This is the Pre-Published Version.
The following publication T. N. Chan, M. L. Yiu and H. U. Leong, "KARL: Fast Kernel Aggregation Queries," 2019 IEEE 35th International Conference

on Data Engineering (ICDE), Macao, China, 2019, pp. 542-553 is available at https://doi.org/10.1109/ICDE.2019.00055.

KARL: Fast Kernel Aggregation Queries

Tsz Nam Chan*', Man Lung Yiu', Leong Hou U?
*Department of Computer Science, The University of Hong Kong
tnchan2 @hku.hk
TDepartment of Computing, Hong Kong Polytechnic University
{cstnchan,csmlyiu } @ comp.polyu.edu.hk
iDepartment of Computer and Information Science, University of Macau
ryanlhu@umac.mo

Abstract—Kernel functions support a broad range of applica-
tions that require tasks like density estimation, classification, or
outlier detection. In these tasks, a common online operation is
to compute the weighted aggregation of kernel function values
with respect to a set of points. Scalable aggregation methods
are still unknown for typical kernel functions (e.g., Gaussian
kernel, polynomial kernel, and sigmoid kernel) and weighting
schemes. In this paper, we propose a novel and effective bounding
technique to speedup the computation of kernel aggregation. We
further boost its efficiency by leveraging index structures and
exploiting index tuning opportunities. In addition, our technique
is extensible to different types of kernel functions and weightings.
Experimental studies on many real datasets reveal that our
proposed method achieves speedups of 2.5-738 over the state-
of-the-art.

I. INTRODUCTION

In this era of digitalization, vast amount of data are being
continuously collected and analyzed. Kernel functions are
typically used in two tasks: (i) kernel density estimation (for
statistical analysis) and (ii) support vector machine classifi-
cation (for data mining). These tasks are actively used in
the following applications. Network security systems [4], [3]
utilize kernel SVM to detect suspicious packets. In medical
science, medical scientists [10] utilize kernel SVM to identify
tumor samples. Astronomical scientists [14] utilize kernel den-
sity estimation for quantifying the galaxy density. In particle
physics, physicists utilize kernel density estimation to search
for particles [11]. For example, Figure 1 illustrates the usage
of kernel density estimation on a real dataset (miniboone [2])
for searching particles. Physicists are interested in the dense
region (in yellow). .

Density

0 0.2 04 0.6 0.8 1
15t dim

Fig. 1: Kernel density estimation on the miniboone dataset,
using 1%* and 2" dimensions

Implementation-wise, both commercial database systems
(e.g., Oracle, Vertica) and open-source libraries (e.g., Lib-

SVM [8]) provide functions for support vector machines
(SVM), which can combine with different kernel functions.

In the above applications, a common online operation is to
compute the following function:

Fp(q) =Y w;exp(— - dist(q, p;)®))
pi€P

where q is a query point, P is a dataset of points, w;,"y
are scalars, and dist(q,p;) denotes the Euclidean distance
between q and p;. A typical problem, which we term as the
threshold kernel aggregation query (TKAQ), is to test whether
Fp(q) is higher than a given threshold 7 [32]. This creates
an opportunity for achieving speedup. Instead of computing
the exact Fp(q), it suffices to compute lower/upper bounds
of Fp(q) and then compare them with the threshold 7.

In addition, different types of weighting (for w;) have been
used in different statistical/learning models, as summarized in
Table 1. Although there exist several techniques to speedup
the computation of Fp(q), each work focuses on one type
of weighting only [16], [15], [20], [18], [23]. In contrast, this
paper intends to handle the kernel aggregation query under all
types of weightings.

TABLE I: Types of weighting in Fp(q)
[Used in mode]

[Type of weighting Techniques |

Type I: identical, positive w;|Kernel density|Quality-preserving
(most specific) [16], [15] |solutions [16], [15]
Type 1I: positive w; 1-class SVM Heuristics
(subsuming Type I) [28] [25]
Type III: no restriction on wj;| 2-class SVM Heuristics
(subsuming Types I, II) [32] [20], [18], [23]

The above query is expensive as it takes O(nd) time to
compute Fp(q) online, where d is the dimensionality of
data points and n is the cardinality of the dataset P. In the
machine learning community, many recent works [23], [18],
[20] also complain the inefficiency issue for computing kernel
aggregation, which are quoted as follows:

o “Despite their successes, what makes kernel methods
difficult to use in many large scale problems is the
fact that computing the decision function is typically
expensive, especially at prediction time.” [23]

o “However, computing the decision function for the new
test samples is typically expensive which limits the ap-

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

plicability of kernel methods to real-world applications.”
(18]

o “.., it has the disadvantage of requiring relatively large
computations in the testing phase” [20]

Existing solutions are divided into two camps. The machine
learning community tends to improve the response time by
using heuristics [20], [18], [23], [25] (e.g., sampling points
in P), which may affect the quality of the model (e.g.,
classification/prediction accuracy). The other camp, which
we are interested in, aims to enhance the efficiency while
preserving the quality of the model. The pioneering solutions
in this category are [16], [15], albeit they are only applicable
to queries with Type I weighting (see Table I). Their idea [16],
[15] is to build an index structure on the point set P offline,
and then exploit index nodes to derive lower/upper bounds and
attempt pruning for online queries.

In this paper, we identify several important research issues
that have not yet been addressed in [16], [15], as listed below:

1) Tighter bound functions: How to design lower/upper
bound functions that are always tighter than existing
ones? How to compute them quickly?

2) Type of weighting: The techniques in [16], [15] are
applicable to Type I weighting only (see Table I). Can
we develop a general solution for all types of weighting?

3) Automatic index tuning: The performance of a solu-
tion may vary greatly across different types of index
structures. How to develop an automatic index tuning
technique for achieving the best possible efficiency?

4) In-situ scenario: In this scenario, the entire dataset is
not known in advance. An example scenario is online
kernel learning [12], [26], [22], in which the model (e.g.,
dataset P) would be updated frequently. The end-to-end
response time includes the index construction time and
the tuning time as well. How to develop a quick tuning
technique while enjoying the benefit of a reasonably-
good index structure?

Our proposal is Kernel Aggregation Rapid Library
(KARL)!, a comprehensive solution for addressing all the
issues mentioned above. It utilizes a novel bounding technique
and index tuning in order to achieve excellent efficiency.
Experimental studies on many real datasets reveal that our
proposed method achieves speedups of 2.5-738 over the state-
of-the-art.

Two widely-used libraries, namely LibSVM [8] and Scikit-
learn [30], provide convenient programming support for practi-
tioners to handle kernel aggregation queries. Implementation-
wise, LibSVM is based on the sequential scan method, and
Scikit-learn is based on the algorithm in [16] for query type
I. We compare them with our proposal (KARL) in Table II.
As a remark, since Scikit-learn supports query types II and III
via the wrapper of LibSVM [30], we remove those two query
types from the row of Scikit-learn in Table II. The features
of KARL are: (i) it supports all three types of weightings

Thttps://github.com/edisonchan2013928/K ARL-Fast-Kernel-Aggregation-
Queries

as well as both eKAQ and TKAQ queries, (ii) it supports
index structures, (iii) it yields much lower response time than
existing libraries.

