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Sustainable and Efficient Data Collection from
WSNs to Cloud

Tian Wang, Yang Li, Guojun Wang, Jiannong Cao, Md Zakirul Alam Bhuiyan, Weijia Jia

Abstract—The development of cloud computing pours great vitality into traditional wireless sensor networks (WSNs). The integration
of WSNs and cloud computing has received a lot of attention from both academia and industry. However, collecting data from WSNs to
cloud is not sustainable. Due to the weak communication ability of WSNs, uploading big sensed data to the cloud within the limited time
becomes a bottleneck. Moreover, the limited power of sensor usually results in a short lifetime of WSNs. To solve these problems, we
propose to use multiple mobile sinks (MSs) to help with data collection. We formulate a new problem which focuses on collecting data
from WSNs to cloud within a limited time and this problem is proved to be NP-hard. To reduce the delivery latency caused by
unreasonable task allocation, a time adaptive schedule algorithm (TASA) for data collection via multiple MSs is designed, with several
provable properties. In TASA, a non-overlapping and adjustable trajectory is projected for each MS. In addition, a minimum cost
spanning tree (MST) based routing method is designed to save the transmission cost. We conduct extensive simulations to evaluate
the performance of the proposed algorithm. The results show that the TASA can collect the data from WSNs to Cloud within the limited
latency and optimize the energy consumption, which makes the sensor-cloud sustainable.

Index Terms—sensor-cloud, mobile sinks, data delivery, energy consumption, sustainability.
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1 INTRODUCTION

NOWADAYS, the WSNs have been applied in various
areas, such as civilian, industry and military (e.g.,

health monitoring [1], forest fire detection [2], target tracking
[3], battlefield surveillance [4], etc.). Sensors in these appli-
cations perform diverse functionalities, including data sens-
ing, data acquisition, network security maintenance, and
seamlessly monitoring the flow in the network. However,
the WSNs are faced with two challenges. On the one hand,
the sensors in WSNs are limited in battery and storage
ability, which makes it difficult for sensors to be sustainable
[5]. On the other hand, the sensors frequently produce
intensive data which need to be collected and processed
efficiently within a specific time. It is also a challenge for
WSNs.

Fortunately, cloud computing technology can be devel-
oped to work as a strong backbone for WSNs [6], [7], [8].
With the cloud computing paradigm adopted in WSNs, the
performance of WSNs can be improved, such as energy
consumption, computing latency, service quality, etc [9]. The
birth of sensor-cloud integration is an inevitable trend [10],
[11]. In the sensor-cloud integration, users do not need to
own sensors. They can simply rent the sensing services.
This mechanism significantly reduces the cost of ownership
and enables the usage of large scale sensor networks to
become affordable. Beyond that, one physical sensor can
be projected as multiple services, which improves the ef-
ficiency of sensor usage. The nature of sensor-cloud enables
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resource sharing. Taking the remote health care application
for instance [12], patient health data is collected at remote
locations by using the health kits. The health records along
with patients’ basic information are transmitted to cloud in
a timely manner, so that the doctor can give a diagnosis to
patient remotely based on health records with the help of
cloud. This kind of application improves quality of life for
people who live in the poor living conditions.

However, due to the weak transmission ability of WSNs,
collecting the sensed data from WSNs to cloud within a
limited time becomes a bottleneck [13], [14]. Note that the
data collection time is important for some delay-sensitive
applications. In the location-based application, if the user’s
position cannot be uploaded to cloud on time, the location-
based service will become failure. For example, in forest fire
monitoring application, a large number of dispersed sen-
sors are deployed to continuously monitor the temperature,
humidity and gases of forest. As shown in the Figure 1,
when the sum of data collection time (CT) and feedback
time (FT) is bigger than optimal rescue time, the best rescue
time would be missed. The exceeding time (ET) need to be
eliminated. Therefore, it is necessary to design a scheme
for data collection to improve the throughput of WSNs in
sensor-cloud integration.

On the other hand, various mobile elements, such as
mobile sensor, mobile agent (MA), mobile sink (MS), have
been deployed to collect data in WSNs in recent works [15],
[16], [17]. Sensors transmit data to mobile elements directly
or through less hops wireless transmission to save energy.
For example, in [17], the MA is used to help with forest
fire detection. Compared with MA, mobile sink can move
to collect data and upload data to cloud directly. Therefore,
we use multiple mobile sinks to help with data collection
in this paper. For one thing, the MSs have a stronger
transmission ability to supplement the communication bot-

The following publication T. Wang, Y. Li, G. Wang, J. Cao, M. Z. A. Bhuiyan and W. Jia, "Sustainable and Efficient Data Collection 
from WSNs to Cloud," in IEEE Transactions on Sustainable Computing, vol. 4, no. 2, pp. 252-262, 1 April-June 2019 is available  
at https://doi.org/10.1109/TSUSC.2017.2690301.

This is the Pre-Published Version.

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.



2

ORT CT ETFT

Fig. 1: The influence on forest fire detection brought by
delivery delay. When the sum between data collection time
(CT) and feedback time (FT) is bigger than optimal rescue
time (ORT), the ORT would be missed.

tleneck of WSNs. For another thing, the MSs contribute to
balance the forward load of each sensor, which improves the
dependability and prolong the lifetime of WSNs. However,
due to the limited velocity of mobile sinks, they usually cost
lots of time to tour a large sensing field, which extends the
data collection time [18].

