Feature Extraction
The data sources are from a van-calling service platform.
They include two data sets: one is the demand historical
data set, and the other is the supplier/driver’s GPS location
data set. The demand data set includes the information indi-
cating when the demand was released and accepted, which
supplier accepted it, the pick up location and destination,
the customer’s extra requirements and so on. The supplier
location data set includes the GPS trajectory locations of the
suppliers during the same time period with the demand
data set.

In order to simplify the process of feature selection and
make us put main energy into next steps, we use the features
in existing work [16] directly, in which the datasets and
the main prediction target are the same as us. The features
extracted from the two data sets are listed as follows.

• Demand related features: 1) the temporal features in-
cluding the date, day of week, and the time when the
demand was released and accepted; 2) the rating of
the customer who made the demand; 3) the price of
the demand; 4) personalized requirements including
required language, whether the user has pets and
whether the demand will be paid by the sender or
the receiver; 5) locations including the start and end
locations; 6) the total number of demands at the start
location and the end location.

• Supplier related features: 1) the average and variance
of his/her travel distances in each hour during all
days; 2) average and variance of the idle ratio in each
hour of all days.

• Demand-Supplier related feature: the pick-up dis-
tance, which is the distance between a supplier and
the demand he/she receives.

3.1.2 Response Time Partitioning
Since the problem of predicting response time has been
transformed into a multi-classification problem, we need to
choose a way to partition the entire range of the response
time. Note that our dispatching model is round-based, and
each round is associated with a time window to dispatch the

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

TABLE 1: Performance of Prediction Models

Model 3 classes 4 classes 5 classes
ACC AUC ACC AUC ACC AUC

LR 0.534 0.694 0.447 0.683 0.364 0.677
GBDT 0.572 0.734 0.494 0.724 0.414 0.717

GBDT+LR 0.527 0.702 0.431 0.689 0.351 0.683
RF 0.649 0.809 0.525 0.771 0.430 0.755

pended demands. On the other hand, dividing the response
time beyond the time window makes no sense. This is
because if the response time of a supplier is over the time
window, it means that he/she did not accept the demand
in this round, and the demand is dispatched in the next
round. Our purpose is to predict the probability distribution
of the response time within the time window. So we divide
the samples whose response time is longer than the time
window into a separate class. The samples whose response
time is shorter than the time window are partitioned into
k classes using K-means clustering [17] on the response
time. The selections of k and the time window RT will
be discussed in Section 4. Table 2 shows the mathematical
notations in this paper.

3.1.3 Multi-Classification

Using the features of demands and suppliers, we train
a (k + 1) − class classifier. Let L denote the number of
partitioned time ranges, where L = k+1, and Tb represents
the boundary of each time range. pij(t) is the probability
distribution of the response time of the supplier sj to the
demand di. We illustrate the prediction result from the
multi-classifier by the following example.

Example 1. We suppose that the time window in the dispatch-
ing model is 30 sec, and divide the samples whose response time
is shorter than 30sec into 2 classes using K-means. The samples
whose response time is longer than 30 sec is partitioned into the
third class. We assume that the corresponding time range of the
three classes is 0 − 10 sec, 10 − 30 sec, and 30 sec to infinity.
So we have L = 3, T0 = 0 sec, T1 = 10 sec and T2 = 30 sec.
Then we can train a 3-class classifier and it will output pij(t),
e.g., pij(T0 < t ≤ T1) = 0.3, pij(T1 < t ≤ T2) = 0.3 and
pij(t > T3) = 0.4.

We compared four popular models: linear logistic regres-
sion (LR) [19], gradient boosted decision tree (GBDT) [20],
a model which combines GBDT and LR (GBDT+LR) [21],
and random forest (RF) [22]. All models were trained on the
van-calling service data sets, which consist of about 170000
demand historical records and corresponding supplier fea-
tures. We set the time window of the dispatching model as
30 sec, and evaluate the performance of the four models in
terms of Accuracy (ACC) and Area under the Curve of ROC
(AUC). According to the result of K-means clustering on the
labels, we have divided training data respectively into 3, 4
and 5 classes. Note that the number of samples of each class
is not balanced, so we use micro-AUC to calculate the value
of AUC [23]. For all the models, we conduct 5-fold cross-
validation for 100 times, which was chosen in favor of [24].
Table 1 shows the performance results of the four models.
The performance of RF is the best among the four models on
our data sets. For all the models, ACC and AUC get lower
with the increase of the number of classes L.

TABLE 2: Mathematical notations in this paper

RT time window between two dispatching rounds;
k the number of clusters in history data whose re-

sponse time is before RT ;
L the number of partitioned response time ranges;
Tb the border of each response time range;
t the response time;
N the number of demands in a round;
M the number of suppliers in a round;

pij(t) the probability distribution of t of demand i if it is
dispatched to supplier j in one-to-one model;

di the demand i;
sj the supplier j;

Pij(t) the probability distribution of t of demand j if it is
dispatched to supplier j in many-to-one model;

xij if demand i is dispatched to supplier j, xij = 1;
else, xij = 0

Si(t) the probability distribution of t of demand i in
many-to-many model;

g(t) the benefit a demand can get if it is accepted at
time t;

Gi the expected benefit a demand can get in many-to-
many model;

UL the maximum number of demands a supplier can
receive in a dispatching round;

D[j] the demand list that supplier j receives in a dis-
patching round;

TN the number of trapezoids for calculating Pij(t) in
an approximate way;

r the demand-supplier ratio in a round;
pdf the probability distribution function.