TABLE II: Comparisons of libraries

Library Supported Supported |Support [Response
queries weightings findexing | time
LibSVM [8] TKAQ Types L, II, IIl | no high
Scikit-learn [30] eKAQ Type 1 yes high
KARL (this paper) eKAQ, TKAQ [Types I, II, III | yes low

We first introduce the preliminaries in Section II, and
then present our solution in Section III. We later extend
our techniques for different types of weighting and kernel
functions in Section IV. After that, we present our experiments
in Section V. Then, we present our related work in Section VI.
Lastly, we conclude the paper with future research directions
in Section VIIL.

II. PRELIMINARIES

We consider two popular types of kernel aggregation queries
in the literature [32], [16]. The first variant is to test whether
Fp(q) is higher than a threshold [32]. We term this as the
threshold kernel aggregation query (TKAQ), which simply
tests whether Fp(q) > 7, where 7 is a given threshold. The
second variant is to compute an approximate value of Fp(q)
with accuracy bound [16]. We call this as approximate kernel
aggregation query (eKAQ), which returns an approximate
value within (1 £ €) times the exact value of Fp(q).

A. Problem Statement

First, we reiterate the kernel aggregation query (KAQ) as
discussed in the introduction.

Definition 1 (KAQ). Given a query point q and a set of points
P, this query computes:

Fr(q)= > w; K(q,pi))
pi€P
where w; is a scalar indicating the weight of the i-th term,
and K(q, pi) denotes the kernel function.

In the machine learning and statistics communities [8], [32],
[35], the typical kernel functions are the Gaussian kernel
function, the polynomial kernel function, and the sigmoid
kernel function. For example, the Gaussian kernel function is
expressed as K(q, p;) = exp(— - dist(q, p;)?), where v is a
positive scalar denoting smoothing parameter, and dist(q, p;)
denotes the Euclidean distance between q, pj.

Then we formally define two variants of KAQ: threshold
kernel aggregation query (TKAQ) [32] and approximate kernel
aggregation query (eKAQ) [16].

Problem 1 (7KAQ). Given a threshold value T, a query point
q, and a set of points P, this problem returns a Boolean value
denoting whether Fp(q) > T.

Problem 2 (¢KAQ). Given a relative error value €, a query
point q, and a set of points P, this problem returns an

approximate value F such that its relative error (from the
exact value Fp(q)) is at most ¢, ie.,

(1—e)Fp(q) < F < (1+€)Fp(q) 3)

Table III summarizes the types of queries that can be
used for each application model. Table IV summarizes the
frequently-used symbols in this paper.

TABLE III: Example applications for the above queries

Application |[Relevant Obtained from Specified
model queries training/learning by user
Kernel density | eKAQ, N.A. query point q,
[16], [15] TKAQ point set P,

[parameters €, T, 7y
1-class SVM | TKAQ |point set P, weights w;, | query point q
[28] parameters T,y
2-class SVM | TKAQ |point set P, weights w;, | query point q
[32] parameters T,y
TABLE IV: Symbols
[Symbol [Description]
P Point set
Fr(q) Kernel aggregation function (Equation 2)
K(a,p) Kernel (e.g., Gaussian, polynomial)
Linm,.(z) Linear function mz + ¢

FLp(q, Ltnm, ;)
‘7:[’13 (qa LGmu 5Cu)
dist(q, p)

Linear lower bound of Fp(q)
Linear upper bound of Fp(q)
Euclidean distance between q and p

B. State-of-the-Art (SOTA)

We proceed to introduce the state-of-the-art [16], [15]
(SOTA), albeit it is only applicable to queries with Type I
weighting (see Table I). In this case, we denote the common
weight by w.

Bounding functions.
We introduce the concept of bounding rectangle [31] below.

Definition 2. Let R be the bounding rectangle for a point
set P. We denote its interval in the j-th dimension as
[R[j]1, R[j].u], where R[j].I = minpep p[j] and R[jl.u =
maxpep P[J]-

Given a query point g, we can compute the minimum
distance mindist(q, R) from q to R, and the maximum
distance maxdist(q, R) from q to R.

It holds that mindist(q, R) < dist(q, p) < maxdist(q, R)
for every point p inside R.

With the above notations, the lower bound LBg(q) and the
upper bound UBg(q) for Fp(q) (Equation 1) are defined as:

LBgr(q) =
UBr(q) =
where R.count denotes the number of points (from P) in R,

and w denotes the common weight (for Type I weighting). It
takes O(d) time to compute the above bounds online.

w - R.count - exp(—v - maxdist(q, R)?)
w - R.count - exp(—y - mindist(q, R)?)

Refinement of bounds.
The state-of-the-art [16], [15] employs a hierarchical index

structure (e.g., k-d tree) to index the point set P. Consider the
example index in Figure 2. Each non-leaf entry (e.g., Rs5,9)
stores the bounding rectangle of its subtree (e.g., R5) and the
number of points in its subtree (e.g., 9).

root node: N,

root

node N node Ny

node N,

node N, node N; node N,

’Pl Dy .- Ds ‘ |P6P7 =Py H PioPii -+ P13 H Pi14Pis - Pis ‘

Fig. 2: Hierarchical index structure

We illustrate the running steps of the state-of-the-art on the
above example index in Table V. For conciseness, the notations
LBgr(q),UBRr(q), Fp(q) are abbreviated as lbg,ubr, Fp
respectively. The state-of-the-art maintains a lower bound
Ib and upper bound wb for Fp(q). Initially, the bounding
rAectanglg of the root node (say, R,,ot) is used to compute
b and ub. It uses a priority queue to manage the index entries
that contribute to the computation of those bounds; the priority
of an index entry R; is defined as the difference ubr, — lbr,.
In each iteration, the algorithm pops an entry R; from the
priority queue, processes the child entries of R;, then refines
the bounds incrementally and updates the priority queue. For
example, in step 2, the algorithm pops the entry R5 from the
priority queue, inserts its child entries R, Ry into the priority
queue, and refines the bounds incrementally. Similar technique
can be also found in similarity search community (e.g., [5],

[6]).
TABLE V: Running steps for state-of-the-art

Maintenance of lower bound /b
and upper bound ub

Step | Priority queue

1 Rroot Ib=1br, ;>
ub = UDR oot
2 Rs, Rs lb = lbry + lbR,,
&B = UbR5 + UbRG
3 | Re,Ri, Ra 1= lbr, + lbr, + lbry,

1/1,5 = ubRG + ule + ubR2
/l\b = lel + le2 + leS =+ le4,
ub = ubgr, + ubr, + ubr; + ubgr,
/l\b =]:plmpE) + lez + leS + le4,
ub = Fp,...p5 + ubr, + ubr, + ubr,

4 |Rq1,R2,R3,R4

5 Rs, Rs, R4

The state-of-the-art terminates upon reaching a termination
condition. For 7KAQ, the termination condition is: [b > 7
or ub < 7. For eKAQ, the termination condition is: ub <
(14 €)lb.

III. OUR SOLUTION: KARL

Our proposed solution, KARL, adopts the state-of-the-art
(SOTA) for query processing, except that existing bound

functions (e.g., LBr(q) and UBg(q)) are replaced by our
bound functions.

