
JOURNAL OF INTERNET OF THINGS, VOL. , NO. , 1

GROLO: Realistic Range-based Localization for
Mobile IoTs through Global Rigidity

Hejun Wu, Member, IEEE, Zhimin Ding, and Jiannong Cao, Fellow, IEEE

Abstract—We study the realistic problem of range-based lo-
calization for mobile Internet of Things (IoTs) without using
GPS. This problem arises from the real-world applications and
is characterized by the following three challenges: (1) Inaccurate
devices, such as the low cost motion sensors and moving parts
in the mobile IoT nodes, make it infeasible to localize the nodes
using their speed and direction. (2) When a team of IoT nodes
keep moving, some nodes may get lost and be disconnected from
the network due to the large accumulated errors in the distances.
(3) Although the theory of global rigidity ensures the position
uniqueness of nodes, there are still non-localizable nodes in a
globally rigid graph. To address these challenges, we propose
a distributed localization protocol, called GROLO. GROLO
is able to perform efficient distributed localization through
an adaptive global rigidity formation maintenance mechanism
especially designed for the resource limited IoT nodes. GROLO
is able to localize all of the nodes periodically in a mobile IoT
by short distance adjustment. Furthermore, GROLO requires
only necessary additional neighbor distance measurements. We
evaluated GROLO and other localization protocols using both
simulated nodes and ten real mobile nodes in an IoT. The results
show that GROLO is promising for the localization and formation
control with inaccurate mobile IoTs in realistic environments.

I. INTRODUCTION

Many real-world mobile sensing or monitoring applications
require sensors moving with devices under in-door environ-
ment conditions such as stations or airports where GPS devices
fail. A cluster of mobile IoT nodes are desired because of their
coordinated but distributed nature and higher robustness than
a single robot. A variety of tasks in the in-door environments,
including underwater sensing, building structure health moni-
toring, disaster rescue assistance, moving object tracking and
other operations need mobile IoTs [5]. In comparison with
stationery wireless sensor networks (WSNs), mobile IoTs have
the following advantages: (1) moving sensing points; (2) self-
charging; (3) low cost and (4) multi-purpose [1].

The current robots are not suitable for the above applica-
tions. Firstly, the robots are too expensive to be deployed
as a team to cooperatively perform a task. The price of an
accurately moving robot is about tens of thousands times
to that of a moving IoT node using the moving parts like
toys. Secondly, the expensive parts of robots may not work
in the realistic applications of IoTs. The IoT application
environments are usually not ideal, e.g., slippery grounds or

Hejun Wu is the corresponding author: wuhejun@mail.sysu.edu.cn. Hejun
Wu and Zhimin Ding are with Guangdong Key Laboratory of Big Data
Analysis and Processing, Department of Computer Science, Sun Yat-sen
University, Guangdong, China

Jiannong Cao is with Department of Computing, Hong Kong Polytechnic
University, Hong Kong, China

rough floors due to incidents or disasters. As a result, the
motion information would be inaccurate and the expensive
Inertial Navigation Systems (INSs) cannot work. Finally, the
deployment areas are too wide or the walls / backgrounds
are too similar for a robot / a human to differentiate two
locations using vision matching. Consequently, laser-radars or
video cameras are not quite useful in these applications.

In the mobile sensing applications, dynamic localization and
the corresponding moving monitoring are the desired tasks for
IoTs. However, the motion sensors, such as directional and
velocity monitors, are not accurate due to the device errors,
noises and environment unevenness. The inaccurate moving
information results in large accumulated errors in calculating
the positions of the mobile IoT nodes. The size, cost and
power constraints represent further challenges for distributed
protocols of localization, since the limited communication and
sensing ranges often require multi-hop communication and
connectivity maintenance [11].

Our main contributions in this work are threefold: (1) We
propose the minimal necessary conditions for a node to be
localized in a globally rigid graph. These conditions signifi-
cantly reduce the complexity of localization compared with the
previous complex conditions. (2) We design a new formation
control strategy that is capable of maintaining the connectivity
of the edges in the globally rigid graph. (3) We evaluate our
proposed GROLO protocol using both simulated and real-
world IoT nodes. The experimental results demonstrate the
superior accuracy of GROLO.

The organization of this paper is as follows. Section 2
provides a brief overview of the concepts of rigidity theory
and the related studies as the preliminaries of this work. In
Section 3, we introduce our extension of rigidity theory and
summarize it into a theorem. The strategy for a distributed
global rigidity construction and maintenance protocol using
our proved theorem is presented in Section 4. The simulation
and experimental results are reported in Section 5. Finally, the
detailed reviews of the related studies and concluding remarks
are presented in Section 6 and Section 7.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

First, the notations used in this paper are listed in Table I:
Conditions: A mobile IoT is deployed in a space without

GPS signals, and the mobile nodes connect via multi-hop
wireless communication. Initially, the nodes are deployed
around the entrance to the space. The entrance is denoted as
(0,0) and the exit point, as (x, y). At least three non-collinear

The following publication H. Wu, Z. Ding and J. Cao, "GROLO: Realistic Range-Based Localization for Mobile IoTs Through Global Rigidity,"
in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5048-5057, June 2019 is available at https://doi.org/10.1109/JIOT.2019.2895127.

This is the Pre-Published Version.

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

2 JOURNAL OF INTERNET OF THINGS, VOL. , NO. ,

TABLE I
NOTATIONS

Notation Description
G(t) weighted graph at time t
F framework of a graph
N set of graph’s nodes
E set of graph’s edge
Q configuration of framework
Ed d dimensional space
p′
i estimated coordinate vector of node i

p′
j estimated coordinate vector of node j

d′i j estimated distance between node i and node j
JG(x, y) Jacobin matrix
HF(x, y) Hessian matrix
∇F(x, y) gradient of the function F

θ deviates in angle when moving
∆v deviates in velocity vector
∆d current position deviation

∆dM upper bound in position deviation
∆dm lower bound in position deviation
∆H threshold to adjust the formation

nodes (i.e., the nodes are not on the same line) are deployed
with known positions. These nodes are called the beacons. The
remaining nodes do not know their own positions, but they can
receive the information of positions of the beacons from the
network broadcast. Each node can measure the distances to its
single-hop neighbors using wireless signals but does not have
accurate measurements of its velocity (speed and direction). To
be realistic, the environment is not equipped with positioning
devices or mapping points.