3.2 Many-to-Many Demand Dispatching Model

Note that pij(t) from the multi-classifier only represents
the response time of supplier sj to demand di in the one-
to-one model. In the many-to-many dispatching model, a
demand is dispatched to more than one suppliers, and a
supplier could receive more than one demands. We need to
deduce the probability distribution of the response time in
the many-to-many model based on pij(t).

3.2.1 Response Time in Many-to-One Dispatching Model

We consider the many-to-one model firstly, in which a
supplier can receive multiple demands and a demand is
dispatched to only one supplier. Suppose there are N de-
mands and M suppliers in a dispatching round. We assume
that if multiple demands are dispatched to a supplier, the
supplier can respond to each demand simultaneously. That
is to say, if a supplier s1 received 3 demands {d1, d2, d3}, we
suppose that there will be three same suppliers {s1, s′1, s′′1}
responding to each demand simultaneously, which means
s1 responds to d1, s′1 responds to d2 and s′′1 responds to
d3. The final accepted demand of s1 is the first responded
demand among 3 demands, and the other demands s1
received get rejection. Let Pij(t) denote the pdf of the sup-
plier sj ’s response time to the demand di in a many-to-one
dispatching model. Pij(Tb < t 6 Tb+1) is the probability
demand di is responded firstly in time range (Tb, Tb+1]
among demands supplier sj received. Then we compute
Pij(t) as follows.

Pij(Tb < t 6 Tb+1) =pij(Tb < t 6 Tb+1)×
N∏

α=1,α6=i
pαj(t > Tb+1)

xnj
(1)

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

where the 0-1 variable xij indicates whether the demand di
is dispatched to the supplier sj , and

∑M
j=1 xij ≤ 1,∀i ∈

[1, N] in many-to-one model. After we get Pij(Tb < t 6
Tb+1), Pij(rejection) is represented as

Pij(rejection) = 1−
k−1∑
b=0

Pij(Tb < t 6 Tb+1). (2)

Note that Pij(t > Tk) is also a part of Pij(rejection), since
demand’s being responded in time range (Tk,+∞] firstly
is also a kind of rejection. The calculation process of this
probability makes no sense.

Equation (1) presents the probability that the supplier sj
accepts the demand di at the time range (Tb, Tb+1] if the
other demands dispatched to sj excluding di are responded
by the supplier beyond the time Tb+1. However, if two or
more demands including di are responded by the supplier
sj in the same time range (Tb, Tb+1], we will calculate the
probability that di is responded at the first among these
demands. Suppose that the probability is uniform in each
time range, then we can get

Pij(Tb < t 6 Tb+1) =

∫ Tb+1

Tb

(
pij(Tb < t 6 Tb+1)

Tb+1 − Tb
×

N∏
α=1,α 6=i

(1− pαj(t 6 Tb)−
pαj(Tb < t 6 Tb+1)

Tb+1 − Tb
(t− Tb))

xαj)dt.

(3)
In equation (3), integral function means only demand di

was responded at second t, and the response time of other
demands are all beyond t. And we can get Pij(t) through
the method of integral.

3.2.2 Response Time in Many-to-Many Dispatching Model

Based on the response time in the many-to-one model, we
extend to consider the many-to-many model. Suppose the
demand di is dispatched to more than one supplier. The
response time of di is determined by the supplier who
answers the demand at the first among all the suppliers
receiving di. So the probability distribution of the response
time in many-to-many model is calculated by the recursive
equation as follows.

Si(Tb < t 6 Tb+1) = 1−
M∏
β=1

[1− Piβ(t > Tb+1)]
xiβ−

Si(t 6 Tb),

(4)

where b = 1, ..., L− 2, Si(t 6 T0) = 0, and

Si(t 6 Tb) = Si(t 6 Tb−1) + Si(Tb−1 < t 6 Tb). (5)

Note that xiβ indicates whether the demand di is dispatched
to the supplier sβ . Piβ(t > Tb+1) can be calculated based on
Equation (3) by

Piβ(t > Tb+1) = 1−
b∑

γ=0

Piβ(Tγ < t 6 Tγ+1). (6)

3.2.3 Model Formulation
In the many-to-many model, it is challenging to determine
which suppliers the demand should be dispatched to. If a
demand is dispatched to many suppliers, the demand will
be answered shortly since more suppliers compete to serve
the demand. Meanwhile, if a supplier has received too many
demands, his/her response time to a specific demand will
be long. So we need to consider both cases to determine the
optimal receivers for each demand.

In our dispatching model, we have two goals: one is to
have as many demands as possible accepted by the suppli-
ers, the other is to have as low response time as possible
for all the accepted demands. The two objectives are in
conflict with each other in a dispatching round. Suppose
that in an on-demand service platform which uses one-to-
many dispatching model, if we want to get a lower average
response time of accepted demands, an extreme solution is
to dispatch popular demands to all the suppliers. In this
case, the average response time of accepted demand is the
shortest, but the successful acceptance rate is almost the
lowest since unpopular demands get no response in this
round. On the other hand, if a higher successful acceptance
rate is needed, popular demands and unpopular demands
should be dispatched to suppliers together. So it is also chal-
lenging to make a trade-off between these two objectives.

In our many-to-many model, in order to get a high
success rate, we can firstly sum the probabilities of each
response time range for each demand di, named as SSi, and
then maximize the sum of SSi among all demands in this
round. However, this solution fails in reducing the average
response time of accepted demands, since it considers that
the acceptance of a demand in later time range has the
same weight as earlier time range. In order to combine
the two goals, we introduce a function g(t) to indicate the
benefit of the dispatching of a demand to a supplier. g(t)
varies depending on the response time t of a demand. If
a demand could be answered within a shorter time, it will
acquire a greater benefit. Since we use several time ranges to
partition the response time of a demand, so g(t) is defined
as a piecewise function. The piecewise points of g(t) are
the same as Tb, and the value of g(t) in each interval is a
constant.