In this paper, we propose to use MSs helping with
data collection in sensor-cloud integration. A time adaptive
schedule algorithm TASA is designed to reduce data collec-
tion time and make system sustainable. In the TASA, the
monitoring area is divided into several sectors equally and
each MS is responsible for one sector. In each sector, part
of sensors are selected as polling points which construct
the trajectories of MSs and all the trajectories are non-
overlapping with each other. Besides, the MST is adopted
to design transmission route for sensors to save energy con-
sumption. Beyond that, we design two progressive schedule
schemes to adjust data collection time and save energy. One
focuses on reducing MS’s moving time and the other aims
at balancing load of each MS. The main contributions of this
paper are summarized as follows:

1. Compared with traditional data collection problem
in WSNs, the problem of data collection in sensor-cloud
integration is more complex. We propose delay constrain
problem caused by limited transmission ability of WSNs in
sensor-cloud integration.

2. We use multiple MSs to improve the sustainability of
sensor-cloud and design a time adaptive algorithm aiming
at collecting data from WSNs to Cloud within a specific
time, with several provable properties. Beyond that, the en-
ergy consumption of sensors is optimized based on property
of MST.

3. We conduct extensive simulation experiments to eval-
uate the performance of the proposed algorithm and the ex-
perimental results validate the effectiveness of our proposed
algorithm.

The remainder of this paper is organized as follows:
Section 2 reviews research related to the work presented
herein. Section 3 discusses modeling of our study. The
design details for our proposed time adaptive schedule al-
gorithm (TASA) is described in section 4. Section 5 presents
the analysis of our proposed algorithm. Section 6 shows
simulation results, and the last section concludes our work.

2 RELATED WORK

The proliferation of the implementation for low-cost, low-
latency, multiple functional sensors has made WSNs a
prominent paradigm to monitor the physical world. When
the wireless sensor network is deployed, it had been found
that there are a mass of data need to be collected. In the
traditional WSNs, sensors transmit data to the static sink
through multiple hops wireless communication [19], [20].
However, due to vast data transmission work, the sensors
that close to the static sink representatively deplete their
energy. With the increase of disable nodes, the network
connectivity and coverage rate will decrease. In [21], Wu
et al. designed energy efficient protocols that sensors con-
sume different energy in different radio states (transmitting,
receiving, listening, sleeping, and being idle). They proved
that the proposed method considerably reduces energy
consumption. In [22], Wang et al. presented an adaptive
data gathering scheme by compressive sensing times for
wireless sensor networks. They introduced autoregressive
(AR) model into the reconstruction of the sensed data. Their
extensive test of real data sets and experimental results
validate the efficiency and efficacy of the proposed scheme.
Although, both two methods reduced energy consumption
to some extent, they did not change the model that the
sensors which close to sink exhaust energy firstly and lead
a short lifetime of WSNs.

With the development of WSNs, the usage of mobile
elements are proposed in recent years [23], [24], [25]. Sensors
transmit data to mobile elements directly or through less
hops wireless transmission, thus sensors can save energy
and WSNs achieve a longer lifetime. Two typical mobile
elements, mobile agent (MA) and mobile sink, are applied
continually. Mobile agent is the device moving to collect
sensing data and returning to sink [26], [27], [28]. For
example, in [17], the MA is used to help with forest fire
detection. The paper introduces a framework equipped with
MAs to accelerate detection rate of forest fire with the min-
imum consumption of energy. Compared with MA, mobile
sink can also move to collect sensed data but not need to
return to station because it is equipped with the ability
of uploading data to cloud, which reduces data collection
time. In [29], Tunc C et al. proposed Ring Routing, a novel,
distributed, energy efficient mobile sink routing protocol,
suitable for time-sensitive applications, which make use of
mobile sink to provide load-balanced data delivery and
achieve uniform energy consumption across the network.
In [30], Arquam M et al. proposed a routing algorithm
with sink mobility in hierarchical WSNs to improve net-
work lifetime by eliminating energy holes. They considered
upper and lower bound on delay while optimizing sojourn
locations and sojourn time. In [31], Hou G et al. designed an
efficient path algorithm VG-AFSA based on Virtual Grids
to meet most applications’ requirements for data latency.
They divided nodes into groups with virtual grids to scale
down the space of searching optimal set of visited nodes.
Their results showed that the algorithm performing well
energy effectiveness. However, these researches main focus
on the energy efficient problem and ignore the delivery
latency. Some researches even sacrifice the delivery time to
save energy. On the other hand, these solutions are based
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on single mobile sink neglecting the limited throughput of
WSNs, which are not applicable for the networks with large
number of sensors and stringent time constrain.