Our key contribution is to develop tighter bound functions
for Fp(q). In Section III-A, we propose a novel idea to
bound the function exp(—z) and discuss how to compute such
bound functions quickly. In Section III-B, we devise tighter
bound functions and show that they are always tighter than
existing bound functions. Then, we discuss automatic tuning
in Section III-C.

In this section, we assume using Type I weighting and
the Gaussian kernel in the function Fp(q). We leave the
extensions to other types of weighting and kernel functions
in Section IV.

A. Fast Linear Bound Functions

We wish to design bound functions such that (i) they
are tighter than existing bound functions (cf. Section II-B),
and (ii) they are efficient to compute, i.e., taking only O(d)
computation time.

In this section, we assume Type I weighting and denote the
common weight by w. Consider an example on the dataset
P = {p1,p2,p3}. Let z; denotes the value v - dist(q, p;).
With this notation, the value Fp(q) can be simplified to:

w (exp(—z1) + exp(—x2) + exp(—xg)).

In Figure 3, we plot the function value exp(—zx) for x1, 2, 3
as points.

Sfunction value
1 min— Xmax=

X
Y mindist(q,p)? y maxdist(q,p)?

0.8
0.6

0.4
Sfunction

0.2 @) exp(=)

0 Lox X X3
0.0 05 1.0 L5 2.0

Fig. 3: Linear bounds

We first sketch our idea for bounding Fp(q). First,
we compute the bounding interval of z;, i.e., the interval
[T min, Tmaz), Where Tpin = v - mindist(q, R)?, Tmaz =7 -
maxdist(q, R)?, and R is the bounding rectangle of P. Within
that interval, we employ two functions E*(x) and EY(z) as
lower and upper bound functions for exp(—x), respectively
(see Definition 3). We illustrate these two functions by a red
line and a blue line in Figure 3.

Definition 3 (Constrained bound functions). Given a query
point q and a point set P, we call two functions E*(x) and
EY(x) to be lower and upper bound functions for exp(—x),
respectively, if

E"(z) < exp(—z) < EY(x)

FLp(q,Linm,.) =

holds for any x € [y - mindist(q, R)?, v - mazdist(q, R)?],
where R is the bounding rectangle of P.

In this paper, we model bound functions E*(x) and EY (z)
by using two linear functions Ling, . (x) = myx + ¢ and
Ling,, ¢, (x) = myx + ¢, respectively. Then, we define the
aggregation of a linear function Lin,, . as:

FLp(q, Ling.e) = Y w(m(v-dist(q, pi)?) +c) (4)
pi€P

With this concept, the functions FLp(q, Lin,) and
FLp(q, Ling,, .,) serve as a lower and an upper bound
function for Fp(q), subject to the condition stated in the
following lemma:

Lemma 1. Suppose that Lin,,, ., and Lin,,, ., are lower
and upper bound functions for exp(—x), respectively, for the
query point q and point set P. It holds that:

]:‘CP(q? Linml,cl) S fp(q) S ‘T-Z:P(q7 LinMu,Cu) (5)

Observe that the bound functions in Figure 3 are not tight.
We will devise tighter bound functions in the next subsection.

Fast computation of bounds.
The following lemma allows FLp(q, Liny,) to be effi-
ciently computed, i.e., in O(d) time.

Lemma 2. Given two values m and ¢, FLp(q, Ling,.)
(Equation 4) can be computed in O(d) time and it holds that:

FLp(a, Ling,e) = wmy(|P|-|al[* ~2q-ap +bp) +we|P|

where ap =3 ppi and bp =} p l|pil]%
Proof.

> w(m(v -dist(q, pi)*) + C)
pi€P

wmy 37 (llall* = 2a- i +[[pil[?) + wel P

pi€P

wmy(IP| - [[al* = 2a - ap + br) +we| P|

Observe that both terms ap and bp are independent of the
query point q. Therefore, with the pre-computed values of ap
and bp, FLp(q, Ling,,.) can be computed in O(d) time. [

B. Tighter Bound Functions

We proceed to devise tighter bound functions by using
Ling, ¢, and Ling,, ...

Linear function Lin,,, ., for modeling EY (z).

Recall that, by using the query point q and the bounding
rectangle R (of point set P), we obtain the bounding interval
[T min, Tmaz], Where Tpnin = - mindist(q, R)? and T4, =
7y - mazdist(q, R)?. Since exp(—z) is a convex function,
the chord between two points (say, (Zmin, €xXp(—Zmin)) and
(Tmaz, €Xp(—Tmaz)) must always reside above the curve
exp(—x). We illustrate this in Figure 4.

functionvalue
1

0.8
existing bound:
XP(~Xnin)

thechord:
EV(X) = my X +C,}

0.6

0.4
function

X
2 exp(—x)

X
0.2

0 : ' X axis
0.0 05 1.0 15 2.0

Fig. 4: Chord-based upper bound function

Regarding the linear function Lin,,, ., , its slope m, and
the intercept c,, are computed as:

exp(—Tmaz) — eXp(—Tmin)
Tmaz — Tmin
Tmax exp(_xmin> — Tmin eXp(_Qjmaw)

(6)

m -

)

Cy ==

Tmax — Tmin

It turns out that the above chord-based linear function
Lin,g,, ¢, leads to a tighter upper bound than the existing
bound exp(—xm,in) (see Section II-B). Clearly, as shown in
Figure 4, the projected values on the blue line (Lin,y,, .,) are
smaller than the existing bound exp(—x,i,) (green dashed
line in Figure 4).

Lemma 3. There exists a linear function Lin,, ., such that
FLp(a, Ling, ,) < UBRr(q), where UBR(Qq) is the upper
bound function used in the state-of-the-art (see Section II-B).

Linear function Lin,,, ., for modeling E*(z).

We exploit a property of convex function [17], namely that,
any tangent line of a convex function must be a lower bound of
the function. This property is applicable to exp(—z) because
it is also a convex function.

We illustrate the above property in Figure 5a. For ex-
ample, the tangent line of function exp(—x) at point
(Tmaz, €XP(—Tmaz)) serves as a lower bound function for
exp(—x). Furthermore, this lower bound is already tighter than
the existing bound exp(—.,q.) (see Section II-B). Note that
in Figure 5a, the projected values on the red line (Ling,,)
are higher than the existing bound exp(—2Zq.) (green dashed
line in Figure 5a).

Lemma 4. There exists a linear function Lin,,, ., such that
FLp(q,Ling,) > LBr(q), where LBRr(q) is the lower
bound function used in the state-of-the-art (see Section II-B).

Interestingly, it is possible to devise a tighter bound than the
above. Figure 5b depicts the tangent line at point (¢, exp(—t)).
This tangent line offers a much tighter bound than the one in
Figure 5a.

In the following, we demonstrate how to find the optimal
tangent line (i.e., leading to the tightest bound). Suppose that
the lower bound linear function Lin,,, ., is the tangent line

at point (t,exp(—t)). Then, we derive the slope m; and the
intercept ¢; as:
dexp(—x)
= _— = — _t
my d ot exp(—t)

a = exp(—t) —myt = (1+1t)exp(—t)

The following theorem establishes the optimal value ¢,,; that
leads to the tightest bound.