Problem: move the mobile IoT nodes from the entrance to
the exit, following a predefined route.

Limitations: In applications requiring a mobile IoT, the
network deployment area is usually large. As a result, the
node communication range d is far smaller than the width
x and length y of the area. The direction sensors and motion
sensors are not accurate, as real complex environments often
causes oscillation and skidding of the node moving parts.
Furthermore, the nodes cannot use the walls and stationery
objects that are too far away for localization. Finally, due to
the large area, the nodes cannot be densely deployed due to
the high cost and low efficiency.

B. Global Rigidity and Localization

We model a cluster of mobile IoT nodes as a weighted
graph, G(t), at time t. In G(t), the weight of each edge is the
distance between the two nodes connected by the edge.

Framework and Rigidity: Given the nodes, edges, and
weights, a weighted graph can be realized in different shapes
in a space. A framework is such a shape realization of a
graph. For instance, Fig.1 shows two different frameworks for
a weighted graph, with four nodes and four edges weighted 3,
4, 3.16, and 5, respectively.

A framework of a graph G(t) is denoted as F = (N , E, P),
where N is the set of graph nodes, and E is the edge set. An

Fig. 1. Frameworks of a weighted graph

edge ei j indicates that nodes i and j are connected (i, j ∈ N ,
e ij in E). P is called the configuration of framework F . P =
(p1, p2, p3, · · · , pn) in Rd . Here, Pi is the vector from the point
of node i (i ∈ N) to the center of F , which is designated as
vector 0.

Two frameworks F1 = (N , E, P) and F2 = (N , E, Q)
are equivalent if the following conditions are true: (1) F1 and
F2 are formed by the same node set and edge set: N , E.
(2) ||pi− p j|| = ||qi− q j||, where i, j ∈ N and ei, j ∈ E, P =
(p1, p2, p3, · · · , pn), Q= (q1,q2,q3, · · · ,qn). F1 and F2 are the
equivalent frameworks of the same graph G(t) since their node
set, edge set, and edge weights are the same as those of G.
Note that P and Q are not the same.

A connected graph G(t) is rigid in Ed if G(t) has a finite
number of equivalent frameworks in Ed , where Ed is the d-
dimensional Euclidean space. The graph shown in Fig.2(a) is
a rigid graph in E2 (two-dimensional plane), as it has a finite
number of frameworks (two possible frameworks in total) in
a E2 plane. By contrast, Fig.2(b) shows a f lexible graph, as
it has an infinite number of frameworks.

(a)rigid graph (b)flexible graph

Fig. 2. Frameworks of a rigid graph and a flexible graph

As shown in Fig.2(a), the above generic rigidity is not
sufficient to localize a node in a network since a rigid
graph has several frameworks with different configurations.
These different configurations specify a number of candidate
coordinate vectors (positions) for a single node in the rigid
graph, even if the positions of the other nodes are all fixed.
For instance, in the graph of Fig.2(a), moving the right corner
node from the current position to the upper candidate position
does not change the lengths of the existing edges of the graph.
Hence, we need to further confine the rigidity by the global
rigidity.

Global Rigidity: Before illustrating the concept of global
rigidity, we need to define congruent: Two equivalent frame-
works F1 = (N , E, P) and F2 = (N , E, Q) are con-
gruent if their configurations P and Q are congruent. Two
configurations P and Q are congruent if |P| = |Q| and
||pk− pm||= ||qk−qm||, k,m ∈N and ek,m /∈ E .

Given the above graph and framework models, the global
rigidity of a node graph instance G(t) is the following property:
any two frameworks of G(t) are congruent. In a globally
rigid graph, the configurations of all frameworks are the same.
Hence, in the globally rigid graph G(t), a node has a unique
coordinate vector candidate satisfying the distance constraints
between it and other nodes, when the coordinates of the other

wu et al.: GROLO: REALISTIC RANGE-BASED LOCALIZATION FOR MOBILE IOTS THROUGH GLOBAL RIGIDITY 3

nodes are fixed. The distance constraints are specified by the
weights of graph G(t).

Our previous studies have proven that in E2, if a graph
satisfies: (1) globally rigid and (2) three non-collinear beacons,
then all nodes in the graph are localizable [17]. As shown in
Fig. 3, a unique pair of coordinates satisfy the constraints in
E2, given the coordinates of three nodes.

Fig. 3. Global rigidity

The global rigidity ensures unique coordinate vector (po-
sition) for each node (localizablity). Next, we present our
approach to localization.

III. RANGE-BASED LOCALIZATION VIA GLOBAL RIGIDITY

In accordance with the problem formulation in the previous
section, we assume that three beacon nodes exist in a network.
The beacons are initially deployed to form a triangle so that
they are not on the same line. The nodes construct a fully
connected graph through wireless communication.

Determining whether an arbitrary graph within the network
is globally rigid is an NP-hard problem. We use our previous
Triangle Extension (TE) approach to construct a globally
rigid graph, to reduce the problem complexity [17]. In
TE, initially two of the three beacons (which may not be
single-hop neighbors) start a triangle extension operation by
informing their neighbors to extend them. Then, the single-
hop neighbors of the two beacons can perform the triangle
extension operation. In Fig. 4, the extension operations of TE
are shown in steps (1)-(4), where B1, B2, and B3 are beacons:

(1) a extends B1 and B2 (B1 and B2 become a’s parents);
(2) b extends a and B2 (a and B2 become b’s parents);
(3) c extends a and b (a and b become c’s parents);
(4) B3 extends f and e, after extensions by d, e, and f .