In order to address these problems, methods with multi-
ple mobile sinks are designed, which focuses on the issue of
multiple mobile sink scheduling to realize limited delay and
longer lifetime of large WSNs [32], [33], [34]. For example,
in [32], Yi Fan Hu et al. designed an efficient routing re-
covery protocol with endocrine cooperative particle swarm
optimization algorithm (ECPSOA) to establish and optimize
the alternative path, which improved the routing protocol
robustness and efficiently. Meanwhile, the method reduced
the communication overhead and the energy consumption.
In [35], Di Francesco M et al. used multiple mobile sinks
to assist in data collection. Their results showed that the
method can increase the network connectivity and reliabil-
ity, reduce cost, and decrease energy consumption of indi-
vidual nodes. Both two papers mainly prolong the network
lifetime regardless of the delay constrain. How to balance
the network lifetime and transmission delay becomes a key
problem. To get the maximum benefit with the minimum
cost, it is essential to design a schedule scheme for multiple
mobile sinks to collect data in an efficient manner. In [36],
Wichmann et al. focused on using faster mobile sinks to
reduce the physical collection delay. However, such mobile
sinks are often motion-constrained and require smooth path
which cannot fits all kinds of application. Moreover, current
methods merely consider the data collection from sensors to
sink and cannot be applied to the sensor-cloud environment
[37]. To the best of our knowledge, we are the first one to
consider both delivery delay and energy consumption in
sensor-cloud integration [38]. However, our former paper
did not deal with the problem that the number of sensor in
each sector may be different. In this paper, the algorithm is
improved with an additive schedule scheme. No matter the
initial number of sensors in each sector, if one of MSs cannot
meet the time requirement, some sensors in this sector will
change their routes to reduce the load of MS. This method
increases the throughput of sensor-cloud integration as well.

3 PROBLEM DEFINITIONS AND MODELS

3.1 Problem Definitions
In this paper, we assume the WSN consists of N sen-
sors, denoted by a set S = {S1, S2, ..., SN}. The set K =
{MS1,MS2, ...,MSM} represents M mobile sinks (MSs). For
any Si ∈ S, the sensing data rate is C bytes/s, the single
hop latency is t s and the communication radius is R m.
Any MSi ∈ K can receive data from sensors and upload it to
cloud. The throughput from sensors to MS is D byte/s, and
the uploading rate from MS to cloud is Q byte/s. The veloc-
ity of MS is denoted by v m/s. We focus on the problem of
Data Collection from WSNs to Cloud (hereafter referred to
as DCWC problem). The goal of this paper aims at reducing
the delivery time to a limited time. When the delivery time
satisfies the requirement, the energy consumption will be
optimized.

A simple example is illustrated in Figure 2, where four
mobile sinks are deployed to collect data from WSN to
cloud. The circles and small cars stand for fixed sensors
and mobile sinks, respectively. The routes of mobile sinks

are shown as dotted line. In Figure 2(a), four routes have
the overlapping parts and the deeper sensor’s color is, the
sensor is visited by more MSs. This phenomenon means that
delivery time could be optimized. Then the route of each
MS is adjusted in Figure 2(b). As we can see, each MS is
responsible for fours sensors. What’s more, each sensor is
visited only once and the route length of each MS is reduced.
Thus, it is essential to design a schedule algorithm to reduce
data collection time in sensor-cloud integration.

Cloud

Mobile sink

Sensor

Upload

(a)

Cloud

Upload

(b)

Fig. 2: An example of data collection from WSNs to cloud
with multiple mobile sinks. (a) Four mobile sinks are de-
ployed to collect data from WSN to cloud. The route of MSs
are random. the sensors’ color represents the number of MS
visiting this sensor. The deeper the color is, the more MSs
visit this sensor.(b) The route of MSs are adjusted and all the
sensors are visited by only one MS.

We have the following theorem regarding to the com-
plexity of the DCWC problem:
Theorem 1. For the DCWC problem, the problem of design-

ing the optimal algorithm is a NP-hard problem

Proof of Theorem 1: We prove this theorem by showing
a special case of DCWC, in which M=1, the sensor transmis-
sion radius is zero and uploading time is zero. In this case,
the DCWC is equivalent to find a shortest path visiting all
of the given sensors. Note that in order to minimize the
path length, any optimal solution would not visit the same
sensor twice, otherwise we can make it shorter by using
triangular inequality. Therefore, finding an optimal solution
of this special case of DCWC is equivalent to find an optimal
solution of Hamiltonian path problem (i.e., finding a path to
visit all sensors with the minimum length), which is a well-
known NP-hard problem.

3.2 Network Model

We model the connectivity of sensors in WSN as an
unoriented-weighted graph G = {Vse,Ese}, where Vse =
S,E ∈ {Vse × Vse} is a set of edges, where Ei,j ∈ Ese

is the edge if the distance of di,j between Si and Sj is
smaller than R. Then the graph G is transformed to a
Minimum Cost Spanning Tree MST = {Tnode,Tedge}, where
Tnode = Vse and Tedge ⊆ Ese. Each mobile sink will visit
some selected sensors called Polling Points (PPs), denoted
by {PP ⊆ S|P1,P2, ...,Pk}. Through visiting all the PPs, the
sensory data in WSN would be collected and uploaded to
cloud. With multiple mobile sinks synchronously working,
the network delivery delay can be estimated as follow:
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Tnet = Max {TMS1 ,TMS2 , ...,TMSM } (1)

where TMSi is the delivery time of MSi, and the network
delivery time is the max time among all MSs. As for each
individual TMSi , it consists of four parts formulated as
follows.

Tt =

∑s
j=1 C

D
(2)

Td =

∑s
j=1 C

Q
(3)

Th =
s∑

j=1

hj ∗ t (4)

Tm =
Ltsp

v
(5)

Tt is the transmission time from sensor source to sink. Td is
the uploading time from sink to cloud. Th is the multiple-
hops delay and Tm is the traveling time of MS. In all
arithmetic expression, s is the number of sensors assigned to
MSi. The variable hj is the amount of hops from sensor Sj

to MSi and Ltsp is the length that MSi traveled. We assume
each MS can upload data to cloud at any time. Therefore,
each TMSi can be calculated as formula 6.