Example 2. Suppose that the time window of the dispatching
is 30sec. The whole response time range is divided into three
classes, with the time border 0, 10 and 30. In this case, g(t) can
be defined as (3, 1, 0), which means

g(t) =


3 0 < t 6 10
1 10 < t 6 30
0 t > 30

(7)

So in our demand dispatching system, the goal is to
maximize the sum of all demands’ benefits.

argmax
xij

N∑
i=1

Gi = g(ti) (8)

where Gi is the benefit of the demand di, and ti is the
response time of di. The response time obeys a probabilities
distribution in Equation (4), so Gi can be calculated by

Gi =
L−1∑
b=0

g(Tb < t 6 Tb+1)Si(Tb < t 6 Tb+1). (9)

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

In the model, we assume that the supplier can respond
to each demand concurrently. However, if we dispatch hun-
dreds of demands to a supplier, this assumption will be not
realistic. Furthermore, the solution space of the dispatching
problem depends on the number of demands that a supplier
has received. If we dispatch too many demands to a suppli-
er, the complexity for finding the optimal dispatching will
be huge. So we define a variable UL to limit the number of
demands that a supplier can receive.

∀j ∈M,
N∑
i=1

xij 6 UL. (10)

3.2.4 Demand Dispatching Algorithm

Algorithm 1: Many-to-Many Dispatching Algorithm
Input : The set of demands D and suppliers S , the

pdf of response time pij(t), benefit function
g(t)

Output: The dispatching results
1 for j = 1→M do
2 Select a demand i from D for the supplier j with

the probability distribution pij(t) which
generates the maximum benefit, and add i to
D[j];

3 for i = 1→ N do
4 Compute the benefit of the demand G[i] with all

the demands considered via Equation (9);

5 G[0]← the average of G[i];
6 for i← 1, N do
7 U ← suppliers that are not assigned to demand i;
8 for j ← 1, len(U) do
9 k ← U [j] ;

10 tmp← D[k] ;
11 final← D[k] ;
12 if sizeof(D[k]) < UL then
13 if add demand i to D[k], and G[0] increases

then
14 add i to D[k] ;
15 final← D[k] ;
16 update G[0] ;

17 D[k]← tmp ;
18 for m = 1→ sizeof(D[k]) do
19 for each combination C of m demands from

D[k] do
20 if replace C with demand i, and G[0]

increases then
21 replace C in D[k] with demand i ;
22 final← D[k] ;
23 update G[0] ;
24 D[k]← tmp ;

25 D[k]← final ;

26 return the dispatching results D[j]

The existing one-to-many dispatching problem in [6] is
NP-hard. Our many-to-many dispatching model is a more
generic and complex model. Correspondingly the solution

space is much larger. We can prove that the many-to-many
demand dispatching problem is also NP-hard. We design an
efficient and fast heuristic algorithm for solving it.

Algorithm 1 presents the pseudo-code. In lines 1-2, for
each supplier j, we first assign a demand i with the proba-
bility distribution pij(t) which will generate the maximum
benefit for j. Then we will get an initial dispatching result
D[j]. In lines 3-5, we calculate the benefit of all the demands
using Equation (9) and get the average benefit. Next, in lines
6-7, for each demand i, we find the suppliers who have not
received i, and then put them in a set U . In lines 8-25, for
each supplier j in U , we utilize two ways to modify D[j]
in order to increase the average benefits of all the demands.
One way is to add the demand i into D[j], which is called
adding; the other way is to replace one or more demands
in D[j] with the demand i, which is named by replacing. In
lines 12-16, we illustrate the process of adding. If the size
of D[j] is not over UL, we then check whether adding
the demand to D[j] increases the average benefits of the
demands. If yes, we will add demand i into D[j]. Lines 18-
24 show the process of replacing. The main idea of replacing
is to find whether replacing one or more demands in D[j]
with demand i will increase the average benefit. If yes, we
find the optimal replacing strategy from all the possible
ones which will maximize the average benefit. Finally, we
compare the benefit of adding and replacing, and choose
the better one. By performing the above process for each
demand, we get the final dispatching results.
• Time Complexity. The time cost of Many-to-Many

Dispatching Algorithm depends on two factors: 1) the calcu-
lation process of Pij(t); 2) the replacing process (line 18 - line
24). In section 3.2.1, we use the method of integration to get
Pij(t). In order to reduce the time cost of this process, we
use compound trapezoidal formula to get the approximate
value of Pij(t). In such a method, the number of trapezoids
is an important factor to the accuracy of the result. We
use Q to represent this value. The maximum time cost of
calculating Pij(t) for one demand is O(UL×Q). The upper
bound of time cost of calculating Pij(t) for UL demands is
O(UL2 ×Q).

In the replacing process, the algorithm needs to traverse
all the possible combinations of D[j], and the maximum
length of D[j] is UL, so the upper bound of traverse space
is 2UL − 1. For each combination traversed, the algorithm
needs to calculate G[0], which consists of the calculation
of Pij(t) and Si(t). These two processes are performed
sequentially, and in most instances, the time cost of Pij(t)
is higher than Si(t), so we only consider the time cost of
Pij(t). As a consequence, the time cost of replacing process
is O(2UL

∑UL−1
n=0 (n+ 1)2 ×Q). The time complexity of this

algorithm is O(M ×N × 2UL ×
∑UL−1
n=0 (n+ 1)2 ×Q).

4 EVALUATIONS

4.1 Environment Settings

The data sets we are using to conduct our experiment are
from GoGoVan, which is a large van-calling platform in
Hong Kong. The training of the response time prediction
model are based on the whole data set including 170000
demand records, and about 6400 suppliers are involved.

