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Abstract—In the creation of a smart future information society,
Internet of Things (IoT) and Content Centric Networking (CCN)
break two key barriers for both the front-end sensing and
back-end networking. However, we still observe the missing
piece of the research that dominates the current networking
traffic control and system management, e.g., lacking of the
knowledge penetrated into both sensing and networking to glue
them holistically. In this paper, we envision to leverage emerging
machine learning or deep learning techniques to create aspects
of knowledge for facilitating the designs. In particular, we can
extract knowledge from collected data to facilitate reduced data
volume, enhanced system intelligence and interactivity, improved
service quality, communication with better controllability and
lower cost. We name such a knowledge-oriented traffic control
and networking management paradigm as the Knowledge Centric
Networking (KCN). This paper presents KCN rationale, KCN
benefits, related works and research opportunities.

I. INTRODUCTION

We have recently witnessed the proliferation of two emerg-
ing technologies that are evolving our sensing, computing and
networking capabilities, to enable the vision of a smart future
information society: Internet of Things (IoT) [3] and Content
Centric Networking (CCN) [7]. The IoT technology strives to
fundamentally advance the periphery of sensing and enables
the scene that “every” physical object can be sensed, so that
intelligent interactions between users and the digital space
could be viable to fulfill user’s intents. Aligning with this
trend, the CCN technology [3] is further proposed to augment
the underlying networking services for the data exchange,
tailored for the data-centric feature. CCN leverages in-network
cache and allows end users to obtain data from anywhere in
the network, instead of end sensing devices.

These two technologies together overcome two key barriers
for both front-end sensing and back-end networking in the
creation of a smart information society for various domains.
However, we still observe a daunting challenge that remains
unsolved to limit the further advance of the design. User’s
intents to interact with the digital space, e.g., user’s objectives
and desired system feedback, can be highly diversified and
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even time-varying. Lacking the tailored solution to derive from
the front-end sensing to the anticipated feedback from the
system, existing network designs usually require to deliver all
necessary sensing data and in-network traffic to the end users
and further realize the missing intelligence on the end devices.

1) However, with the increasing number of users involved,
big data, as a result, is a natural consequence, yet much of
the traffic can be highly redundant or even unnecessary. Even
if networking infrastructures have rich resources, the rapidly
increased data volume could incur harmful burden and rapidly
overwhelm system’s computing and networking capabilities.

2) Due to the high traffic demand, networking systems tend
to become more sophisticated in the operation, which may
even need to be further adjusted according to the application’s
varying context. The traditional system control and network-
ing management, mainly based on human’s intelligence and
experiences, will thus not be sufficient and flexible enough.

3) Implementing all the missing intelligence to end users
will inevitably increase the bar on the requirements of the end
device, e.g., capable CPUs for intensive computing tasks.

This paper finds that the emerging machine or deep learning
techniques have the great potential to tackle above challenges.
The key insight is applying the learning techniques to derive
various in-network knowledge tailored for aspects of desired
networking traffic control and system management designs:

• knowledge creation: using learning techniques to extract
descriptive knowledge from raw IoT or edge sensory data,
which could distill the raw data to create valuable knowl-
edge and minimize the data volume to be transmitted.

• knowledge composition: further deriving automatically-
learned rules to produce useful information and feedback
to fit user’s demands, which provides an in-network
digestion of user’s intents to interact with the system.

• knowledge distribution: efficiently distributing the gener-
ated knowledge and information to both the end users and
desired devices for operations, to avoid blindly delivering
all sensing data and traffic to the end users.

Such a new paradigm advances the traditional traffic control
and networking system design viewed from a communication-
oriented perspective to the knowledge-oriented one, which
is named as knowledge centric networking (KCN) in this
paper. KCN leverages the in-network computing, in-network
storage, and in-network communication, which are available in
current network stacks, to create knowledge in need. Machine
learning is capable of exploiting the hidden relationship from
voluminous input data to complicated system outputs and
further adapting the learning results in the new environments
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Fig. 1. Illustration of networking traffic control and system management from the KCN perspective.

to evolve automatically. These features perfectly match the
complex, dynamic and time-varying nature of traffic in today’s
networking systems. Thus, KCN can be an emerging angle to
facilitate the traffic control and networking system designs.

In fact, many initial research efforts have already been made
to the three aspects above, but there still lacks a systematic
review and integration of them from the KCN perspective. In
particular, a relevant Knowledge-Defined Networking (KDN)
concept is proposed [10], which integrates Artificial Intel-
ligence (AI) with SDN and network analytics to further
benefit and automatize network control and operation. Because
the intelligence derived from KDN is mainly introduced for
networking itself, which fulfills a similar functionality as
KCN’s knowledge distribution component. However, KCN
also proposes to leverage the in-network computation and
communications, e.g., a complete framework from front-end
sensing to back-end networking. Therefore, this paper aims to
holistically review these works, present design rationale and
benefits, and point out research opportunities.