TMSi =

∑s
j=1 C

D
+

s∑
j=1

hj ∗ t+ Max(

∑s
j=1 C

Q
,

Ltsp

v
) (6)

Based on formula 6, we can conclude that hj , Ltsp and
s are the main external factors affecting TMSi , which moti-
vates us to design the algorithm in next section. Note that
sensory data can be uploaded when MS is moving according
to existed routing algorithm [39].

4 TASA: TIME ADAPTIVE SCHEDULE ALGORITHM

4.1 Overview of the Algorithm

The design of algorithm can be divided into three sub prob-
lems: first, how to distribute task to each MS reasonably; sec-
ond, how to design the delivery time adaptive mechanism;
third, how to reduce the energy consumption when delivery
time meets the requirement. In order to address these issues,
the solution has corresponding three sub algorithms. In
first sub algorithm, called partition and delivery design
algorithm (PDDA), the monitoring area is partitioned off
M sectors equally and each MS is responsible for one sector.
In each sector, a minimum cost spanning tree is constructed
and the edges o f tree are the delivery routes of sensors.
As for second sub algorithm, called polling point selection
algorithm (PPSA), some sensors are selected to serve as
polling points (PPs) in each sector. The PPs in the same
sector constitute the trajectory of MS. In third algorithm,
called time schedule algorithm (TSA), the number of PP is
adjusted based on delivery time and the number of sensor
in each sector will be adjust to be balance.

Figure 3 shows the main process of TASA. The rectangle
area represents the coverage area, and the dotted black circle
is the circumscribed circle of rectangle in Figure 3(a). The

area is divided into three sectors equally, denoted byMS1,
M2, and M3. Three MSTs are generated in each sector. The
edges of MSTs are delivery paths of sensors. In Figure 3(b),
parts of sensors are selected as PPs represented by the
gray star nodes. The black dotted lines among stars are
the trajectories of MSs. The dotted big arrows means that
sensors deliver data to MSs when MSs rest at PPs. When
delivery time cannot satisfy the requirement, the trajectory
of MS will be adjusted by reducing the number of PP. In
Figure 3(c), some sensors no longer serve as PPs and they
deliver data to MS via multiple hops, where the dotted
small arrows mean data transmission between sensors and
sensors. As only one PP left in each sector, MS stays at this
PP. All sensors send their data to MS via multiple hops
transmission. Considering the different number of sensors
in each sector, we design a balanced strategy to adjust the
task allocated in each sector.

4.2 PDDA: Partition and Delivery Design Algorithm
This sub algorithm is the first part of TASA, which focuses
on network partition and delivery route design. In order to
simplify partition, the monitoring area is partitioned based
on degree. More specifically, we use a min rectangle to
include all sensors. However, its difficult to partition the
rectangle off M region with same perimeter. So we partition
the coverage area based on its circumscribed circle. Cover-
age area is equally divided into M sectors with central angle
2π
M . Second, the connectivity among sensors in each sector

constitutes M weighted graphs {GMSi |i = 1, 2, ...,M}. Be-
sides, the weight of edge can be calculated by formula 7.

Ei,j =
2

√
(Si.x − Sj .x)2 + (Si.y − Sj .y)2 (7)

Si.x, Si.y represent the abscissa and ordinate of sensor, re-
spectively. If the value of edge Ei,j is larger than radius
R, the weight of this edge would be set as infinity. Then
based on Prim algorithm, M weighted graphs are trans-
formed to M minimum cost spanning trees, denoted as
{Msti|i = 1, 2, ...,M}. According to the properties of MST,
when delivery time TMSi is smaller than the latency require-
ment Tspe, the transmission consumption of sensors is the
minimum.

4.3 PPSA: Polling Point Selection Algorithm
The polling points make it possible for MS to visit parts of
sensors collecting all sensory data. A basic election principle
can be described as follow. When Sj is within the transmis-
sion range of Si, MS can stay at Si to collect both Si and Sj .
Consequently, MS can visit part of sensors to complete all
data collection.

A reasonable selection of PP can reduce the moving time
of MS. In the PDDA, the sensors which construct a MST can
be classified into three types: root node, potential PP node
and leaf node. Root node is the start point of MS. Potential
PP node is kind of sensor which is connected with more
than one sensor directly. Leaf node is the sensor which is
connected with only one sensor. In Figure 4(a), it is easy
known that MS can visit S6, S2, S0 and S4 to gather all
sensory data, then these four sensors are selected as PP like
the gray nodes. The dotted line is the trajectory of MS. On
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M2
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M3

M2

PP

sensor

(a) (b) (c)

M1

M3

M2

sensor to MS

sensor to sensor

Fig. 3: The basic idea of TASA algorithm.(a) It shows the partition in monitoring area, where the dotted circle is the
circumcircle of rectangle and the dotted lines in the rectangle represent the boundary. The boundary is designed based on
the degree in circumcircle. (b) Some sensors are selected as PP and all PPs construct the trajectory of MS like the dotted
line among stars. (c) Some sensors are no longer PP and the trajectory of MS is redesigned.