The theorem of globally rigid graph determination in our
previous study [17] can be used to prove that the constructed
graph in Fig. 4 is globally rigid.

d2

d3
d1

d4

d5

d6

d9d7

d8 d12

d10

d11 d13

d14

d15

b

a c

B1

B2

B3

d

e

f

Fig. 4. Globally rigid graph constructed using TE

Upon the completion of the extensions by TE, a node
initially deployed too far away from the others may not be
included in the globally rigid graph. This problem can be
addressed by contracting: The lost nodes move towards the
center of the graph framework until they find at least two
neighbors in the globally rigid graph. Subsequently, a lost

node can extend these two neighbors as its parents and join the
globally rigid graph. This contracting operation is performed
in our GROLO protocol as presented next.

Nonetheless, as has been demonstrated before, the pair of
coordinates of each node is only theoretically unique even in
a globally rigid graph [26]. Next, we show our attempts to
localize the nodes in a globally rigid graph. We prove the
theorem of minimal necessary conditions for accurate node
localization. Our GROLO protocol then integrates this theory
to accurately localize and to control the inaccurately moving
nodes as a team to their destination.

IV. GROLO PROTOCOL

For the sake of successful mobile IoT localization, the
localizability of the IoT nodes should be maintained while the
nodes are moving without GPS; otherwise, the nodes might be
no longer localizable after a while due to the device inaccuracy
and environment noises. Also, because of the accumulated
distance errors during moving, the coordinate vector of each
node should be calculated periodically. Therefore, our GROLO
is composed of two parts to perform two tasks: localization
processing (GROLO-LP) for periodic localization and forma-
tion control (GROLO-FC) for moving towards the destination
and distance adjustment for localizability.

A. GROLO-LP

GROLO-LP (Localization processing) in a mobile IoT is
essentially an optimization algorithm, since its objective is to
minimize the calculated position errors for each IoT node.
Hence, GROLO-LP includes the following three stages for
position estimation and optimization:

(1) Estimation: Estimate the coordinate vector of a node
using a distance vector (DV);
(2) Optimization: Cross-validate the coordinate vector of a
node with the information from all its neighbors using the
gradient decent method;
(3) Localization: Calculate the exact position on the basis of
the edge lengths of the triangles in a globally rigid graph
using the Gauss-Newton method.

In the first stage of GROLO-LP, the coordinate vector of
each node in a graph is estimated using the hop distance
(distance vector) between the node and a beacon node. The
simple equation d′i j = ||p′

i − p′
j || calculates the estimated

distance d′i j based on the estimated coordinates p′
i and p′

j

of node i and its neighbor j. Fig.5 shows an example network
topology and the coordinate vector estimated in this stage. As
shown in the figure, this step is unable to obtain satisfactory
accuracy.

As specified in the assumption, the distance between single-
hop neighbors can be measured; hence, the estimated coor-
dinate vector is cross-validated using the measured distance.
As the DV method is not accurate [8], we use the gradient
descent method to minimize Li = Σ j∈N (i)(d′i j−di j)

2, where
N (i) is the neighbor set of i, and di j is the measured distance
between nodes i and j.

4 JOURNAL OF INTERNET OF THINGS, VOL. , NO. ,

−2 0 2 4 6 8 10
x(m)

−2

0

2

4

6

8

10

y(
m

) 00

11

2

2

33

4
4

5

5

66

77

8

8

99

beacon
real position
estimated position

Fig. 5. DV-distance

However, the gradient descent method sometimes falls into
a local minima, which causes errors. Therefore, in the third
stage, we further reduce the errors using the property of global
rigidity. In a globally rigid graph, a node and its parents
form a triangle, as shown in Fig.4. In this stage, a node uses
the estimated coordinate vector from the last stage and the
distances between itself and the beacons to obtain the global
optimal solution. For instance, in Fig. 4, the coordinate vector
of node a can be solved by the vectors in 4B1B2a, where
v = (xv,yv)

T is a vector, v ∈ {B1B2,a}, d1 = ||B1 −a|| and
d2 = ||B2 −a||:{

(xa− xB1)
2 +(ya− yB1)

2 = d1
2

(xa− xB2)
2 +(ya− yB2)

2 = d2
2 (1)

Since d1 and d2 can be measured, Eq.(1) can be solved via
the Gauss-Newton method. Consider the system of equations
in Eq.(2), and let F(x, y) = 1

2 f 2
1 (x, y) + 1

2 f 2
2 (x, y).

The problem is then transformed into finding (x∗, y∗) that
minimizes F(x, y), as shown in Eq.(3).{

f1(x, y) = (x− x1)
2 + (y− y1)

2 − d2
1

f2(x, y) = (x− x2)
2 + (y− y2)

2 − d2
2

(2)

(x∗, y∗) = argmin
(x, y)

F(x, y) (3)

The Gauss-Newton approach is used to solve Eq.(3) via the
following steps: Given the initial value (x(0), y(0)) the optimal
solution (x∗, y∗) can be iteratively calculated as:

(x(k+1), y(k+1)) = (x(k), y(k)) + hk (4)

until | F(x(k+1), y(k+1)) − F(x(k), y(k)) | < ε , where ε is a
predefined constant, and hk is calculated using the following
equations (5)-(7):

hk = −HF(x(k), y(k))−1
∇F(x(k), y(k)) (5)

HF(x, y) is the Hessian of F(x, y), which is estimated as:

HF(x, y) ≈ JT
G(x, y) JG(x, y) (6)

Finally, ∇F(x, y) is obtained using Eq.(7), where JT
G(x, y) is

the Jacobin.

∇F(x, y) = JG(x, y)
[

f1(x, y)
f2(x, y)

]
(7)

From the above localization calculation steps, we can gen-
eralize a rule to accurately localize an IoT node. This rule is
given in Theorem 1.

Theorem 1. Given a node with an unknown position in E2

and the node extended two position-known nodes as its parents
using TE, the coordinate vector of this node can be accurately
calculated when the following conditions hold: (1) the node
has a position-known neighbor; (2) the neighbor is not on the
same line as its two parent nodes.