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

We randomly select the demands and corresponding sup-
pliers from the data set for the simulation of the dis-
patching model. In our simulations, the dispatching models
are round-based. It is important to set a time window
RT for a dispatching round. In [25], RT is varied in
{5 sec, 10 sec, 15 sec, 20 sec}. Considering that the number
of demands and suppliers is less than the data using in [25],
let RT vary in {10 sec, 20 sec, 30 sec} in our experiments.

We set L = 3 and use a 3-class classifier based on
RF to calculate pij(t). The reason is that the prediction
accuracy of the response time decreases as L increases. If
L is 2, the probability distribution of response time has no
difference from the binary acceptance probability in existing
approaches. We set g(t) = (3, 1, 0) to calculate the benefit of
a demand.

To measure the performance, we need to emulate the
supplier’s actual response behavior when he/she receives
multiple demands. For each received demand, we randomly
generate a response time of the supplier. The random re-
sponse time needs to satisfy the probability distribution pij
from the prediction model. The demand with the shortest
response time is then finally accepted by the supplier.

We utilize two metrics to evaluate the performance of
the dispatching model, which are the key metrics discussed
in [6]. One is the Success Rate (SR), which means the
percentage of served calls in each round, the other is the
Averaged Response Time (ART), which represents the time
it takes for a newly created demand to be accepted by a
supplier. The benchmark dispatching models we use for
performance comparison are as follows.

One-to-One Dispatching Model. We propose a naive
demand dispatching model called the one-to-one dispatch-
ing model, in which a demand will be dispatched to one
supplier, and a supplier can receive one demand at most
in a round. If we treat demands and suppliers as nodes of
a bigraph, this dispatching problem can be solved using a
maximum weighted matching. The weight represents the
benefit of a demand when it is answered by a particular
supplier. The classic Kuhn-Munkres (KM) method [26] is
used to solve this problem.

One-to-Many Dispatching Model. The state-of-art work
[6] proposed a round-based one-to-many dispatching mod-
el. In this model, a demand will be dispatched to several
suppliers, and a supplier can receive one demand at most.
Although in [6], the model originally takes the prediction
of acceptance probabilities as input, and generate optimal
dispatching accordingly. In our experiment, for the fairness
of comparison with our many-to-many model, we first
evaluate the performance of the model by fitting it with the
probability distribution of response time as inputs.

4.2 Single Round Performance Comparison

We first run simulations on a single round of dis-
patching. As the performance of the dispatching mod-
el depends on the ratio of the number of demand-
s to suppliers [6], we set the ratio r to vary in
{0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.67, 2.5, 5}. Higher ratio repre-
sents the peak hours, in which suppliers are not sufficient.
To simulate each value of ratio, we set the number of de-
mands N to vary in (20, 40, 60, 80, 100, 100, 100, 100, 100),

and the corresponding number of suppliers M is
(100, 100, 100, 100, 100, 80, 60, 40, 20). All the demands and
suppliers are randomly selected from the entire data set.

Fig.5a, 5b and 5c show the comparison of the three
dispatching models in terms of SR, where the dotted lines
represent the upper limits of SR. If RT = 10 sec, we can
find that SR of many-to-many model is better than others
whatever the value of r is. The reason is that a supplier can
receive one demand at most in one-to-one and one-to-many
models, and the probability that a supplier does not accept
the demand within a short RT is high. However, in the
many-to-many model, a supplier could receive more than
one demands, so the probability that the supplier rejects
all of these demands is relatively low. If RT = 20 sec or
30 sec, the many-to-many model has obviously greater SR
than the one-to-many model when r is larger than 1. When
the value r is less than 1, the many-to-many model still has
slightly better performance than the one-to-many model.
This is because when the number of demands exceeds the
number of suppliers, the one-to-many model has many
demands that could not be dispatched out. Considering
various values of RT and r, the many-to-many model has
11.8% higher SR on average than the one-to-many model.
Especially when r > 1, the increase in SR is 24.6%.

We find that the many-to-many model also has much
greater SR than the one-to-one model except when r is
around 1. When r = 1, SR of the one-to-one model is the
best, because the solution found in one-to-one model is
optimal using KM algorithm, but the solution found in one-
to-many model and many-to-many model is an approximate
solution.

In the comparison of ART , we can find from Fig.5d,
5e and 5f that the many-to-many model outperforms the
benchmark models regardless of the value of r and RT .
Specifically compared with the one-to-many model, our
model has a decrease of 24.6% in ART on average. The
reason is that a supplier in our model has multiple demands
to choose, the supplier is more likely to respond a demand
in a shorter time. As the time window RT increases, ART
will be longer because suppliers have longer time to accept
a demand. SR is higher in all dispatching models if RT gets
longer, since pij(t > RT) becomes lower and the supplier
has higher probability to accept the demand successfully.

Trade-off between the Performance and Time Cost.
In the many-to-many dispatching algorithm, we use the
variable UL to limit of the number of demands that a
supplier can receive in order to make a trade off between
performance and time cost. So we conduct an experiment
to evaluate the effect of UL respectively to SR, ART and
the time cost of the dispatching algorithm. We let r vary
in {0.5, 1, 2}, since these values represent three common
dispatching situations. To simulate each value of r, N is set
to be (50, 100, 100) and correspondingly M is (100, 100, 50).
We set RT = 10 sec.