Algorithm 1 PDDA: Partition and Delivery Design Algo-
rithm
Input: each sensors location (Si.x, Si.y), the number of

sensors is N. Two sets Tnode = Φ,Tedge = Φ, represent
the nodes and the edge of MST, respectively. The Vsec is
a set of sensors in same sector;

Output: M graphs G (VG,EG) and MSTs, denoted as
T (VT ,ET );

1: while i, j are smaller than N do

2: Ei,j =
√
(Si.x − Sj .x)

2
+ (Si.y − Sj .y)

2;
3: if Ei,j > R then
4: Ei,j = ∞;
5: end if
6: end while
7: while Tnode ̸= Vsec /*Prim Algorithm*/ do
8: find MinEu,v, u ∈ Tnode, v ∈ S;
9: if v /∈ Tnode then

10: Tnode = Tnode ∪ v;
11: Tedge = Tedge ∪ Eu,v ;
12: end if
13: end while

one hand, the trajectory of MS can be optimized by greedy
algorithm. On the other hand, when MS rests at PP, the leaf
nodes deliver data to MS through single hop to realize the
minimum energy consumption.

Figure 4(b) presents a physical storage structure of MST
called children linked list. It shows a clear relationship
among sensors in MST. S4 is the root node. S6, S0, S2 are
the potential PP nodes. S1, S3, S5, S7, S8, S9 are the leaf
nodes.

4.4 TSA: Time Schedule Algorithm

In before two stages, we have designed an initial trajectory
for each MS. It is well-known that the employment of mobile
sinks can balance the load of sensors and prolong network
lifetime. However, due to limited speed of MS, it always
wastes lots of time for moving. To solve this problem,
two kinds of schedule schemes are designed to adjust the
delivery time until delay requirement are satisfied.

S1

S2

S3

S4

S5

S6

S7

S8

S9

S0

1

0

2

3

4

5

6

7

8

9

3 5

6

0 1 2

7 8 9S6

S1

S3

S2

S5

S0

S7 S9

S4

S8

(a) (b)

Fig. 4: The strategy of PP selection. (a) In MST, the sensor
which connects with more than one other sensor is selected
as PP like the gray nodes. (b) This is a physical structure
showing a clear relationship among sensors.

Schedule scheme 1. In the initial phase, all sensors de-
liver data to MS via single hop like the white nodes in
Figure 5(a). The gray nodes are PPs, and the dotted lines
are trajectory of MS. Then we calculate collection time TMSi

by formula 6. If TMSi is greater than Tspe, some PPs will
be removed from the set of PP and added into the general
sensors set. The PP which is connected with fewer sensors
is chosen firstly, such as S4 in Figure 5(b). Its child node
S2 sends data to MS via S4 with two hops. Moreover, the
trajectory of MS will be redrawn after a round of selection.
Until the delivery time meets requirement, the trajectory of
MS is fixed. When only one PP left in sector, the moving
time of MS is zero, and the delivery time is sum of multiple
hops delay and uploading time. As shown in Figure 5(c), the
dotted arrows represent the order that PP becomes general
sensor.

Schedule scheme 2: Different from schedule scheme 1,
we consider the factor that the number of sensors is different
in each sector. When the latency demand Ttsp is extreme
small, parts of sectors may not satisfy the time requirement.
Moreover, the network delivery time is the time when the
last sensor is collected as shown in formula 1. Consequently,
this schedule algorithm aims to balance task of each MS,
which can be described in following four steps.

1) The sectors are classified into two sets: A and B,
where set A includes the sector which delivery time
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sensor to sensor

sensor to MS

trajectory of MS

Fig. 5: The schedule process of TSA. (a) It’s the initial status of schedule scheme 1. (b) The PP S2 is transformed to general
sensor first. (c) It shows the order that which PP is transformed to be generals sensor.

Algorithm 2 PPSA: Polling Point Selection Algorithm

Input: The MST T = (Tnode,Tedge); root node:u; Vi repre-
sents the set of sensor in sector i; Vis represents the set
of sensor which is visited;

Output: the set of PP, denoted by Ξ = P1,P2, ...,Pk and the
visiting order of PPs, denoted by Λ.

1: Vis=u;
2: while Vis ̸= Vi do
3: if Eu,v ∈ Tedge and v ̸= Vis then
4: Vis = {Vis ∪ v};
5: if sensor v connects with more than one sensor

then
6: Ξ = Ξ ∪ v; /*sensor v is selected as PP*/
7: end if
8: end if
9: end while

10: while the set Λ ̸= Ξ do
11: next PP = Min (emphSu 7−→ Sw);/*find the next

minimum path*/
12: Λ = {Λ ∪ Sw};
13: updating the start node as Sw;
14: end while

is smaller than Tspe. On the contrary, the set B
includes the sector which delivery time is larger
than Tspe.

2) In set B, the sector with max TMSi is selected as Start
Sector (SS). In set A, the sector with minimum TMSi

is selected as End Sector (ES).
3) The sensor from SS which is closest to ES delivers

its data to MS in ES. In addition, the delivery time of
both SS and ES are updated. Then step 1 is repeated.

4) Iterate step 2 and step 3 until set A or set B is Null.

5 PERFORMANCE ANALYSES

We have proved several properties of the proposed algo-
rithm. The notations that will be used in this part are
summarized in Table 1.
Theorem 2. In the worst case, the travel distance of each MS

satisfies this inequation: Ltsp ≤
(
1 +

π

M

)
×
√

L2 + H2.