II. KCN FRAMEWORK

A. Nutshell of KCN

Fig. 1 illustrates the architecture of the KCN framework.
1) Knowledge creation. IoT devices sense ambient environ-

ments and generate raw sensory data for the system. In KCN,
instead of a direct injection of the raw data into the system,
they are first preprocessed for extracting the descriptive
knowledge with the immediately usable intelligence and much
reduced data volume for transmission. This step is referred as
the knowledge creation in the KCN framework.

Considering a parking space sharing system (we have its
development in §III), surveillance cameras are the sensing
devices. To detect whether the sparking lots are occupied and
analyze the occupancy history, certain meaningful descriptors
[5] will be utilized, in stead of raw video frames.

2) Knowledge composition. User’s intent to interact with
the system normally includes two perspectives: user’s objective
and desired operations. In KCN, based on the current objective
(which may vary), how to leverage the descriptive knowledge
obtained from the sensory data to automatically generate a

series of in-network rules to achieve the desired objective and
trigger the associated operation is referred to as knowledge
composition.

For instance, if a user wants to find a parking space near a
company , the parking space sharing system needs to firstly
understand the user’s intent and decompose the necessary
factors including current location, company’s location, the
estimated arrival time based on the current traffic. Hence, the
relevant parking information like available time and the exact
parking location is retrieved from the server. In this case, in
addition to the descriptive knowledge, the composition also
needs some universal information (human-generated rules) as
a basis, e.g., empty parking space can be reserved. KCN then
applies learning techniques to automatically derive new rules
to achieve the current objective.

Since application’s objective and operation could be com-
plicated, as shown in Fig. 1, they will be parsed first and
converted to multiple decomposed elements, which are then
processed by different knowledge engines. The partial results
from each knowledge engine will be orchestrated as entirety
to produce new rules, which will be further disseminated to
the proper destinations in the system.

3) Knowledge distribution. Different types of information
flows coexist and need to be delivered cross the network.
Some flows, like the automatically generated rules, are small
in size, but they normally require a higher reliability, shorter
latency, higher priority in the transmission and may need to
be disseminated to multiple destinations. On the contrary, the
information flows, like descriptive knowledge, have relatively
larger data volume, but they may tolerate certain transmission
delay. In addition, different applications can further reuse the
descriptive knowledge from the same sensing devices. Due to
the limited networking capabilities and computing resources,
how to leverage learning techniques to derive appropriate
transmission rules for such a diversified traffic is named as
the knowledge distribution.

Back to the parking example, the parking information will
be returned to the user and the new generated rules will be
disseminated to corresponding servers to facilitate the next
searching process of this user if the system detects that this
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user frequently wants this parking space. As a result, when
other users want a parking space in the same area at the same
time as this user, other parking spaces except this one will be
proposed priorly because of this rule.

So far, we briefly introduce KCN framework. Next, we will
review existing works for each KCN component, and present
the potential research opportunities.

B. Knowledge creation

Many IoT sensors could provide valuable sensing data
for KCN, such as variable sensors from wireless sensor
networks (WSNs), motion sensors from mobile devices, GPS
on vehicles, surveillance cameras, etc. In general, there are
two popular ways to create descriptive knowledge from raw
sensing data: model based and deep learning based methods.

1) Model based methods: In this category, various model-
based learning techniques, including mathematical models to
describe the raw data [14] and data’s inner correlation [9], are
used for the knowledge creation.

Many IoT sensors are deployed to sense the ambient en-
vironments, which could provide crucial system inputs for
smart urban or agriculture designs. As the varyings of many
environmental factors are not arbitrary, e.g., following certain
patterns, one promising solution is to mathematically capture
this pattern and then use the learned model to predict the
future data values, instead of transmitting raw data all the
time. Hence, the created descriptive knowledge is the derived
mathematical model in these applications. For instance, Wang
et. al. [11] observe that the environmental data, like temper-
ature, may exhibit clear spatio-temporal patterns. Wu et. al.
[14] similarly introduce a compressive sensing based model to
estimate soil moisture measures. For this type of knowledge
creation, the widely adopted learning techniques include linear
trend analysis, compressive sensing, least-squares, etc.

The mathematical model mainly focuses on the knowledge
creation for the sensors at certain given location as time goes
on, e.g., the temporal feature. However, sensors cannot cover
every space in our daily life, e.g., the sensing vacancy exists.
The most representative example is the urban traffic prediction
[9]. To solve such a sensing vacancy issue, one effective
solution is to learn data’s inner correlation from the historical
data, so that the unknown sensor values can be derived by
the readings from the space with the sensor coverage. In this
case, the created knowledge is the inner correlation explored
from the raw sensing data [9]. However, the missing values
may exist in the historical data as well, which could degrade
the accuracy to derive the correlation. Therefore, compressive
sensing, regularized matrix factorization, low-rank approxima-
tion and interpolation can be applied to recover these missing
values [15]. In summary, for this type of knowledge creation,
we may need to first use numerical analysis techniques to
recover missing values for the historical data and then apply
learning techniques to explore data’s inner correlation.