Fig.5g, 5h and 5i show how the performance of our
algorithm varies depending on UL. We can see that SR and
ART gets better with the increase of UL whatever the value
of r is. However, the time cost of the algorithm gets high as
UL increases. Since a great UL will lead to a large solution
space. Although we can find a better solution in such a
space, the time it takes for the algorithm will be long. We

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

one-to-one
one-to-many
many-to-many
upper limit

Su
cc

es
s r

at
e

0.2

0.4

0.6

0.8

1.0

Demand-Supplier ratio
0.2 0.5 1 2 5

(a) Success rate under RT = 10 sec.

one-to-one
one-to-many
many-to-many
upper limit

Su
cc

es
s r

at
e

0.2

0.4

0.6

0.8

1.0

Demand-Supplier ratio
0.2 0.5 1 2 5

(b) Success rate under RT = 20 sec.

one-to-one
one-to-many
many-to-many
upper limit

Su
cc

es
s r

at
e

0.2

0.4

0.6

0.8

1.0

Demand-Supplier ratio
0.2 0.5 1 2 5

(c) Success rate under RT = 30 sec.

one-to-one
one-to-many
many-to-many

Av
er

ag
ed

 re
sp

on
se

 ti
m

e

2

4

6

8

10

Demand-Supplier ratio
0.2 0.5 1 2 5

(d) Averaged response time under
RT = 10 sec.

one-to-one
one-to-many
many-to-many

Av
er

ag
ed

 re
sp

on
se

 ti
m

e

2

4

6

8

10

Demand-Supplier ratio
0.2 0.5 1 2 5

(e) Averaged response time under
RT = 20 sec.

one-to-one
one-to-many
many-to-many

Av
er

ag
ed

 re
sp

on
se

 ti
m

e

2

4

6

8

10

Demand-Supplier ratio
0.2 0.5 1 2 5

(f) Averaged response time under
RT = 30 sec.

r = 0.5
r = 1
r = 2

Su
cc

es
s r

at
e

0.4

0.5

0.6

0.7

0.8

0.9

UL
2 3 4 5 6 7

(g) Success rate under various UL.

r = 0.5
r = 1
r = 2

Av
er

ag
ed

 re
sp

on
se

 ti
m

e

3.0

3.5

4.0

UL
2 3 4 5 6 7

(h) Averaged response time under various
UL.

r = 0.5
r = 1
r = 2

TI
m

e
co

st

0

5

10

15

20

UL
2 3 4 5 6 7

(i) Time cost under various UL.

Fig. 5: Performance comparison of dispatching models: (a) (b) (c) the success rate of three dispatching models under
various RT ; (d) (e) (f) the averaged response time of three dispatching models under various RT ; (g) (h) (i) the

performance of the many-to-many dispatching algorithm under various UL.

can achieve various trade-off between the performance (SR
and ART) and the time cost by choose various values of UL.

According to the results of algorithm performance, the

recommended value of UL is dN
M
e + 3, where the changes

of SR and ART are small enough and the time cost is in an

acceptable range. When dN
M
e becomes larger, in order to

reduce the time cost of the algorithm, it is better to set UL
to a small value, although this will make demands not fully
dispatched in a round.

Impact of Modeling Approaches for the Supplier’s
Response Behavior. The many-to-many model uses the
probability distribution of response time to represent the
supplier’s response behavior towards the demands. The
model takes the overall response time as the optimization
goal. Existing works [5] [6] utilize a supplier’s acceptance
probability to a demand to model his/her response behav-
ior, and the optimization goal of the dispatching model is
to maximize the overall acceptance probability of the de-
mands. We want to evaluate the impact of the two modeling
approaches of response behavior.

In our data set, due to the lack of label indicating accep-

TABLE 3: Performance of demand dispatching using
different response behavior modeling approaches

Model r = 0.4 r = 1 r = 2.5
SR ART SR ART SR ART

Response time probability distribution
One-to-One 0.699 4.424 0.613 4.904 0.268 4.661

One-to-Many 0.871 4.136 0.583 4.984 0.269 4.764
Many-to-Many 0.926 3.088 0.660 3.869 0.353 3.616

Acceptance probability
One-to-One 0.753 5.429 0.646 5.531 0.279 5.253

One-to-Many 0.886 4.558 0.596 5.389 0.277 5.302
Many-to-Many 0.927 3.987 0.671 4.896 0.353 4.619

tance or rejection, we use the prediction of response time
to approximate the acceptance probability. Normally if we
want to get such a acceptance probability, we need to train
a binary classifier. So we can partition the whole response
time range into 2 classes using RT and train a binary (2-
class) classifier. As mentioned before, we train a 3-class
classifier by default to predict the probability distribution
of response time. Actually we want to compare the per-
formance of the dispatching model respectively under the
2-class acceptance classifier and the 3-class response time

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

0 250 500 750 1000 1250 1500 1750
Second

0

1

2

3

4
Co

un
t

Temporal Distribution of Demands

(a) The demands distribution

0 250 500 750 1000 1250 1500 1750
Second

0

1

2

3

4

Co
un

t

Temporal Distribution of Suppliers

(b) The suppliers distribution

Fig. 6: Temporal distribution of demands and suppliers
between 9 : 30 am and 10 : 00 am

TABLE 4: Performance of dispatching models in multiple
rounds

Model 10 sec 20 sec 30 sec
ASR ART ASR ART ASR ART

Response time probability distribution
One-to-one 0.443 26.64 0.576 34.99 0.649 42.14

One-to-many 0.594 23.04 0.664 31.64 0.696 40.38
Many-to-many 0.680 18.33 0.719 27.07 0.749 35.45

Acceptance probability
One-to-one 0.475 25.87 0.604 34.81 0.657 43.11

One-to-many 0.616 22.85 0.681 32.18 0.699 40.85
Many-to-many 0.681 19.15 0.730 27.99 0.755 36.13

classifier. For fairness of the comparison, the two classifiers
should generate the same pij(t > RT) for a specific pair
of demand and supplier, which is difficult to achieve in
the experiments. So use the prediction results from the 3-
class classifier to emulate the acceptance probability, which
is equal to the sum of probabilities of the first 2 time ranges.
For example, if pij = (0.4, 0.4, 0.2), the acceptance rate of sj
to di is considered as 0.8.