Proof. As shown in Fig. 6, the coordinate vector of node A
are unknown. Nodes P and Q are extended by A using TE.
According to the extension rule of TE, the nodes are direct
communication neighbors of A and are also the two parents of
A. Hence, their distances can be measured as shown in Fig. 6.
We can use the Gauss-Newton method to obtain two possible
solutions for the coordinate vector of A, denoted as S1 and S2.

Now, suppose that A has another neighbor R, whose position
is also known. R is not on the connecting or extension line
of P and Q. The distance RA can be measured by nodes
R and A. The correct coordinate vector must satisfy the
constraint of distance RA. Sine there are only two possible
coordinate vectors for A, the coordinate vector of node A can
be determined by using the coordinate vector of R to perform
cross-validation.

Fig. 6. The position of node A, calculated using the positions of its parents
P and Q, can be cross-validated by its neighbour R

In practice, we use the gradient descent method to obtain the
possible coordinate vector for A. Then, we apply the Gauss-
Newton method to A with the coordinates of its neighbors.
When a node cannot be localized, GROLO checks whether
Theorem 1 is satisfied. If not, a formation contracting oper-
ation is conducted to enable the node to be localized. This
operation is presented later in the section of GROLO−FC.

The above three localization stages are formulated in Algo-
rithm 1. Initially, before localization, the globally rigid graph
should be constructed such that the nodes are theoretically
localizable. The globally rigid graph is maintained by the
GROLO-FC so that the IoT nodes can be localized continu-
ously. Then, in the first stage, Line 8 estimates the coordinate
vector of each node based on the coordinates of the beacons
and the hop distances between the IoT node and the beacons.
In the second stage, Lines 9-13 run the gradient descent
method. Finally, Line 15 uses the Gauss-Newton method to
calculate the exact values of the coordinates.

wu et al.: GROLO: REALISTIC RANGE-BASED LOCALIZATION FOR MOBILE IOTS THROUGH GLOBAL RIGIDITY 5

Algorithm 1 GROLO-LP Distributed
1: this is node i:
2: type Node: {id, state, p{x,y}, pt1, pt2, Neighbors }

//p{x,y} is the coordinate vector of the node
//state is beacon, flexible, rigid, localizable

3: type Neighbors[]:{id, state, d, p{x,y} }
//d: distance between this node and the neighbor

4: while not receiving the beacon position messages do
5: wait
6: //pi: the coordinate vector of the current node
7: //Use TE to construct the globally rigid graph
8: ri← newNode //on node i
9: run TE to determine node localizability and estimate ri.p

10: if ri.state is localizable then
11: for j in Neighbors[] and optimization not converge do
12: bj gets Neighbors[j]
13: Li← 1

2
∑m

j=1(ri.d−dist(ri.p,bj .p))
2

14: ri.p← GD(i, j,Li) //gradient descent
15: for parents ri.pt1 and ri.pt2 not NULL do
16: ri.p← Gauss-Newton(ri.p, ri.pt1.p , ri.pt2.p)
17: output ri.p

In summary, our GROLO-LP uses global rigidity to ensure
localizability. The gradient decent is to minimize the estima-
tion errors. The global rigidity and neighbor information are
used for further validation using the Gauss-Newton method.

B. GROLO-FC

This subsection presents the motion control strategy in our
GROLO to maintain the global rigidity formation and to
adjust the node distances for dynamic localization in a moving
mobile IoT. The controlling operation still uses the velocity of
a node, but its inaccuracy is considered.

GROLO-FC includes two phases to satisfy the above re-
quirements: (1) epoch moving phase and (2) position adjust-
ment phase. During the first phase, as long as the global
rigidity is maintained, the nodes can be localized continu-
ously because the GROLO-LP algorithm has constructed the
globally rigid graph and obtained the initial accurate positions
for the mobile nodes. However, as the motion control is
inaccurate, the distances between nodes may become too far or
too close to maintain the links between single-hop neighbors.
Furthermore, obstacles often cause formation changes. Hence,
the second phase adjusts the positions of the nodes so that the
links are not broken.

Specifically, GROLO-FC creates a virtual center (O), which
is defined as the center of the beacons. The coordinate vector
of (O) are defined as the arithmetic mean of the coordinates
of the nB number of beacons:

(xO,yO)
T = (

1
nB

nB∑
j=1

xB j ,
1

nB

nB∑
j=1

yB j)
T (8)

In an epoch moving phase, each node moves towards the
destination with its normal speed. Before moving, a node
ri records the initial vector PiO, where Pi is the position
of ri. When the virtual center moves from O to O′ and,

(a) (b)

(c) (d)

Fig. 7. Distance and direction deviations

subsequently, Pi changes to Pi
′, node i has the new vector Pi

′O′.
The ideal moving pace is Pi

′Pi = O′O, which means that every
node moves with the same velocity vector v. However, this
condition is not realistic due to the inaccurate motion control
of nodes.

In realistic environments, the velocity vector may deviate
to a certain degree, and the speed may be different from the
desired value. Suppose that a node deviates at most Θ (Θ <
45◦) from the specified direction and that its speed range is
[v−∆v,v+∆v]. Fig. 7 shows the possible deviation scenarios
in such circumstances. In Fig. 7, the dashed lines denote the
specified node moving directions and routes. The solid lines
marked with velocities are the real routes followed by the
nodes. d′ is the real distance between two nodes after they
have moved.

Fig.7(a) illustrates the scenario when the movement direc-
tion of two nodes differs from the line direction of d. From
time 0 to time t, the upper bound for the change in distance
∆d of two nodes is ∆d(1)

M = 2t(v+∆v)tan(Θ), and the lower
bound of ∆d(1)

m =−2t(v+∆v)tan(Θ). The scenario of moving
in the line direction is illustrated in Fig.7(b). From time 0
to time t, the upper bound for the change in distance ∆d of
two nodes is ∆d(1)

M = 2t(∆v)cos(Θ), and the lower bound of
∆d(1)

m =−2t(∆v)cos(Θ).

Note that the above analysis is based on the assumptions
that Θ is relatively small and that the deviation degrees of
the two nodes are similar. Suppose that the deviations cause
two nodes to move in exactly opposite directions, as shown in
Fig.7(c) and Fig.7(d). Then, the upper bound of the change in
distance is ∆d(2)

M = 2(v+∆v)t, and the lower bound ∆d(2)
m =

−2(v+∆v)t.