Algorithm 3 TSA: time schedule algorithm

Input: The time requirement Tspe; the delivery time of each
sector, denoted by {TMS1 ,TMS2 , ...,TMSM }; the set of
PP, Ξ = {PP1,PP2, ...,PPk};

Output: the delivery route of each sensor and the trajectory
of each MS

1: while i ≤ M do
2: while TMSi > Tspe do
3: PPi = Min degree {PP1,PP2, ...,PPk};
4: Ξ = Ξ − PPi;/*the PPi; is no longer polling

point*/
5: the trajectory of MS is reprojected;
6: end while
7: end while
8: the sectors are divided into two sets, named A and B;
9: if TMSi > Tspe then

10: put sector i into set A
11: else Put sector i into set B
12: end if
13: while A ̸= ∅ and B ̸= ∅ do
14: Selecting sector SS = MaxTMSx {A} and ES =

MinTMSy {B};

15: sensor
{

Sξ ∈ SS|Sξ
min−−−→ ES

}
changes its route and

deliver data to the MS responsible for ES
16: sets A and B
17: end while

Proof of Theorem 2: Assuming that the sensor coverage
area is a rectangle L∗H and its circumscribed circle is shown
in Figure 6. The radius of circle is R =

√
L2 + H2/2. The

circle is divided into M sectors equally based on degree,
and the central angle of each sector is θ = 2 ∗ π/M. The
arc of each sector is τ = θ ∗ R. The perimeter of each sector
is DistL = 2 ∗ R + τ . In the worst case, MS have to visit
every sensor and the sensors are distributed at margin of
sector. Consequently, the max travel distance of MS is the
perimeter of sector, namely Ltsp ≤

(
1 +

π

M

)
×

√
L2 + H2.

This property gives the moving distance of MS an upper
bound.
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TABLE 1: List of notations

Notation Meaning
M Number of MSs
n Number of sensor in WSN
R The transmission radius of sensor

Ltsp The max distance that MS traveled
θ The central angle of each sector
τ Arc of each sector

DistL Perimeter of each sector
Tspe The time requirement
Tnet The delivery time of network

{µ1, µ2, ..., µM} µi represents the set of sensors in δi
{δ1, δ2, ..., δM} δi represents the ith sector
{ϑ1, ϑ2, ..., ϑM} ϑirepresents the set of PP in sector δi
{γ1, γ2, ..., γM} γi represents sensors in sector δi

Tideal Theoretical optimum delivery time
ē Energy consumption for unit length

edge<i,j> The weight between Si and Sj

Tinit The delivery time in PPSA
Einit The energy consumption in PPSA

Ei The energy consumption of δi
T̈ The actual delivery time
Ë The actual energy consumption

R=sqrt (L2+H2 ) / 2

=2π/M

R: radius : degree : arc length

Fig. 6: The coverage area is divided into M sectors

Theorem 3. In the worst case, the time complexity of TASA
is O

(
n3
)
, where n is the number of sensors.

Proof of Theorem 3: In the first sub algorithm PDDA,
the coverage area is divided into M sectors and its time
complexity is O (1). Then based on Prim algorithm, MST is
generated in M sectors, and its time complexity is M*O

(
n3
)
.

In general case, M is smaller than n. Now, we set M equal
to n, so the time complexity is O

(
n3
)
. In the second sub

algorithm PPSA, the time complexity of electing PP is O (n),
but time complexity of designing the trajectory of MS based
on TSP is O

(
n3
)

in the worst case. The third sub algorithm
TSA consists of two parts. In the first part, assuming that the
sensor sets {µ1, µ2, ..., µM} all are PPs, then a PP becomes
general sensor each round. And the work will be repeated
for M times because of M sectors, so the complexity of
this part can be calculated by

∑M
1 µi which equals to n,

namely, O (n). For the second parts, assuming that one
sensor changes its transmission route each time, and all
the sensor will do this step, so the complexity is O (n).
Therefore, the time complexity of TASA is O

(
n3
)

in the
worst case.

Theorem 4. In general value of Tspe, the TASA can realize
the adaptive delivery time via schedule scheme 1, and
if the time requirement Tideal almost equals to Tspe, the
delivery time can be optimized by schedule scheme 2
that each MS is responsible for same number of sensors.
For the time requirement Tspe which is smaller than
Tideal, the delivery time is nearly the minimum in each
sector.

Proof of Theorem 4: Assuming that sensors in moni-
toring area is denoted by S = {µ1 ∪ µ2 ∪ ... ∪ µM}, where
µi represents a set of sensors in sector δi. θi is a set of the
polling points in sector δi, and the γi is a set of general
sensors in sector δi. The relationship among µi, θi, γi is
denoted by µi = θi + γi. Based on these notations, the
delay model in formula 6 can be simplified further. At the
beginning of TSA, all sensors deliver data to MS via single
hop, so hi(j = 1, 2, ..., N) equals to 1 and the sum of

∑s
j=1 C

equals to γ∗C. Ltsp is the travel distance of visiting all PPs in
θi, and we assume that MS can upload data to cloud when
MS is moving. Therefore, the delivery time of MS can be
simplified as equation 8.

TMSi =
γi ∗ C
D

+ γi ∗ t + Max(
Ltsp

V
,
γi ∗ C
Q

) (8)

As the delivery time cant meet application requirement,
the TSA would adjust the path of MS to reduce moving time.
For the first case, the time constraints Tspe is smaller than
Tideal. Until the TMSi is smaller than Tspe, parts of PPs are
transformed to general sensors and both two sets γi and θi
are not null. In this situation, TMSi is smaller than Tspe and
hj equals to 1 always. Furthermore, when Tspe nearly equals
to Tideal, the goal of problem can be regarded as minimizing
the delivery time. Therefore, the PP would be fixed in each
sector and most of sensors deliver data to MS via multiple
hops such as Figure 5c, where θi = 1, µi = γi+1. One thing
to note is that Ttsp equal to zero, then delivery time can be
showed like equation 9.