We conduct an experiment with RT = 10 sec to com-
pare the performance of the dispatching models under the
two behavior modeling approaches. Table 3 shows that the
results for three values of r. If we choose the response time
probabilities as input to the demand dispatching, ART will
be obviously shorter for all the three dispatching models
than that with choosing acceptance probability. In term of S-
R, the one-to-one and one-to-many models has performance
decrease if we replace the acceptance probabilities with the
response time probabilities as the input for dispatching.
However, our many-to-many model nearly have no perfor-
mance decrease in SR. The reason is that the probability that
the supplier rejects all of the received demands in the many-
to-many model is small enough. We can conclude that by
using the response time probabilities instead of acceptance
probabilities to model the supplier’s response behavior, the
many-to-many model can decrease ART by 21.8% while
achieving the same SR.

4.3 Multi-Round Performance Comparison

We simulate the multi-round demand dispatching based on
the data sets between 9:30 am and 10:00 am of a weekday. In
each round, the model will dispatch the newly arrived de-
mands and the pended demand from the previous rounds.
The time window RT of a round is respectively set to 10sec,
20sec, and 30sec. The value of UL is selected according to
the rule mentioned before.

The temporal distributions of demands and suppliers
have been shown in Fig.6a and Fig.6b, which contain 469
demands and 370 suppliers. Since the number of demands
and suppliers in each round is too few in the real data set,
we insert extra demands and suppliers in each round from
the data sets with the same time period in a different day. If
we simply increase the number of both proportionally, the
difference between the number of demands and suppliers
will also increase proportionally. This causes more failed
demands and suppliers entering next round, and then se-
riously affects the dispatching in the next rounds.

In order to determine the number of extra demands and
suppliers, we use an experiment-driven approach. We first
triple the number of demands and suppliers, and then run
the multi-round demand dispatching experiment. After the
experiment, we find that the difference between demands
and suppliers become much higher in the last 60% rounds,
where the number of demands is far larger than suppliers.
In order to control the difference within a reasonable range,
we increase the number of suppliers 4.8 times in the last 60%
rounds. The purpose is to ensure that the demand-supplier
ratio r yields a uniform distribution over all the rounds.
That is, r < 1 in the first 33.3% rounds, r ≈ 1 in the middle
33.3% rounds, and r > 1 in the last 33.3% rounds.

With this load traces, we report averaged SR (ASR) and
ART for the three models in Table 4. ASR is the average of SR
of all the rounds. Results show our many-to-many model is
better than the other models in all the settings of RT . With
the increase of RT , ART in all settings is getting longer.
Because suppliers have longer time to accept a demand
and some demands may need more than one round to be
accepted. And in most situations, the differences of different
settings are like the analysis in section 4.2.

In comparison of the two modeling approaches for re-
sponse behavior, we also have concluded that the many-
to-many model has a shorter ART and almost the same
ASR under the probability distribution of response time.
For the other models, simply replacing the acceptance prob-
ability with response time probabilities can not improve the
performance. The reason of this is explained by following
two aspects: the one is that using benefits to solve the
dispatching problem will cause the decrease of SR in one
round, so more failed demands will need more than one
round to be accepted, resulting in longer ART; the second is
that when RT = 10 sec, the decrease of RT in one round is
too small to offset the increase caused by the first reason.

5 DISCUSSION

• Multi-choice Many-to-Many Dispatching Model. In our
current model, each supplier in each round can select one
demand at most, and a demand will be assigned to the
supplier with the shortest response time. Such setting can
reduce the response time of demands, but the failed sup-
pliers in this round can only wait for next round. In order
to reduce the idle ratio of suppliers, in real application, we
allow each supplier to select more than one demand in each
round. That is to say, if one suppliers rst selected demand
has been assigned to the other suppliers, he/she can still
continue to select other demands instead of being idle in
this round. Although our many-to-many dispatching model

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

only considers the rst response of each supplier, allowing
suppliers multi-choice can still improve the successful ac-
ceptance rate and reduce suppliers idle ratio in each round.
Researches on the multi-choice many-to-many model will
also be a promising direction.
• Fairness. In our dispatching model, we mainly focus

on the benefits of demands, which means the objective is to
make the demands to be accepted as quickly as possible.
In this situation, the supplier who answers first gets the
demand is optimal. In order to attract more suppliers to
join the platform, the platform should also consider the
benefit of suppliers. Inspired by [10], we use the exible UL
(maximum demands a supplier can received) to guarantee
the fairness among to some extent. For example, we give
higher UL to suppliers who did one or two trips only, and
set UL of the supplier who did 10 trips to a small value.
In this case, the supplier with low income today has higher
probability to get his/her favorite demands and accepted it
more quickly.

6 RELATED WORK

The related works mainly include response time prediction
and demand dispatching.
• Response time prediction. In terms of response time

prediction, two groups of work are closely related. One is
predicting the accurate response time, while the other is
predicting which time range/period it pertains to. Wang et
al proposed a prediction method for the response time based
on matrix factorization [16]. The response time in this work
is the same as the response time in our dispatching models.
However, the response time they predicted is a specific
value. It is difficult to utilize such a prediction result to
optimize the demand dispatching, because existing demand
dispatching models require the probability distribution as
input.