As Θ < 45◦, the extreme scenarios in Fig.7(c) and Fig.7(d)
usually do not occur. If such a scenario does occur, the node
moving in the opposite direction should leave the node team
since it causes network failures. Therefore, we consider only
the two moving scenarios shown in Fig.7(a) and Fig.7(b). The
change in distance bounds can then be summarized as follows.
Upper bound:

∆dM = max
06θ6Θ

{2tan(θ)(v+∆v)t,2∆vtcos(θ)}

6 JOURNAL OF INTERNET OF THINGS, VOL. , NO. ,

Lower bound:

∆dm = min
06θ6Θ

{−2tan(θ)(v+∆v)t,−2∆vtcos(θ)}

The maximum and minimum values for dM and dm can
be calculated after v, ∆v and Θ are given. These ∆dM and
∆dm values are used to predict whether a node may collide or
disconnect from the globally rigid graph within the next epoch.
When this is probably happening by prediction, it performs the
second phase: position adjustment.

For efficiency, we convert the upper and lower bounds to
a timing for each node to start the position adjustment phase.
To obtain the time at which to perform the adjustment, we
need to set a threshold that specifies the maximum allowable
distance change. Eq.(9) shows the definition of the threshold.
In Eq.(9), dcol is the shortest allowable distance between two
nodes. A distance shorter than dcol leads to a collision. dcom
is the longest allowable distance between two nodes i and j,
and (i, j) is an edge in Epc. Epc is the set of all links in the
globally rigid graph by triangle extension.

∆H = min{1
2

min
i, j∈N

(di j−dcol),
1
2

min
(i, j)∈Epc

(dcom−di j)} (9)

Algorithm 2 shows the operations following the above rule.
In this algorithm, the time Synchronization method in Line 7
is adopted from the previous study [18]. When the destination
point of a node is about to exceed the ∆H diameter circle:
|PiO| − |P′i O| > ∆H, the node enters the position adjustment
phase. The time of ∆H being exceeded can be predicted based
on the threshold, current velocity, position and inaccuracy of
the velocity. 1

2 ∆dM ≥ ∆H is used to calculate the safe moving
time period ∆t, where v, ∆v, Θ, and ∆H are given and ∆dM
is the upper bound of distance deviations. The nodes can thus
move within an epoch of time length t. After that time, the
nodes must further localize themselves and check whether the
distances require further adjustment.

Node failure can be addressed similarly via position ad-
justment. When a node failure breaks the global rigidity, the
neighbors of the node start a contracting adjustment as shown
in Line 11 of Algorithm 2. From the border line of the network,
the nodes move one step towards the virtual center, hop by
hop, until the global rigidity is recovered.

In normal scenarios, all of the nodes running Algorithm 2
should follow the same route as they are in a team. However,
if there is an obstacle that forces some nodes to deviate from
the route of their team, these nodes should determine a new
route towards the destination after the deviation. When the
obstacle is big enough, then all of the nodes in the network
will deviate from the obstacle using the same route so that they
still maintain the formation. If unfortunately the obstacle force
several nodes disconnect from the team, these lost nodes can
later recover to the original route after the obstacle is bypassed.

Finally, the time complexity is analyzed as follows. The
graph construction in GROLO-LP is a one-time operation
during initialization. Its time complexity is O(n) [17]. The time
complexity of localization is O(m2), where m is the number of
direct communication neighbors. In total, the time complexity
of GROLO-LP makes it applicable to real-world scenarios.

Algorithm 2 GROLO-FC Distributed
1: In an epoch:
2: ri.moved← false
3: while ri.p 6= destination do
4: if ri.p ==NULL then
5: ri.p ← GROLO-LP() // call Algorithm 1
6: //synchronization after localization t← 0
7: timeSync(&t)
8: broadcast(GROLO-LP-DONE-MSG)
9: ∆d← error distance

10: if ∆d + tan(Θ)(v+∆v)∆t > ∆H then
11: contracting : (ri.p← ob j p)
12: ∆t = (∆H−∆d)/tan(Θ)(v+∆v)
13: ri.velocity ← (v,α) // v is speed, α is the direction

towards the destination
14: if ri.state is beacon then
15: ri.move(ri.velocity, ∆t) // move v∆t
16: else
17: while no GROLO-LP-DONE-MSG from beacons do
18: ri.wait f or msg()
19: ri.respond to beacons()
20: ri.move(ri.velocity, ∆t)
21: ri.p← NULL

GROLO-FC performs the node control to maintain the global
rigidity formation dynamically. The time complexity of the
moving control operation is O(1). At the end of each epoch
(∆t), GROLO-FC calls GROLO-LP to perform localization.
Suppose that in the worst case every node needs to perform
the above contraction operation. Therefore, the worst case
complexity of GROLO-FC is O(n).

V. EVALUATION

As illustrated in the previous sections, GROLO is composed
of two parts: GROLO-LP for localization and GROLO-FC
for moving. The evaluation of GROLO should be separated
accordingly to clarify the factors involved in each operation.
In this section, we first describe the simulations to evaluate
these two parts first. We then present the experiments using
real mobile nodes to verify GROLO.

In simulation, we compare our GROLO-LP algorithm with
three distributed localization algorithms for stationery wireless
networks: gradient descent algorithm (GDA) [4][13], distance
vector distance (DV-distance)[10], and multi-dimensional scal-
ing (MDS-MAP) [16]. We do not compare the recent central-
ized localization algorithms that run deep learning or matrix
operations on super central nodes, as they are not applicable
to IoT. The simulation setup is in Table II.