TMSi =
γi ∗ C
D

+
γi ∗ C
Q

+

γi∑
j=1

hj ∗ t (9)

According to the analysis of formula 9, it is obvious that
γi is the key factor influencing delivery rime. Through the
schedule scheme 2 in TSA, the final status is that all the
MSs are responsible for same number of sensors, denoted
as γ1 = γ2 = ... = γM . Therefore, if Tspe nearly equals to
Tideal or Tspe is much smaller than Tideal, the theorem 4 is
validated, denoted as TMSi ≈ Tideal.

Theorem 5. If the solution for designing the trajectory of MS
is the optimal in PPSA, the sensor energy consumption
is the minimum.
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Proof of Theorem 5: The initial delivery time and net-
work energy consumption can be calculated by equation 10-
11.

Tinit =

∑s
j=1 C

D
+

s∑
j=1

hj ∗ t+ Max(

∑s
j=1 C

Q
,

Ltsp

v
) (10)

Einit = ē ∗
M∑
i=1

∑
Tedge (11)

Based on the property of MST, the sum length of edges
is the minimum in each sector, namely

∑
Tedge is mini-

mum. Therefore, at the initial stage, the energy consump-
tion Einit is the minimum in each sector. Now giving a
PP set θk = {PP1, PP2, ..., PPi, ..., PPr}, the child nodes
of PPi is denoted as {Sa, Sb, ..., Sk}. △t is the reduced
time and △E is the increased energy consumption via
TSA. The travel distance of MS will decrease, denoted by
△L = Ltsp −

∑i+1
j=i−1 di,j (j ̸= i), where di,j is the distance

between PPi and PPj . The hop will increase, denoted as
△h =

∑
hw (w = Sa, Sb, ..., Sk). The transmission distance

of sensors will increase, denoted as L̄ =
∑△h

i=1 li, where
the notation li is the length of each hop. Consequently,
the decreased delivery time can be denoted as △T =
△L
v

− △h ∗ t. The increased energy consumption can be

denoted as △E = ē∗
∑△h∗t

i=1 . The relationship between actual
energy consumption Ë and actual delivery time T̈ satisfy the
equations 12-13.

T̈ = Tinit−
Ltsp −

∑i+1
j=i−1 di,j
v

+
∑

hw∗t,w = Sa, Sb, ..., Sk

(12)

Ë = Einit + ē ∗
△h∗t∑
i=1

,w = Sa, Sb, ..., Sk (13)

Based on theorem 4, the delivery time T̈ can be op-
timized. When solution for designing trajectory of MS in
PPSA is optimal, the value of

∑
hw is optimal. According

to the property of MST, the value
∑

Li is the minimum and
the value of △E is the minimum in each sector. Therefore,
the value of Ë is optimal with the minimum value of Einit.

6 EVALUATION

6.1 Experimental Environments
To validate the effectiveness of our proposed algorithm,
we conducted extensive simulations using MATLAB 2015a.
We built a wireless sensor network consisting of 100 sen-
sors deployed in a 100m×100m rectangle region. The data
generating rate of each sensor is 5 byte per second. The
transmission range of each sensor is 3 meters and its initial
energy capacity is 30 J. The energy consuming rate for the
transmitting is 6 × 10−7(J/bit) and for receiving rate is
3 × 10−7(J/bit). The speed of the mobile sink is 3(m/s).
The data uploading rate from the mobile sink to Cloud is
50 (byte/s). In the general case, there are 5 mobile sinks
deployed in the WSNs.

As part of the evaluation, two existing algorithms are
also considered for comparison. The first algorithm is
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Fig. 7: (a) Number of Sensor vs. Delay (b) Number of Sensor
vs. Energy Consumption

EMMS [40]. In this algorithm, multiple sinks were controlled
to visit all the sensors and the tour of each mobile sink
is closed. The second is SG-MIP [41]. This algorithm iter-
atively partitioned the monitoring area and selected near-
optimal rout for mobile sinks. In the simulations, these
three algorithms are compared based on four metrics, i.e.,
the delivery delay, the energy consumption, the distances
that mobile sink traveled and the lifetime of WNSs. The
delivery delay is the max delivery time among all mobile
sinks. The energy consumption represents the max energy
consumption among all sensors. The energy consumption of
each sensor is calculated based on the energy model in [42].

6.2 Experimental Results

Figure 7 demonstrates the delivery delay and energy con-
sumption under the scenarios with different number of sen-
sors. As shown in Figure 7 (a), when the number of sensor
increases from 100 to 500, the delivery delay shows a rising
trend. Due to the stringent deadline, when Tspe is smaller
than 400 s, the delay requirement cannot be guaranteed.
As the Tspe increases, our algorithm performs well with
different number of sensors, which is consistent well with
the theoretical analysis (Theorem 4). Figure 7 (b) shows
the energy consumption for data collection. No matter the
value of latency requirement is, as the number of sensors
increases, the energy consumption decreases gradually since
more sensors can deliver data to MS through the less hops.
Moreover, the lower value of latency requirement is, the
higher energy consumption is. This is because the number
of PPs will be cut down to shorten the travel time of MS,
which means more sensors will deliver data via multiple
hops.