Theorem 1. Consider the function FLp(q,Lin,,) as a
function of t, where m;y = —exp(—t) and ¢ = (1 +
t) exp(—t). This function yields the maximum value at:

Y .
topt = m -pZG:P dist(q, pi)2

®)

Proof. Let H(t) = FLp(q, Ling,, .,) be a function of ¢. For
the sake of clarity, we define the following two constants that
are independent of ¢:

21 = wy - Z dist(q, p;)? and zy = w|P|
pi€P
Together with the given m; and ¢;, we can rewrite H(t) as:
H(t) = —z1 exp(—t) + z2(1 4+ t) exp(—t)
The remaining proof is to find the maximum value of H (t).
We first compute the first derivative of H(¢) (in terms of t):
H'(t) = 2z exp(—t)+ zgexp(—t) — 22(1 + t) exp(—t)
= (214 22 — 20 — 29t) exp(—t)
= (21 — zat) exp(—t)

Next, we compute the value ¢,,; such that H'(typ) = 0.
Since exp(—topt) # 0, we get:

z1 — ZZtopt =0
- Aa_ 7 -)2
topt - ;2 - |P‘ Z dZSt(qa pl)

pi€P

Then we further test whether ¢,,, indeed yields the maxi-
mum value. We consider two cases for H'(t). Note that both
z1 and zo are positive constants.

1) For the case t > t,,, we get H'(t) < 0, implying that

H(t) is a decreasing function
2) For the case ¢t < t,p, we get H'(t) > 0, implying that
H(t) is an increasing function.
Thus, we conclude that the function H (t) yields the maximum
value at ¢ = . L]

The optimal value .y involves the term
> piep dist(a, pi)2. This term can be computed efficiently
in O(d) time by the trick in Lemma 2. By applying Lemma 2
and substituting w = m = v = 1 and ¢ = 0, we can express
> opiep dist(q, pi)? in the form of FLp(q, Ling,.), which
can be computed in O(d) time.

Case study.
We conduct the following case study on the augmented
k-d tree, in order to demonstrate the performance of KARL

function value
1

0.8
X’}nin i 4
the tangent line (at Xpa):!

06 X, E=mx+q

X;
0.4 2
function

X3 X
L exp(—x)

exis-t-ing_b(;.lngz -
XP(Xma)

0.2

' ' X axis
0.0 05 1.0 15 2.0

(a) tangent line at 2,4,

functionvalue
1

0.8

0.6

0.4
function

3 X
L exp(—x)

0.2 | optimized tangent line (at t):
' EL(X) =myx +¢
0 ' : X axis
0.0 05 1.0 15 2.0

(b) optimized tangent line at ¢

Fig. 5: Tangent-based lower bound function

and the tightness of our bound functions compared to existing
bound functions. First, we pick a random query point from the
home dataset [2] (see Section V-A for details). Then, we plot
the lower/upper bound values of SOTA and KARL versus the
number of iterations. Observe that our bounds are much tighter
than existing bounds, and thus KARL terminates sooner than
SOTA.

< [\-Bsota —®~UBsora —*— LBiar —*— UByart ——
8*10 1
S (4105
= R/* r 4
g 6*10 KARL stops SOTA stops:
-g *105 - 8
54*10
o
oM . *M
* r 4
2*10 Threshold T 4
W b

0%100 i | .
0 10 20 30 40 50 60 70 80
Iteration (x102)

Fig. 6: Bound values of SOTA and KARL vs. the number of
iterations; for type I-7 query on the home dataset

C. Automatic Tuning

The performance of KARL depends on the choices of the
index structure and the index height. Popular index structures
include the k-d tree and the ball tree, which are also supported
in an existing machine learning library (e.g., Scikit-learn [30]).
In addition, the height of such index structure can be controlled
via the parameter ‘leaf node capacity’ (i.e., the maximum
number of points per leaf node).

To demonstrate the above effect, we conduct the following
test by using different index structures with different values
of leaf node capacity. Then we measure the throughput (i.e.,
the number of processed queries per second) of KARL in
each index structure. Figures 7a and b show the throughput
of KARL on two datasets (home and susy respectively). In
each figure, the speedup of the best choice to the worst choice
can be up to 4 times. Furthermore, the optimal choice can be
different on different datasets.

To tackle the above issue, we propose some automatic
tuning techniques.

Offline tuning scenario.
In this scenario, we are given ample time for tuning and
the dataset is provided in advance.

300
250
4
200
150

100

b
50 -

Throughput (Queries/sec)

Throughput (Queries/sec)

—¥— KARLpay |
—— KARLyg
0 1 1 1 1 1 0 1 1 1 1 1
10 20 40 80 160 320 640 10 20 40 80 160 320 640
Leaf Capacity Leaf Capacity

(a) dataset home (b) dataset susy

Fig. 7: The throughput of query type I-7, varying the leaf node
capacity

Observe that two index structures with similar leaf node
capacity (e.g., 100 and 101) tend to offer similar performance.
It is sufficient to vary the leaf node capacity in an exponential
manner (e.g., 10,20,40,80,160,320,640). Next, we build an
index structure for each parameter value and for each index
type. Finally, we sample a small subset () of query points, then
recommend the index structure having the highest throughput
on (). According to our experimental results, it is enough to
set the sample size to |Q] = 1000.

In-situ scenario: online tuning.

This scenario is more challenging because the dataset is
not known in advance. The end-to-end response time includes
index construction time, tuning time, and query execution
time. To achieve high throughput, we should reduce the index
construction time and the tuning time, while figuring out a
reasonably good index.

First, we recommend to build the k-d tree due to its low
construction time. It suffices to build a single k-d tree with
all levels (i.e., log,(n) levels). Denote the entire tree by 7,
and the tree with the top i levels by 7;. Observe that the tree
T; can be simulated by using the entire tree 7, by skipping
lower/upper bound computations in the lowest log,(n) — 4
levels of 7.

Suppose that we are given the number of queries to be
executed. We sample s% (say, 1%) of those queries and then
partition them into log,(n) groups. For the i-group, we run

its sample queries on the tree 7;. Then, we obtain the value
¢* that yields the best performance. Finally, we execute the
remaining (100 — s)% of queries on the k-d tree T;-.

IV. EXTENSIONS

The state-of-the-art solution has not considered other types
of weighting nor other types of kernel functions. In this
section, we adapt our bounding techniques (in Sections III-A
and III-B) to address these issues.

A. Other Types of Weighting

We extend our bounding techniques for the following func-
tion:

Fr(a) =Y w;exp(—y - dist(q, pi)®)
pi€P

under other types of weighting.

1) Type Il Weighting: For Type II weighting, each w; takes
a positive value. Note that different w; may take different
values.

First, we redefine the aggregation of a linear function
Lin, . as:

FLp(a, Ling,) = Z w; (m(v - dist(q, pi)z) + c) 9)
pi€P

This function can also be computed efficiently (i.e., in O(d)
time), as shown in the following lemma.

Lemma 5. Under Type Il weighting, F Lp(q, Lin,) (Equa-
tion 9) can be computed in O(d) time, given two values of m
and c.