TABLE II
EXPERIMENTAL SETUP

Num of nodes Num of beacons Area width Communication range
100 5 100 m 25 m

The distance measurement between the nodes is simulated
using a low-cost method with RSSI. To simulate RSSI, we
used a signal propagation model as in Eq. (10):

wu et al.: GROLO: REALISTIC RANGE-BASED LOCALIZATION FOR MOBILE IOTS THROUGH GLOBAL RIGIDITY 7

P = P0−10 ·β · log(
d
d0

) (10)

where P is the average received power at distance d; P0 is
the received power at reference distance d0; d0 is normally 1
meter. d is the distance between the receiver and the sender. β

is a constant path loss exponent depending on the environment.
We assume that the measured distance by RSSI is precise.

The ground-truth positions of the 100 nodes and its globally
rigid graph constructed by GROLO-LP is shown in Fig.8.
The positions calculated by GROLO-LP and the real node
positions are shown in Fig.9. We use the root-mean-square
error (RMSE) to quantitatively evaluate the accuracy of the
algorithm. In the equation of RMSE, n is the total number
of nodes being localized in an IoT; pi− p̂i is the difference
between the ground truth position pi of the i-th node:

RMSE =
√

(‖pi− p̂i‖)2/n.

Fig. 8. The globally rigid graph of 100 nodes

0 20 40 60 80 100
x(m)

0

20

40

60

80

100

y(
m

)

0

1

2

3

4

5

6

7

8

9

10 11

12

13 1415
16

17

18
19

20

21

22

23

24

25

26

27
28

29
30

31
32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58

59

60

61

62

63

64

65

66

67
68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84
85

86

87
88

89

90

91
92

93
94

95

96

97

98

99

real position
estimated position
beacon

Fig. 9. Calculated positions and ground-truth positions

We compared the localizations of GROLO-LP with those of
GDA, DV-distance, and MDS-MAP under a series of network
configurations. In the networks, if not specially pointed out,
the normal communication range is set to 2.5×

√
(S/n), where

S is the deployment area, and n is the number of nodes.
The communication range is adjusted to keep the mobile
IoT connected; otherwise, frequent node disconnections would

occur due to the sparse deployment in the large area and the
short communication range. In addition, the normal beacon
ratio is 5% in a network if not specified.

We evaluated the algorihtms with different communication
ranges, beacon densities (beacon ratio), and network scales
(node number). All the simulations are run ten times with
different random. The results shown in this section are the
average of ten simulations. We first conducted simulations of
networks with different communication ranges. The localiza-
tion RMSE results of a 100-node network running the four
algorithms with different communication ranges are shown in
Fig. 10. The results indicate that the accuracy of GROLO-LP
outperforms the other algorithms in the network.

18 20 22 24 26
Communication Distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

DV-distance
MDS-MAP
GDA
GROLO-LP

Fig. 10. RMSE Comparison of GROLO-LP with the others under different
communication ranges

We then compared the localization errors of the algorithms
in a 400-node network with different ratio of beacons. Fig.11
shows the results. It can be seen that MDS-MAP performs
better on average. In the end, when beacons become denser,
GROLO-LP performs the best. This is because MDS-MAP
uses local maps and requires less beacons. When beacon
number is less than 5%, the performance of GROLO-LP is
worse than MDS-MAP, as constructing globally rigid graph
needs at least two beacons to start locally. Nevertheless, 5%
is a normal level of beacon densities in a hundred-node level
scale network. Furthermore, MDS-MAP is not suitable for
mobile IoTs as it assumes the stationery networks.

1 2 3 4 5 6 7
Beacon Ratio(%)

1

2

3

4

5

RM
SE

DV-distance
MDS-MAP
GDA
GROLO-LP

Fig. 11. RMSE Comparison of GROLO-LP with the others under different
beacon densities

8 JOURNAL OF INTERNET OF THINGS, VOL. , NO. ,

As the last evaluation of GROLO-LP, the algorithms were
run in networks with different scales. Fig.12 shows the results
of RMSE of the four algorithms. Among them, GROLO-
LP performs the best on average. In some networks MDS-
MAP performs better than GROLO-LP. This is because MDS-
MAP localizes the nodes through building a local map on
each node, which can include nodes from multi-hops away.
In contrast, GROLO-LP uses less information within one hop,
which causes errors in some sparsely deployed local areas.

50 100 150 200 250 300 350 400 450
Node Number

0

2

4

6

8

10

RM
SE

DV-distance
MDS-MAP
GDA
GROLO-LP

Fig. 12. RMSE Comparison of GROLO-LP with the others under different
network scales

To evaluate continuous localization after node movements,
we simulated random errors of speed and directions within
20% and 30◦. The initial node deployment is shown as the red
dots in Fig. 13. Then, the nodes were controlled to maintain a
globally rigid formation while moving. The trajectory of the
nodes from the entrance to the destination is shown in Fig.
13. Apparently, nodes managed to reach the destination with
GROLO-FC. Moreover, Fig. 13 shows that the nodes adjusted
their positions to maintain their formation.

0 20 40 60 80 100 120 140
x(m)

0

20

40

60

80

100

120

140

y(
m

)

initial position
excepted position
final position

Fig. 13. Moving localization with moving errors

As our method is based on the range measurement, the range
measuring error would inevitably affect the localization accu-
racy. We performed a series of simulations to test the relation
between the distance measuring error. We found that when
the number of hops is large and the node density is low, the
distance measurement errors tend to accumulate hop by hop.
These errors cause large localization errors. Nonetheless, if the

network density is high enough, there will be more neighbors
for the cross-validation in localization. These neighbours can
provide extra information to correct the distance errors using
probabilities. Fig. 14 shows a simulation test of mobile IoT
localization with +/-1% range measuring errors. It can be seen
that the distance errors can be compensated by adjustments
during localization and moving. Although in comparison with
Fig. 13, the localization error is a little larger, finally the nodes
can approach their destinations.

0 20 40 60 80 100 120 140
x(m)

0

20

40

60

80

100

120

140

y(
m

)

initial position
excepted position
final position

Fig. 14. Moving localization with additional 1% range measurement error

We then used 10 real-world mobile IoT nodes to verify our
GROLO protocol in reality. Fig. 15 shows a snap-shot when
the nodes are moving. In the experiments, we used the hexapod
and four-leg toys as the moving devices. Such moving devices
cannot be called robots as they lack the capabilities of syn-
chronous localization and mapping (SLAM). They do not have
radars and cameras. Each IoT node uses an embedded CPU
board with Wi-Fi and Blue-tooth connectivity (RASPBERRY
PI 3) as its main board. The IoT nodes communicate with each
other using Wi-Fi.