Most of the related researches which predict the response
time in a certain period are in the Question and Answers
(Q&A) communities. Response time in such a domain is
defined as the time it takes for a newly post question to
be answered [16]. In [17], the whole response time range
in Stack Overflow was divided into 25 time ranges using
K-means, and the authors predicted in which time range it
is. Avrahami et al. [18] generated various features from dif-
ferent settings in instant messaging, and applied a decision
tree classifier to predict whether a message will receive a
response within a certain period. Burlutskiy et al. formulat-
ed the prediction of response time in Stack Exchange as a
binary classification task [27], and a fixed time is considered
as the separation boundary of the whole response time
range. Mahmud et al. [28] developed different approaches
for training the model in order to predict the response times
of users to questions on Twitter within specific time periods.
• Demand dispatching. Representative works on de-

mand dispatching have been classified and described in
Section 2. Compared with the most related model [6], our
many-to-many model is a more generic dispatching ap-
proach that can achieve satisfactory performance no matter
what the ratio of demands to the suppliers is. Moreover, our
model takes the response time probabilities as input rather
than the binary acceptance probability in existing models.
This can reduce the average response time of the demands.

7 CONCLUSION

In this paper, we have proposed a novel many-to-many
demand dispatching model for autonomous on-demand
service. The model takes the probability distribution of the
supplier’s response time to the demand as input, and gen-
erates an optimal matching between the demands and sup-
pliers via an optimization solver. Experiment results on the
real-world data set from a large van-calling platform show
that the many-to-many model has 11.8% higher successful
acceptance rate than benchmark dispatching model. Espe-
cially when the suppliers are not sufficient relatively to the
demands, the many-to-many model outperforms the state-
of-art one-to-many model by 24.9%. In terms of average
response time, the many-to-many model achieves obviously
better performance than the benchmark models by 24.6%.
Moreover, by replacing the acceptance probabilities with
the response time probabilities as the input of demand
dispatching, the many-to-many model has remarkable de-
crease of 21.8% in the response time, while not affecting the
successful acceptance rate.

ACKNOWLEDGMENTS

This work is supported in part by National Natural Science
Foundation of China (No. 61972161), in part by the Funda-
mental Research Funds for the Central Universities, China
(No. 2018MS53), and in part by Hong Kong RGC General
Research Fund under Grant PolyU 152199/17E.

REFERENCES

[1] L. Xie and M. D. Ilic. Model predictive dispatch in electric energy
systems with intermittent resources. In 2008 IEEE International
Conference on Systems, Man and Cybernetics, pp.42-47, 2008.

[2] S. Muller, A. Klein and et al. Context-Aware Hierarchical Online
Learning for Performance Maximization in Mobile Crowdsourcing.
In IEEE/ACM Transactions on Networking, vol.26, no.3, pp.1334-1347,
2018.

[3] U. ul Hassan and E. Curry. A multi-armed bandit approach to
online spatial task assignment. In IEEE 11th International Conference
on Ubiquitous Intelligence and Computing (UTC), pp.212219, 2014.

[4] Y. Tong et al. Flexible online task assignment in real-time spatial
data. In Proceedings of the VLDB Endowment, vol.10, no.11, pp.1334-
1345, 2017.

[5] L. Zheng and L. Chen. Maximizing Acceptance in Rejection-Aware
Spatial Crowdsourcing. In IEEE Transactions on Knowledge and Data
Engineering, vol.29, no.9, pp.1943-1956, 2017.

[6] L. Zhang et al. A taxi order dispatch model based on combinatorial
optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp.2151-2159,
2017.

[7] Jung, J., Jayakrishnan, R. and Park, J. Y. Dynamic Shared-Taxi Dis-
patch Algorithm with Hybrid-Simulated Annealing. In Computer-
Aided Civil and Infrastructure Engineering, pp.275-291, 2016.

[8] M. Zeng et al. QoE-Aware Power Management in Vehicle-to-Grid
Networks: A Matching-Theoretic Approach. In IEEE Trans. Smart
Grid, vol.9, no.4, pp.2468-2477, July, 2018

[9] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen. Online mobile
Micro-Task Allocation in spatial crowdsourcing. In 2016 IEEE 32nd
International Conference on Data Engineering (ICDE), pp.4960, 2016.

[10] C. Ho and J. Vaughan. Online Task Assignment in Crowdsourcing
Markets. In Twenty-Sixth AAAI Conference on Artificial Intelligence,
pp.4551, 2012.

[11] P. Cheng, X. Lian, L. Chen, and C. Shahabi. Prediction-based task
assignment in spatial crowdsourcing. In 33rd IEEE International
Conference on Data Engineering, pp.9971008, 2017.

[12] H. To, C. Shahabi, and L. Kazemi. A server-assigned spatial
crowdsourcing framework. In Acm Transactions on Spatial Algorithms
and Systems, vol.1, no.1, pp.128, 2015.

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

[13] Cheng, Peng and Lian, Xiang and Chen, Zhao and Chen, Lei and
Han, Jinsong and Zhao, Jizhong. Reliable Diversity-Based Spatial
Crowdsourcing by Moving Workers. In Proceedings of the Vldb
Endowment, vol.8, no.10, pp.10221033, 2015.

[14] J. Vermorel and M. Mohri. Multi-armed Bandit Algorithms and
Empirical Evaluation. In Proceedings of the 16th European Conference
on Machine Learning, Berlin, Heidelberg, pp. 437448, 2005.

[15] A. Alshamsi, S. Abdallah, and I. Rahwan. Multiagent self-
organization for a taxi dispatch system. In 8th international con-
ference on autonomous agents and multiagent systems, pp.21-28, 2009.

[16] Y. Wang, J. Cao, L. He, W. Li, L. Sun, and P. S. Yu. Coupled
sparse matrix factorization for response time prediction in logistics
services. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp.939-947, 2017.