Proof.
FLp(q, Linm,c)
> wi(m(y - dist(a,p)?) +c)

picP
= > wi(my(llal® = 2a-pi+Ipill?))+ S wi
pPi€EP pPi€EP

m'y(wp Jlall? = 2q - ap +bp) + cwp

where ap = > _pwipi, bp =Y. cp w;||pi][? and wp =
ZpiEP Wy

The terms ap, bp, wp are independent of q. With their pre-
computed values, FLp(q, Lin,,) can be computed in O(d)
time. O]

It remains to discuss how to find tight bound functions.
For the upper bound function, we adopt the same technique
in Figure 4. For the lower bound function, we use the idea
in Figure 5b, except that the optimal value %,,; should also
depend on the weighting.

Theorem 2. Consider the function FLp(q,Lin,,) as a
function of t, where m;y = —exp(—t) and ¢, = (1 +
t) exp(—t). This function yields the maximum value at:

Y .
topt = . § widZSt(qa pi)2
wp
pi€P

(10)

where wp =} p Wi

Proof. Following the proof of Theorem 1, we let H(t) =
FLp(q, Ling,,) be a function of ¢ and we define the
following two constants.

z21="- Z w;dist(q, pi)2 and zo = wp
pi€P
Then, we follow exactly the same steps of Theorem 1 to derive
the maximum value (Equation 10). L]

Again, the value %,,; can also be computed efficiently (i.e.,
in O(d) time).

2) Type III Weighting: For Type III weighting, there is no
restriction on w;. Each w; takes either a positive value or a
negative value.

Our idea is to convert the problem into two subproblems
that use Type II weighting. First, we partition the point set
P into two sets PT and P~ such that: (i) all points in P+
are associated with positive weights, and (ii) all points in P~
are associated with negative weights. Then we introduce the
following notation:

Fp-(a)= Y |w|exp(—y-dist(q,pi)’) = —Fp-(a)
pPicP~

This enables us to rewrite the function Fp(q) as:

Fp(a) = Z

piePtuP—
Fpi(@) + Fp-(a)
Fp+(q) — Fp-(a)

Since the weights in both Fp+(q) and Fp-(q) are positive,
the terms Fp+(q) and Fp-(q) can be bounded by using the
techniques for Type II weighting.

The upper bound of Fp(q) can be computed as the upper
bound of Fp+(q) minus the lower bound of Fp-(q).

The lower bound of Fp(q) can be computed as the lower
bound of Fp+(q) minus the upper bound of Fp-(q).

w; exp(—y - dist(q, pi)?)

B. Other Kernel Functions

In this section, we develop our bounding techniques for
other kernel functions, such as the polynomial kernel function,
and the sigmoid kernel function.

First, we consider the polynomial kernel function
K(a,pi) = (v a- p;i + B)%9, where v, 3 are scalar values,
and deg denotes the polynomial degree. In this context, we
express the function Fp(q) as follows.

Fr(@) =Y wilya-pi+B)™
pi€P

(1)

For the sake of discussion, we assume Type II weighting (i.e.,
positive weight coefficients w;).

We introduce the notation x; to represent the term v q-p; +
B. The bounding interval of z;, i.e., the interval [Z,in, Trmaz)s
is computed as:

Y IPraz(q, R) + B

Tmin

Tmax —

where R is the bounding rectangle of P, and
IPpin(q, R), IPas(q, R) represent the minimum and
the maximum inner product between q and R, respectively.
We then extend the efficient computation techniques in
Section III-A. Suppose that we are given two linear functions
Ling, ¢ (x) = myz + ¢ and Ling,, ., () = muz + ¢
such that Lin,,, ., (z) < x99 < Ling,, ., (z) for all z.
Similar to Lemma 1, we can obtain the following property:
FLp(a, Ling,) < Fp(a) < FLp(q, Ling,, .,). where:

FLp(q, Linge) = Y wim(yq-pi+B)+c)

pi€P
= myq-ap + (mB +c)bp

where ap = ZpiGP w;p; and bp = ZpiGP w;. Such function
can be computed in O(d) time, provided that the terms ap, bp
have been precomputed.

We proceed to discuss how to devise the bounding linear
functions for x99. When deg is even, the function x99
satisfies the convex property, and thus the techniques in Sec-
tion III-B remain applicable. However, when deg is odd, the
techniques in Section III-B are not applicable. For example,
we plot the function x2 in Figure 8 and notice that the chord
between X ,,;, and x4, 1S no longer an upper bound function.

Our idea is to exploit the monotonic increasing property
of the function z%9 (given that deg is odd). We illustrate
how to construct the bounding linear functions in Figure 8.
For the upper bound function, we start with the horizontal
line ¥y = (Tymaz)™9 and then rotate-down the line until its
left-hand-side hits the function 2%°9. For the lower bound
function, we start with the horizontal line y = (i)Y
and then rotate-up the line until its right-hand-side hits the
function £9¢9. The parameters of these lines can be derived
by mathematical techniques.

Jfunction value
1

i rotate down E
-) bO“ﬂ,
05 e)

mfﬁoﬂ

ful

-1.0 ound 0.5

EMX)

70, ver b

functio"

i rotate up
' -0.5

' |
X Xmax

min

Fig. 8: Lower and upper bound functions for z3

The above idea is also applicable to the sigmoid kernel be-
cause it is also a monotonic increasing function. The tightness
of all these bound functions depends on x,,;, and X4z

V. EXPERIMENTAL EVALUATION

We introduce the experimental setting in Section V-A.
Next, we demonstrate the performance of different methods in
Section V-B. Then, we compare the tightness of KARL and

SOTA bound functions in Section V-C. After that, we perform
experimental analysis of our index-tuning method (KARL,y)
in Section V-D. Next, we compare different methods for in-situ
applications in Section V-E. Lastly, we extend our techniques
to combine with polynomial kernel function in Section V-F.

A. Experimental Setting

1) Datasets: For Type-1, Type-1I, Type-1II weighting, we
take the application model as kernel density estimation, 1-class
SVM, and 2-class SVM, respectively. We use a wide variety of
real datasets for these models, as shown in Table VI. The value
Nrqw denotes the number of points in the raw dataset, and the
value d denotes the data dimensionality. The source/reference
for each dataset is also provided. These datasets either come
from data repository websites [2], [8] or have been used in
recent papers [15], [13].

For Type-I weighting, we follow [15] and use the Scott’s
rule to obtain the parameter . Type-II and Type III datasets
require a training phase. We consider two kernel functions:
the Gaussian kernel and the polynomial kernel. We denote
the number of remaining points in the dataset after training as

9auss and n?°!Y for the Gaussian kernel and the polynomial
kernel respectively.

The LIBSVM software [8] is used in the training phase. The
training parameters are configured as follows. For each Type-
IT dataset, we apply 1-class SVM training, with the default
kernel parameter v = é [8]. Then we vary the training model
parameter v from 0.01 to 0.3 and choose the model which
provides the highest accuracy. For each Type-III dataset, we
apply 2-class SVM training with the automatic script in [8] to
determine the suitable values for training parameters.