Fig. 15. Experiment snap-short of 10 real-world mobile IoT nodes

The initial deployment is the same as the one shown in
Fig. 5. The actual graph generated by the 10 IoT nodes is the
same as that in Fig. 5, as can be seen from the messages of the
neighbour information of each node. The localization error of
each node is below the level of 10−5, with an assumption that
the distance measured is correct on the node. Therefore, the
final localization error is dependent on the distance measuring
error. Considering that the current range-based measurements
can reach the error level of 10−3, this result is quite satisfactory
for realist applications. The source code can be downloaded
from: ”https://github.com/mylofty/DistributeGROLO”.

Finally, we evaluated the energy consumption of the nodes
in one time localization in a 10-node mobile IoT. We averaged

wu et al.: GROLO: REALISTIC RANGE-BASED LOCALIZATION FOR MOBILE IOTS THROUGH GLOBAL RIGIDITY 9

the operations of the sensor nodes in an IoT. We then sum up
the time intervals of each type operation such as transmission
(denoted as Tx), receiving (Rx), computation for localization
(Loc), distance measuring (Dist) and sleeping (Sleep). The
time out is set as five seconds to allow the sensor nodes to
finish the localization. The electric current of transmission
is about 0.22A on the IoT device we used. The currents of
receiving, computing, distance measuring and sleeping are
0.2A, 0.2A, 0.22A, and 0.001A, respectively. The voltage
of a node is 3V. Subsequently, the energy consumption can
be calculated by multiplying the voltage, current and time
intervals. The results are shown in Table V. Considering that a
mobile IoT can charge itself, the energy consumption for each
time localization is not high. A 5000 mAh battery can sustain
about 455 hours, since the average current is about 11mA.

TABLE III
AVERAGE OPERATIONS ENERGY CONSUMPTION

Measurements Tx Rx Loc Dist Sleep
t (seconds) 0.086 0.344 0.7 0.25 3.62
E(Joules) 0.057 0.206 0.420 0.165 0.011

VI. RELATED WORK

Rigidity theory [6] has been studied from various perspec-
tives and for numerous purposes with regard to determining lo-
calizability, estimating relative or absolute positions, etc. There
have been studies to construct rigid graphs for localizability of
nodes in IoTs [17] [21][22]. There are also efforts devoted to
maintaining the rigidity property using the rigidity eigenvalue
and the rigidity matrix for robot formation control [3] [23].
However, it usually requires a super central node to coordinate
the other nodes in a team and thus not applicable to IoTs.
In addition to the global rigidity, Zhu et al.[26] proposed a
universal rigidity method to estimate position. However, such
an approach is centralized and cannot be used in distributed
environments, such as mobile node formation control.

The centralized range-based localization algorithms can be
mainly represented by three approaches: multi-dimensional
scaling (MDS)[15], semi-definite programming (SDP) [2] and
stochastic optimization approach (SA) [4]. The major problem
with these centralized methods is that they depend on the
global information of a mobile IoT. Due to the complexity,
these methods often work in a snapshot manner, i.e., perform
the calculation once and obtain the results. Such centralized
snapshot algorithms cannot handle the dynamics of distributed
mobile IoTs. Furthermore, the global information is often not
available or outdated due to network mobility dynamics.

Decentralized approaches have been proposed for formation
rigidity to address the problems of centralized schemes. For
instance, using distributed method to estimate the rigidity
eigenvectors [11]. Nonetheless, the estimation is still of high
time complexity for IoT nodes. DV-hop and DV-distance
are two classical representative localization algorithms for
stationery WSNs using distance vectors (DV) [10]. The DV-
hop algorithm uses the hop number of a message travelled to
estimate the distances between nodes. Apparently, it cannot

reach high localization accuracy [8]. The DV-distance algo-
rithm performs better as it uses the real distance measured
rather than using the average hop distance. Our algorithm
adopts the idea of distance vector to estimate the initial
location of nodes only for efficiency.

In comparison with these previous mobile node localization,
three critical differences exist between our work and previ-
ously reported work. First, the key condition of the previous
mobile localization method is that the proposed method must
be started from some super nodes that can measure the
positions and directions between a node and a super node.
Our approach does not require such an assumption. Second,
as shown by the rigidity concepts, theoretically only global
rigidity can be used to uniquely localize nodes, whereas
infinitesimal rigidity cannot. Third, the symmetric rigidity
matrix is still used in their approach, which is expensive in
terms of computation and maintenance.

Since DV alone are not enough, researchers have proposed
various methods to refine the estimations from distance vec-
tors. Savvides et al. proposed an algorithm to estimate the
nodes’ positions by means of DV-distance and least-squares
trilateration [14]. Xiao et al. proposed a weighted DV-hop
algorithm [19] that computes the average hop distance using
RSSI. Zhou et al.[25] proposed an optimized method using
a back propagation neural network based on DV-hop. In
comparison with these enhanced DV methods for stationery
WSN localization, our algorithm uses the rigidity together with
distance vectors and measurements to achieve high accuracy.
The accurate distance measurement can be obtained by the
recent novel methods[9][12].

Recently, researchers have proposed new localization meth-
ods for other different challenging scenarios. For instance,
Liu et al. proposed a localization algorithm for sparse 3D
Sensor Networks [7]. This algorithm uses the common nodes
to obtain higher localization accuracy than before. Zhang et
al. proposed a localization algorithm for anisotropic wireless
sensor networks [24]. Yan et al. proposed a novel asyn-
chronous localization method for underwater sensor networks
[20]. These methods can be adopted in our further study of
3D mobile heterogenous network localization.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a distributed localization protocol,
GROLO for mobile IoTs with modest resources. GROLO does
not depend on the inaccurate moving parts and motion sensors
of nodes. For the sake of efficiency, we do not use universal
rigidity in the localization of GROLO. Instead, we prove the
minimal necessary conditions that ensure not only the position
uniqueness but also the position calculability. The experimen-
tal results show that our proposed protocol is both accurate
and efficient for real-world applications. Future research will
consider three-dimensional localization for underwater sensing
and multi-storey structure monitoring applications.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-
ence Foundation of China (NSFC) (Grant No. 61672552 and

10 JOURNAL OF INTERNET OF THINGS, VOL. , NO. ,

U1611461), National Key R&D Program of China - 2018
YFB1004801, and Shenzhen Basic Research Funding Scheme
JCYJ20170818104222072.