[17] P. Arunapuram, J. W. Bartel, and P. Dewan. Distribution, cor-
relation and prediction of response times in stack overflow. In
2014 International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), pp.378-387, 2014.

[18] D. Avrahami and S. E. Hudson. Responsiveness in instant mes-
saging: predictive models supporting inter-personal communica-
tion. In Proceedings of the SIGCHI conference on Human Factors in
computing systems, pp.731-740, 2006.

[19] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical
learning. In Springer series in statistics Springer, Berlin, vol.1, 2001.

[20] J. H. Friedman. Greedy function approximation: A gradient
boosting machine. In Annals of Statistics, vol.29, no.5, pp.1189-1232,
2001.

[21] X. He et al. Practical lessons from predicting clicks on ads at
facebook. In Proceedings of the Eighth International Workshop on Data
Mining for Online Advertising, pp.1-9, 2014.

[22] L. Breiman. Random Forests. In Machine Learning, vol.45, no.1,
pp.5-32, 2001.

[23] T. Bulmer, L. Montgomery, and D. Damian. Predicting Developers
IDE Commands with Machine Learning. In Proceedings of the
15th International Conference on Mining Software Repositories, pp.82-
85, 2018.

[24] Y. Jung. Multiple predicting K-fold cross-validation for model
selection. In Journal of Nonparametric Statistics, vol.30, no.1, pp.197-
215, 2018.

[25] L. Zheng, L. Chen, and J. Ye. Order dispatch in price-aware
ridesharing. In Proceedings of the VLDB Endowment, vol.11, no.8,
pp.853-865, 2018.

[26] J. Munkres. Algorithms for the assignment and transportation
problems. In Journal of the society for industrial and applied mathemat-
ics, vol.5, no.1, pp.32-38, 1957.

[27] N. Burlutskiy, A. Fish, N. Ali, and M. Petridis. Prediction of Users
Response Time in Q&A Communities. In 2015 IEEE 14th Inter-
national Conference on Machine Learning and Applications (ICMLA),
pp.618-623, 2015.

[28] J. Mahmud, J. Chen, and J. Nichols. When Will You Answer This?
Estimating Response Time in Twitter. In Seventh International AAAI
Conference on Weblogs and Social Media, 2013.

[29] K. T. Seow, N. H. Dang, and D.-H. Lee. A collaborative multiagent
taxi-dispatch system. In IEEE Transactions on Automation Science and
Engineering, vol.7, no.3, pp.607-616, 2010.

[30] M. Maciejewski. Online taxi dispatching via exact offline opti-
mization In Logistyka, vol.3, pp.2133-2142, 2014.

Lei Yang is currently an associate professor at
the School of Software Engineering, South Chi-
na University of Technology, China. He received
the BSc degree from Wuhan University, in 2007,
the MSc degree from the Institute of Computing
Technology, Chinese Academy of Sciences, in
2010, and the PhD degree from the Department
of Computing, Hong Kong Polytechnic Univer-
sity, in 2014. He has been a visiting scholar at
Technique University Darmstadt, Germany from
Nov. 2012 to Mar. 2013. His research interests

include big data analytic, edge and cloud computing, Internet of Things
with particular focus on task scheduling and dispatching.

Xi Yu is a 2nd-year master student in the School
of Software Engineering, South China University
of Technology, China. He got his BSc degree
from Southern Medical University, China, 2017.
Since September 2017 he has been a post-
graduate student working in the laboratory of
mobile cloud computing. His research interests
include cloud computing and data mining.

Jiannong Cao is a Chair Professor of Distribut-
ed and Mobile Computing of the Department of
Computing at The Hong Kong Polytechnic Uni-
versity. He is also the director of the Internet
and Mobile Computing Lab in the department
and the director of University Research Facility
in Big Data Analytics. He received the B.Sc.
degree in computer science from Nanjing Uni-
versity, China, in 1982, and the M.Sc. and Ph.D.
degrees in computer science from Washington
State University, USA, in 1986 and 1990 respec-

tively. His research interests include parallel and distributed computing,
wireless networks and mobile computing, big data and cloud computing,
pervasive computing, and fault tolerant computing. He has co-authored
5 books in Mobile Computing and Wireless Sensor Networks, co-edited
9 books, and published over 500 papers in major international journals
and conference proceedings. He is a fellow of IEEE, a member of ACM,
a senior member of China Computer Federation (CCF)

Wengen Li received the B.Eng. degree and
Ph.D. degree in computer science from Tongji U-
niversity, Shanghai, China, in 2011 and 2017, re-
spectively. In addition, he received a dual Ph.D.
degree in computer science from the Hong Kong
Polytechnic University in 2018. He is currently a
Postdoctoral Fellow of the Department of Com-
puting at the Hong Kong Polytechnic Universi-
ty. His research interests include spatial data
management, and big data analytics for human
mobility and urban logistics. He is a member of

China Computer Federation (CCF) and a member of IEEE.

Yuqi Wang received the B.Sc. degree in com-
puter science and technology from Xiamen U-
niversity, China, in 2011, the M.Sc. degree in
computer science and technology from Zhejiang
University, China, in 2014, and the Ph.D. degree
in computer science from the Hong Kong Poly-
technic University in 2018. Dr. Wang currently
works in Fujian Nebula Big Data Application Ser-
vice Co., Ltd. His research interests include data
mining, machine learning and urban computing.

Michal Szczecinski received the Master de-
gree in IT and Econometrics from University of
Szczecin in Poland. He is Head of Analytics
at GoGoVan. His interest is in building strong
analytics capability and using data science to
contribute value to the business. Currently he
focuses on optimization projects in logistics in-
dustry. Previously, he has worked in top profes-
sional services, technology and mobile gaming
companies.