TABLE VI: Details of datasets

l Model l Raw dataset l Nraw ‘ngf:dsesl l fnoll)zel l d ‘
mnist [8] 60000 n/a n/a (784

Type I: |miniboone [2] [119596 | n/a n/a |50
kernel home [2] 918991 n/a n/a 10
density susy [2] 4990000 | n/a n/a |18
Type II: | nsl-kdd [1] | 67343 | 17510 | 6738 |41
1-class | kdd99 [2] [972780 [19461 [19462 [41
SVM | covtype [8] [581012 [25486 | 14165 |54
Type III: | ijcnnl [8] 49990 | 9592 | 9706 |22
2-class a9a [8] 32561 | 11772 | 15682 123
SVM [covtype-b [8] [581012 [310184 [323523 [54

2) Methods for Comparisons: SCAN is the sequential scan
method which computes Fp(q) without any pruning. Scikit-
learn (abbrev. Scikit) is the machine learning library which
supports the approximate KDE problem [16] (i.e., query type
I-e) and handles SVM-based classification (by LIBSVM [8]),
i.e., query type I-7, types II-7 and III-7. SOTA is the state-
of-the-art method which was developed by [15] for handling
the Kernel Density Classification problem, i.e., I-7 query. We
modify and extend their framework to handle other types of
queries. Our KARL follows the framework of [15], combining
with our linear bound functions, LBx arr, and UBg ARL.-
Both SOTA and KARL can work seamlessly with various
index-structures. The space complexity of all these methods

are O(|P|d). Even for the largest tested dataset (susy), the
memory consumption is only at most 1.34GBytes.

For the indexing options, kd-tree [31] and ball-tree [34],
[29] are currently supported by Scikit. We only report the best
result of Scikit (denoted as Scikity.s). For consistency, we also
evaluate SOTA and KARL with these two indices. KARL can
automatically choose suitable index and leaf capacity among
these two indices, which we called KARL,,,. To demonstrate
our effectiveness compared with SOTA, we select the best
index with the best leaf capacity during the comparison in
later sections, which we denote it by SOTApy. For in-situ
application, we combine the online-tuning method with KARL
which we called KARLSMi" We also compare this method
with the best performance of SOTA for this scenario, which
we term it as SOTAg‘;;i[“e.

We implemented all algorithms in C++ and conducted
experiments on an Intel i7 3.4GHz PC running Ubuntu. For
each dataset, we randomly sample 10,000 points from the
dataset as the query set Q. Following [15], we measure the
efficiency of a method as the throughput (i.e., the number of
queries processed per second).

B. Efficiency Evaluation for Different Query Types

We test the performance of different methods for four types
of queries which are I-¢, I-7, II-7 and III-7. The parameters
of these queries are set as follows.

Type I-e. We set the relative error € = 0.2 for each dataset.

Type I-7. We fix the mean value u of Fp(q) from the set @,
ie, =73 4coFr(a)/|Q] as the threshold 7 for each dataset
in Table VII.

Types II-7 and III-7. The threshold 7 can be obtained during
the training phase.

TABLE VII: All methods for different types of queries
[Type [Datasets [SCAN [LIBSVM [Scikitpes [SOTApest [KARLauo |

miniboone | 36.1 n/a 36 16.5 301
I-e home 15.2 n/a 11.9 36.2 187
susy 2.02 n/a 1.17 0.77 13.2
miniboone | 36.1 34 n/a 102 510
I-7 | home 152 14.1 n/a 932 258
susy 2.02 1.86 n/a 3.58 83.4

nsl-kdd | 283 481 n/a 748 20668

II-7 | kdd99 260 520 n/a 1269 11324
covtype | 158 462 n/a 448 6022

ijennl 903 1170 n/a 1119 826928

-7 a9a 162 610 n/a 546 6885
covtype-b | 13 38.4 n/a 33.9 274

Table VII shows the throughput of different methods for
all types of queries. In the result of query type I-e, SCAN
is comparable to Scikityeyy and SOTApey since the bounds
computed by the basic bound functions are not tight enough.
The performance of Scikityey and SOTApe is affected by
the overhead of the loose bound computations. KARLgye
uses our new bound functions which are shown to provide
tighter bounds. These bounds lead to significant speedup in
all evaluated datasets, e.g., KARL,y, is at least 5.16 times
faster than other methods.

For the type I-7 threshold-based queries, our method
KARL,y, improves the throughput by 2.76x to 21.2x when
comparing to the runner-up method SOTA. The improvement
becomes more obvious for type II-7 and type III-T queries.
The improvement of KARL,,, can be up to 738x as compared
to SOTA. KARL,,, achieves significant performance gain for
all these queries due to its tighter bound value compared with
SOTA.

Sensitivity of 7. In order to test the sensitivity of threshold 7
in different methods, we select seven thresholds from the range
VZaco(Fr(@) — n)?/1Q] is
the standard deviation. Figure 9 shows the results on three
datasets. As a remark, for the miniboone dataset, we skip the
thresholds 1 — o and p — 20 as they are negative. Due to
the superior performance of our bound functions, KARLgy,
outperforms SOTAyps by nearly one order of magnitude in
most of the datasets regardless of the chosen threshold.

w— 20 to p+ 40, where o =

Sensitivity of e. In Scikit-learn library [30], we can select
different relative error €, which is called as tolerance in the
approximate KDE. To test the sensitivity, we vary the relative
error € for different datasets with query type I-e. If the value
of € is very small, the room for the bound estimations is very
limited so that neither KARL,,, nor SOTAy perform well in
very small € setting (e.g., 0.05). For other general € settings,
our method KARL,y, consistently outperforms other methods
by a visible margin (c.f. Figure 10).

Sensitivity of dataset size. In the following experiment,
we test how the size of the dataset affects the evaluation
performance of different methods for both query types I-e and
I-7. We choose the largest dataset (susy) and vary the size
via sampling. The trend in Figure 11 meets our expectation;
a smaller size implies a higher throughput. Our KARL,,, in
general outperforms other methods by one order of magnitude
in a wide range of data sizes.

Sensitivity of dimensionality. In this experiment, we choose
the dataset (mnist) with the largest dimensionality (784) and
then vary the dimensionality via PCA dimensionality reduction
as in [15]. The default threshold 7 = p is used. As shown
in Figure 12, our method KARL,,, consistently outperforms
existing methods under different dimensionalities.

C. Tightness of Bound Functions

Recall from Section III, we have theoretically shown that
our developed linear bound functions LBgarr and UBgagry are
tighter than SOTA bound functions. In this section, we explore
how tight our bound functions can be better than SOTA in

practice.

For the sake of fairness, we fix the tree-structure to be the
kd-tree with leaf capacity 80. We use the following equation
to measure the average tightness of bound values.

Error -1 i Z ZR]’ €R, bound(q, R;) — Fr(q)
R =t Fr(a)

where R; denotes the set of entries (cf. Figure 2) in the [th
level of kd-tree (with L levels in total).