REFERENCES

[1] M. Bertanha and R. W. Pazzi. Jlpr: Joint range-based localization
using trilateration and packet routing in wireless sensor networks with
mobile sinks. In Computers and Communications (ISCC), 2017 IEEE
Symposium on, pages 645–650. IEEE, 2017.

[2] P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless
sensor network localization. In Proceedings of the 3rd international
symposium on Information processing in sensor networks, pages 46–54.
ACM, 2004.

[3] C. Godsil and G. Royle. Strongly regular graphs. In Algebraic graph
theory, pages 217–247. Springer, 2001.

[4] A. A. Kannan, G. Mao, and B. Vucetic. Simulated annealing based
localization in wireless sensor network. In The IEEE Conference on
Local Computer Networks Anniversary, pages 513–514, 2005.

[5] C. Kuo, T. Chen, and S. Syu. Robust mechanism of trap coverage
and target tracking in mobile sensor networks. IEEE Internet of Things
Journal, 5(4):3019–3030, Aug 2018.

[6] G. Laman. On graphs and rigidity of plane skeletal structures. Journal
of Engineering Mathematics, 4(4):331–340, Oct 1970.

[7] X. Liu, Q. Yang, J. Luo, B. Ding, and S. Zhang. An energy-aware
offloading framework for edge-augmented mobile rfid systems. IEEE
Internet of Things Journal, 2018.

[8] G. Mao, B. Fidan, and B. D. O. Anderson. Wireless sensor network
localization techniques. Computer Networks, 51(10):2529–2553, 2007.

[9] S. G. Nagarajan, P. Zhang, and I. Nevat. Geo-spatial location estimation
for internet of things (iot) networks with one-way time-of-arrival via
stochastic censoring. IEEE Internet of Things Journal, 4(1):205–214,
Feb 2017.

[10] D. Niculescu and B. Nath. Dv based positioning in ad hoc networks.
Telecommunication Systems, 22(1-4):267–280, 2003.

[11] P. Robuffo Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff. A
passivity-based decentralized strategy for generalized connectivity main-
tenance. The International Journal of Robotics Research, 32(3):299–323,
2013.

[12] S. Sadowski and P. Spachos. Rssi-based indoor localization with the
internet of things. IEEE Access, 6:30149–30161, 2018.

[13] C. Savarese, J. M. Rabaey, and K. Langendoen. Robust positioning
algorithms for distributed ad-hoc wireless sensor networks. In General
Track of the Conference on Usenix Technical Conference, pages 317–
327, 2002.

[14] A. Savvides, H. Park, and M. B. Srivastava. The bits and flops of
the n-hop multilateration primitive for node localization problems. In
Proceedings of the 1st ACM international workshop on Wireless sensor
networks and applications, pages 112–121. ACM, 2002.

[15] Y. Shang, W. Rumi, Y. Zhang, and M. Fromherz. Localization from
connectivity in sensor networks. IEEE Transactions on parallel and
distributed systems, 15(11):961–974, 2004.

[16] Y. Shang and W. Ruml. Improved mds-based localization. In Joint
Conference of the IEEE Computer and Communications Societies, pages
2640–2651 vol.4, 2004.

[17] H. Wu, A. Ding, W. Liu, L. Li, and Z. Yang. Triangle extension: Efficient
localizability detection in wireless sensor networks. IEEE Transactions
on Wireless Communications, 16(11):7419–7431, 2017.

[18] J. Wu, L. Jiao, and R. Ding. Average time synchronization in wireless
sensor networks by pairwise messages. Computer Communications,
35(2):221–233, 2012.

[19] H. Xiao, H. Zhang, Z. Wang, and T. A. Gulliver. An rssi based dv-hop
algorithm for wireless sensor networks. In Communications, Computers
and Signal Processing (PACRIM), 2017 IEEE Pacific Rim Conference
on, pages 1–6. IEEE, 2017.

[20] J. Yan, X. Zhang, X. Luo, Y. Wang, C. Chen, and X. Guan. Asyn-
chronous localization with mobility prediction for underwater acous-
tic sensor networks. IEEE Transactions on Vehicular Technology,
67(3):2543–2556, March 2018.

[21] Z. Yang and Y. Liu. Understanding node localizability of wireless ad
hoc and sensor networks. IEEE Transactions on Mobile Computing,
11(8):1249–1260, 2012.

[22] Z. Yang, Y. Liu, and X.-Y. Li. Beyond trilateration: On the localizability
of wireless ad hoc networks. IEEE/ACM Transactions on Networking
(ToN), 18(6):1806–1814, 2010.

[23] D. Zelazo, A. Franchi, F. Allgöwer, H. H. Bülthoff, and P. R. Giordano.
Rigidity maintenance control for multi-robot systems. In Robotics:
Science and Systems, pages 473–480, 2012.

[24] S. Zhang, X. Liu, J. Wang, J. Cao, and G. Min. Accurate range-free
localization for anisotropic wireless sensor networks. TOSN, 11(3):51:1–
51:28, 2015.

[25] C. Zhou, L. Wang, and Z. Lu. The study of wsn node localization method
based on back propagation neural network. In International Conference
on Applications and Techniques in Cyber Security and Intelligence,
pages 458–466, 2018.

[26] Z. Zhu, A. M.-C. So, and Y. Ye. Universal rigidity: Towards accurate
and efficient localization of wireless networks. In INFOCOM, 2010
Proceedings IEEE, pages 1–9. IEEE, 2010.