Figure 8 shows the delivery delay and energy consump-
tion under the scenarios with different number of mobile
sinks. In the Figure 8 (a), when the number of mobile sinks
increases, the delay with different demand all decrease. It
is worth noting that the delay value have a nearly linear
variation as the number of MSs is from 10 to 25 and Tspe

is 800s. This phenomenon reflects the step in PPSA. When
all the sensors send data to MS through single hop and the
delivery time is smaller than Tspe , the collection time from
sensors to mobile sinks is constant. And the difference is that
more MSs uploading data to cloud. As shown in Figure 8 (b),
the energy consumption decreases with the MSs increased.
This is because the more MSs are deployed to balance the
load of each sensor. Besides, more sensors send data to MSs
directly.
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We now evaluate the algorithms on delay. As shown
in Figure 9 (a), with the increase of the number of sen-
sors, our proposed algorithm TASA achieves the best per-
formance among these three algorithms. Specifically, the
delay achieved by SG-MIP is about twice than that of out
algorithm. When the number of sensors is 250, the delay
generated by EMMS is extreme high. In Figure 9 (b), when
the number of MSs increases, all algorithms perform better,
but TASA performs the best.

After comparing the effect of TASA with another two al-
gorithms, EMMS and SG-MIP, we find two reasons for why
our algorithm performs better. First, the radius of sensor is
a key element affecting the performance of algorithm. As
shown in Figure 10 (a), it is evident that the delay decreases
with a bigger radius of sensor for all algorithms. Obviously,
the influence of radius on EMMS is the most apparent. And
it testifies that the TASA performs a better compatibility. For
further clarity, we present the distances MSs traveled in all
algorithms in Figure 10 (b). It is seen that TASA has the
shortest distance and smallest difference among these three
algorithms. This is because TASA can adjust the trajectory
to fit the latency requirement.

We now evaluate the effectiveness of algorithm on en-

5 10 15 20 25
Number of MSs

0

200

400

600

800

1000

D
el

ay
 (

s)

TASA
EMMS
SG-MIP

100 150 200 250
Number of Sensor

0

1

2

3

4

5

T
ra

ve
l D

is
ta

nc
e 

(m
)

×104

TASA
EMMS
SG-MIP

Fig. 10: (a) Radius of sensor vs. Delay (b) Number of sensor
vs. Travel Distance of MS

5 10 15 20 25
Number of MSs

0

2

4

6

8

E
ne

rg
y 

C
on

su
m

pt
io

n 
(j)

×10-4

TASA
EMMS
SG-MIP

5 10 15 20 25
Number of MSs

0

2

4

6

8

10

N
et

w
or

k 
Li

fe
tim

e 
(s

)

×105

TASA
EMMS
SG-MIP

Fig. 11: (a) Number of MS vs. Energy Consumption (b)
Number of MS vs. Network Lifetime

5 10 15 20 25
250

300

350

400

450

D
el

ay
 (s

)

Number of MSs

 TASA
 MMSA

5 10 15 20 25
0

1x105

2x105

3x105

4x105

N
et

w
or

k 
lif

et
im

e 
(s

)

Number of MSs

 TASA
 MMSA

Fig. 12: (a) Number of MSs vs. Delay (b) Number of Sensor
vs. Network Lifetime

ergy consumption and network lifetime. In Figure 11 (a),
the energy consumption achieved by EMMS stays steady
due to single hop transmission of all the sensors. Beyond
that, the energy consumption in TASA and SG-MIP decrease
when the number of MS is added, and TASA realize the
lower energy consumption. Figure 11 (b) shows the trend
of network lifetime with the variance of number of MSs.
As more MSs are employed in WSNs, the lifetime becomes
longer. This is because sensors have more opportunities
to communicate with MS directly. In contrast, the lifetime
achieved by SG-MIP is shorter than our algorithm.

In the Figure 12, we present the comparison result
between TASA and MMSA which was proposed in [38].
Figure 12 (a) presents the comparison on delay with the
increased number of mobile sink. Figure 12 (b) implies the
tendency of network lifetime with the increased number
of mobile sink. Both two results obviously show that the
improved algorithm TASA performs better than MMSA.

7 CONCLUSION

The development of cloud computing brings new technolo-
gies to traditional wireless sensor network, such as high-
speed computing power, big data storage and remote ser-
vice, which makes some applications become possible in our
life. It is an inexorable trend to integrate WSNs with cloud
computing. With the cloud computing paradigm adopted in
WSNs, the performance of WSNs can be improved, such as
energy consumption, computing latency, service quality,etc.
However, due to the weak communication ability of WSNs,
how to upload the mass sensed data to the cloud within
the limited time becomes a bottleneck in sensor cloud in-
tegration system. Most traditional methods of mobile data
collection are delay tolerant, which is not appropriate for
data collection in sensor-cloud integration. In this paper,
we have studied the data collection problem from WSNs
to cloud with multiple mobile sinks and formulated it
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as a constrained optimization problem, which is proved
to be NP-hard. We designed TASA algorithm which is a
polynomial time algorithm and with provable performance.
The performance of the proposed method is also validated
through simulations. Simulation results demonstrate that
the proposed algorithm can adjust the delivery delay, reduce
energy consumption significantly and improve the system
sustainability, which contributes to the integration of WSNs
and Cloud.
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