SCAN O

SOTAbest ’

KARL g0 &

o
W

(

gllput (Qusrles/seg
o

glg_put (QUSFIGS/S E)
o

gh_put (Qusrles/seg
o

= 3 =
e 8 e
FEIOO L L L L L FEIOD L L L L L FEIOO L L L L L
U-0 p-050 p p+0.50 p+o p+1.50 p+20 U-20 p-0 1] H+0 p+20 P+30 P+40 U-26 p-0 1] U+0 p+20 p+30 p+40
Threshold T Threshold T Threshold T
(a) miniboone (b) home (c) susy
Fig. 9: Query throughput with query type I-7, varying the threshold 7
10* T T T E 103 T T 3 102 E
7103 E g 1)
-] $102 /A//j £ 10l E 4
S] 3 4] <
S : z] 1
2 g 2 4 2
§ 1"*4’_'kg‘—4"_’< .§‘101 3 E -§’ 10° M
10* £ E E|
100 1 1 1 1 100 1 1 1 101 1 1 1 1
005 0.1 015 02 025 03 005 01 015 0.2 025 0.3 0.05 0.1 0.15 0.2 025 03
€ € €
(a) miniboone (b) home (c) susy
Fig. 10: Query throughput with query type I-¢, varying the relative error €
3
103 T T T 102 10 Uésom — ‘UBKARL e

=
o
A

—
o
E)

Throughput (Queries/sec)
Throughput (Queries/sec)

i

—
<

4 5

N
4]
—-

2

3 3
Size (x106) Size (x106)

(a) type I-7, fixing 7 = (b) type I-¢, fixing € = 0.2

Fig. 11: Query throughput on the susy dataset, varying the
dataset size

=
o
W

—
o
o

—
o
=N

Throughput (Queries/sec)

32 64 128 256 512 784

dimensionality
Fig. 12: Query throughput with query type I-7 (7 =) on the
mnist dataset, varying the dimensionality

Our bound functions are in practice much tighter than
LBsora and UBsora in all evaluated datasets, especially
for LBgagrL, as shown in Figure 13. In addition, the bound
functions (of SOTA and KARL) provide very tight bounds
for query types II and III. There are two reasons for this
phenomenon, including the data distribution and data nor-

home
Datasets

miniboone

home

Datasets

miniboone susy

Erroryg

nsl-kdd kdd99 covtype nsl-kdd kdd99 covtype
Datasets Datasets
100 T T T 101
10t |
o 0102 f
517 F 5
I.It.l 103 F E
103 ¢
104 F
105 X 04 =
ijcnnl a%a covtype-b ijcnnl a% covtype-b
Datasets Datasets

Type-I (1st row); Type-II (2nd row); Type-III (3rd row)
Fig. 13: Erroryp and Erroryp for Type-1, II and III queries

malization. First, the data points of types II and III are the
support vectors (being trained by SVM), which are the nearest
points to the decision boundary [32] and are very close to each
other. Second, the set of support vectors are normalized to the

domain [0, 1]¢ [8]. This limits the range of possible values of
the exponential function so that the lower and upper bounds
are close to the exact value.

D. Offline Index Tuning

Recall from Figure 2, different indexing structures can be
applied to our problems. One natural question is how can
we predict the suitable index-structure. In this section, we
demonstrate our offline tuning method KARL,, (cf. Section
II-C), which automatically selects the best tree-structure with
the suitable leaf capacity from kd-tree [31] and ball-tree [34],
[29]. These two tree-structures are currently supported by
Scikit-learn library [30].

Our solution KARL,y, randomly samples 1000 vectors,
denoted by the sample set .S, from each dataset and predicts
the performance based on the throughput, using different leaf
capacities of tree. Table VIII shows that in the offline stage, our
method KARL,, can provide good prediction which yields
an online throughput near the best solution KARLjp.g.

TABLE VIII: Query throughput for variants of KARL, using
sample set with |.S| = 1000

[Type | Datasets | KARLworst | KARLauo | KARLpey |

miniboone 88.1 302 304

I-e home 35.9 185 188
susy 5.5 12.9 13.3
miniboone 64.8 514 566

I-7 home 76.6 258 258
susy 16.7 84 89
nsl-kdd 4357 20668 20677

1I-r kdd99 5911 11324 11325
covtype 915 6022 6038
ijjennl 388109 826928 843601

nr-r a9a 408 6885 6891
covtype-b 52 274 277

E. Online Index Tuning for In-situ Applications

In some online learning scenarios [12], [26], [22], we may
not be able to pre-build the index. Thereby, we cannot simply
omit the index construction time. In this section, we consider
our online-tuning solution KARLZMI"® (cf, Section III-C). All
results are shown in Table IX.

For query types I-e and I-7, SOTAMM g not efficient
because its bounding functions are not tight (recall from Figure
6). Our method KARLSMM outperforms existing methods
significantly on all tested datasets.

For query types II-7 and III-7, our KARL® can signif-
icantly increase the throughput in several datasets since each

support vector in a dataset is near to each other.

F. Efficiency for Polynomial Kernel

Recall from Section IV-B, our linear bound functions can
be also used for polynomial kernel. In this section, we experi-
mentally test the online query throughput with query types II-7
and III-7. We use the polynomial kernel with degree 3 which
is the default setting in LIBSVM [8]. We also normalize the
datasets to the domain [—1, 1]¢ [8]. Then, we apply the same
setting in the training phases in 1-class and 2-class SVM which

TABLE IX: In-situ solutions for different types of queries

[Type | Datasets | baseline | SOTAJMN® [KARLIMe

miniboone 36.1 16.4 217

I-e home 35.8 32.1 184
susy 2.02 0.75 7.26
miniboone 36.1 101 419

I-r home 152 92.1 243
susy 2.02 3.57 51

nsl-kdd 481 733 9869

- kdd99 260 1264 7920
covtype 462 439 2389
ijennl 1170 1112 426132

-7 a%a 610 543 1966
covtype-b 38.4 33.5 101

are stated in Section V-B. Table X shows that our method
KARL,, outperforms SOTAy. by 3x to 165x.

TABLE X: Query throughput with query type IV/III-7 using
polynomial kernel

[Type | Datasets [baseline | SOTApest | KARLauto |

nsl-kdd 909 1200 4522
- kdd99 314 639 2741
covtype 537 6423 88396
ijennl 1154 1122 185372
-7 a%a 463 422 2813
covtype-b 36.4 30.5 187

VI. RELATED WORK

The term “kernel aggregation query” abstracts a common
operation in several statistical and learning problems such as
kernel density estimation [16], [15], 1-class SVM [28], and
2-class SVM [32].

Kernel density estimation is a non-parametric statistical
method for density estimation. To speedup kernel density
estimation, existing works would either compute approximate
density values with accuracy guarantee [29] or test whether
density values are above a given threshold [15]. Zheng et
al. [37] focus on fast kernel density estimation on low-
dimensional data (e.g., 1d, 2d) and propose sampling-based
solutions with theoretical guarantees on both efficiency and
quality. On the other hand, [29], [15] assume that the point
set P is indexed by a k-d tree, and apply filter-and-refinement
techniques for kernel density estimation. The library Scikit-
learn [30] adopts the implementation in [29]. Our proposal,
KARL, adapts the algorithm in [29], [15] to evaluate ker-
nel aggregation queries. The key difference between KARL
and [29], [15] lies in the bound functions. As explained in
Section III-B, our proposed linear bound functions are tighter
than existing bound functions used in [29], [15]. Furthermore,
we extend our linear bound functions to deal with different
types of weighting and kernel functions, which have not been
considered in [29], [15].

SVM is proposed by the machine learning community to
classify data objects or detect outliers. SVM has been applied
in different application domains, such as document classifica-
tion [28], network fault detection [36], [4], [3], anomaly/outlier
detection [7], [24], novelty detection [19], [27], [33], tumor

samples classification [10], image classification [9], time series
classification [21]. The typical process is divided into two
phases. In the offline phase, training/learning algorithms are
used to obtain the point set P, the weighting, and parameters.
Then, in the online phase, threshold kernel aggregation queries
can be used to support classification or outlier detection.
Two approaches have been studied to accelerate the online
phase. The library LibSVM [8] assumes sparse data format
and applies inverted index to speedup exact computation. The
machine learning community has proposed heuristics [20],
[18], [23], [25] to reduce the size of the point set P in the
offline phase, in order to speedup the online phase. However,
these heuristics may affect the prediction quality of SVM. Our
proposed bound functions have not been studied in the above
work.

VII. CONCLUSIONS

In this paper, we study kernel aggregation queries, which
can be used to support a common operation in kernel den-
sity estimation [16], [15], 1-class SVM [28], and 2-class
SVM [32].

Our key contribution is the development of fast linear
bound functions, which are proven to be tighter than existing
bound functions, yet allowing fast computation. In addition,
we propose a comprehensive solution that can support dif-
ferent types of kernel functions and weighting schemes. Our
automatic tuning methods support identification of efficient
index structure, which depends on the underlying point set P.

Experimental studies on a wide variety of datasets show that
our solution yields higher throughput than the state-of-the-art
by 2.5-738 times.

A promising future research direction is to consider more
statistical/learning tasks based on kernel functions, e.g., kernel
regression and multi-class kernel SVM.

REFERENCES

[1] Nsl-kdd dataset. https://github.com/defcom17/.

[2] UCI machine learning repository. http://archive.ics.uci.edu/ml/index.
php.

[3] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network anomaly
detection: Methods, systems and tools. [EEE Communications Surveys
and Tutorials, 16(1):303-336, 2014.

[4] A. L. Buczak and E. Guven. A survey of data mining and machine
learning methods for cyber security intrusion detection. /EEE Commu-
nications Surveys and Tutorials, 18(2):1153-1176, 2016.

[5] T. N. Chan, M. L. Yiu, and K. A. Hua. A progressive approach for
similarity search on matrix. In SSTD, pages 373-390. Springer, 2015.

[6] T. N. Chan, M. L. Yiu, and K. A. Hua. Efficient sub-window nearest
neighbor search on matrix. IEEE Trans. Knowl. Data Eng., 29(4):784—
797, 2017.

[7]1 V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1-15:58, 20009.

[8] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/
~cjlin/libsvm.

[91 Q. Chen, Z. Song, J. Dong, Z. Huang, Y. Hua, and S. Yan. Contex-

tualizing object detection and classification. IEEE Trans. Pattern Anal.

Mach. Intell., 37(1):13-27, 2015.

H.-S. Chiu and et al. Pan-Cancer Analysis of IncRNA Regulation

Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell

Reports, 23(1):297-312, Apr. 2018.

[10]

(11]

(12]

[13]

[14]

[15]
[16]
(17]
(18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]
[28]
[29]

(30]

(31]

[32]

[33]

[34]
[35]

[36]

[37]

K. Cranmer. Kernel estimation in high-energy physics. 136:198-207,
2001.

M. Davy, F. Desobry, A. Gretton, and C. Doncarli. An online support
vector machine for abnormal events detection. Signal Processing,
86(8):2009-2025, 2006.

R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui. A com-
parative evaluation of outlier detection algorithms: Experiments and
analyses. Pattern Recognition, 74:406-421, 2018.

B. J. Ferdosi, H. Buddelmeijer, S. C. Trager, M. H. F. Wilkinson, and
J. B. T. M. Roerdink. Comparison of density estimation methods for
astronomical datasets. Astronomy and Astrophysics, 2011.

E. Gan and P. Bailis. Scalable kernel density classification via threshold-
based pruning. In ACM SIGMOD, pages 945-959, 2017.

A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward
computational tractability. In SDM, pages 203-211, 2003.

O. Giiler. Foundations of Optimization. Graduate Texts in Mathematics.
Springer New York, 2010.

C. Hsieh, S. Si, and I. S. Dhillon. Fast prediction for large-scale kernel
machines. In NIPS, pages 3689-3697, 2014.

C. Huang, G. Min, Y. Wu, Y. Ying, K. Pei, and Z. Xiang. Time series
anomaly detection for trustworthy services in cloud computing systems.
IEEE Trans. Big Data, 2017.

H. G. Jung and G. Kim. Support vector number reduction: Survey
and experimental evaluations. IEEE Trans. Intelligent Transportation
Systems, 15(2):463-476, 2014.

A. Kampouraki, G. Manis, and C. Nikou. Heartbeat time series
classification with support vector machines. IEEE Trans. Information
Technology in Biomedicine, 13(4):512-518, 20009.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with
kernels. In NIPS, pages 785-792, 2001.

Q. V. Le, T. Sarlés, and A. J. Smola. Fastfood - computing hilbert space
expansions in loglinear time. In ICML, pages 244-252, 2013.

B. Liu, Y. Xiao, P. S. Yu, L. Cao, Y. Zhang, and Z. Hao. Uncertain
one-class learning and concept summarization learning on uncertain data
streams. IEEE Trans. Knowl. Data Eng., 26(2):468-484, 2014.

Y. Liu, Y. Liu, and Y. Chen. Fast support vector data descriptions
for novelty detection. IEEE Trans. Neural Networks, 21(8):1296-1313,
2010.

J. Lu, S. C. H. Hoi, J. Wang, P. Zhao, and Z. Liu. Large scale online
kernel learning. Journal of Machine Learning Research, 17:47:1-47:43,
2016.

J. Ma and S. Perkins. Time-series novelty detection using one-class
support vector machines. In IJCNN, pages 1741-1745, 2003.

L. M. Manevitz and M. Yousef. One-class svms for document classifi-
cation. Journal of Machine Learning Research, 2:139-154, 2001.

A. W. Moore. The anchors hierarchy: Using the triangle inequality to
survive high dimensional data. In UAI pages 397-405, 2000.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
Plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

H. Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann. 2006.

B. Scholkopf and A. J. Smola. Learning with Kernels: support
vector machines, regularization, optimization, and beyond. Adaptive
computation and machine learning series. MIT Press, 2002.

B. Scholkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.
Platt. Support vector method for novelty detection. In NIPS, pages 582—
588, 1999.

J. K. Uhlmann. Satisfying general proximity/similarity queries with
metric trees. Inf. Process. Lett., 40(4):175-179, 1991.

M. Wand and M. Jones. Kernel Smoothing. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability. Taylor & Francis, 1994.
L. Zhang, J. Lin, and R. Karim. Adaptive kernel density-based
anomaly detection for nonlinear systems. Knowledge-Based Systems,
139(Supplement C):50 — 63, 2018.

Y. Zheng, J. Jestes, J. M. Phillips, and F. Li. Quality and efficiency
for kernel density estimates in large data. In SIGMOD, pages 433-444,
2013.