2) Deep learning based methods: The extracted knowledge
from this category is usually the features or descriptors ob-
tained from deep learning models [12]. One representative
example is the activity recognition using the sensors from
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Fig. 2. Illustration of the knowledge creation in KCN.

the mobile and wearable devices, such as accelerometers,
gyroscopes, etc. and people need to manually define a set
of features which highly impacts the system performance.
Different from traditional approaches, deep learning can au-
tomatically extract a series of representative features from the
input data, which is capable enough of accurately recognizing
even very complicated human activities. The most widely used
deep learning model is called Convolutional Neural Network
(CNN). CNN contains convolution operations, which perceive
valuable features from training data and pooling operations,
which reduce the dimension of convolutional results and speed
up entire computation for training.

Many research works have applied deep learning to different
mobile or wearable sensory data to extract features, so that a
variety of human activities can be recognized with a high pre-
cision [12]. One recent work Lasagna [8] further observes that
the features obtained from different convolutional layers con-
tain hierarchical semantics, like walking, running and jumping.
Moreover, some common features can be further extracted
to classify them as one category, e.g., exercise. Similarly,
even higher-level feature abstraction is possible to form new
category, like activity. Therefore, a hierarchical understanding
and searching becomes viable for mobile sensing data.

Another active area to leverage deep learning for the knowl-
edge creation is the video processing for Compact Descriptors
for Video Analysis (CDVA) [5]. As consecutive frames share
many redundancies, in CDVA, certain descriptor, like scalable
compressed Fisher Vector (SCFV) or color histogram, is first
derived from each frame. The descriptors from two frames
can be compared first. As a result, one of these two frames is
directly dropped if their difference is small which indicates a
high redundancy. So the traditional features can be extracted
from these several selective frames merely. However, the
recent standard also proposes to adopt deep learning to extract
a parallel set of features, e.g., Nested Invariance Pooling (NIP),
which will be further integrated with the traditional feature.

3) Edge computing facilitated knowledge creation: How-
ever, extracting the descriptive knowledge from the raw sen-
sory data usually requires non-trivial energy and computation
resources for the sensing devices. For many embedded and
miniature IoT sensors, even the generated data volume is
lightweight, the devices normally do not have sufficient CPU
capabilities and energies to derive the data model. In addition,
the image/video data may demand more powerful CPUs to
extract features or descriptors by deep learning methods.
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To this end, the emerging edge computing technique serves
as an promising solution to facilitate the knowledge creation.
In particular, the edge computing can leverage the nearby edge
servers and other available computing resources to locally
and efficiently conduct the knowledge creation, e.g., executing
a variety of learning methods on top of the sensory data
transmitted from sensing devices to unveil the hidden knowl-
edge. As the sensory data only needs to be offloaded one-hop
away to the computing edge, without traveling to the remote
data center by suffering unpredictable Internet transfer delay,
the cost and latency become minimum. After the descriptive
knowledge is extracted, it can be rapidly delivered back from
the computing edge to the sensing devices.

The edge computing essentially takes advantages of avail-
able resources nearby to provide better customized perfor-
mance, which can thus significantly reduce network traffic and
achieve real-time communications and lower latency. During
knowledge creation, edge computing, combining with the
machine learning algorithms, can also gradually learn and
evolve over time, which can optimize the management of the
sensory data with little human intervention.

4) Summary: As Fig. 2 shows, knowledge creation in KCN
takes various raw sensory data as input and utilizes different
learning techniques to derive descriptive knowledge, in forms
of mathematical models, data’s inner correlation, features, etc.

C. Knowledge composition

Knowledge composition in KCN provides a flexible way to
compose the knowledge learned (e.g., descriptive knowledge)
and stored in the in-network knowledge bases (e.g., universal
information), which can be managed by the block-chain so that
every user can maintain such databases with the ensured equity
and decentralization. A user’s intent usually indicates what the
user wants, without telling what knowledge/information the
user needs or how to approach it. Continuing with the smart
parking project, a user’s intent could be “one parking spot
near company A that I will arrive at”. After receiving this
intent, the parser (as in Fig. 1) could extract the following
information: 1) the user’s current location; 2) the user’s
destination; 3) the approximate arrival time according to the
traffic condition on the path from the current location to the
destination; 4) the user’s vehicle type. After orchestrating all
the knowledge together, the available parking spot information
can be returned to the user.

To achieve such an intelligence, a user’s intent can be
expressed by any high-level declarative language such as SQL.
An intent language as the North Bound (NB) Application
Programming Interface (API) of Software Defined Networking
(SDN) has been studied in recent years [2]. It can be served
as the base of intent language for KDN. Due to the diversity
nature of knowledge in KDN, the generality requirement of
its intent language will be higher than that in SDN.

To understand and decompose a user’s intent into the
required set of knowledge calls for an intelligent parser. The
parser itself requires knowledge to learn a user’s intent and
what the best knowledge set for such an intent is. The more
intelligent the parser is, the more general the intent can be.

Objective
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Actionable Rules

Utility-bearing 

information

Engine

Fig. 3. Illustration of the knowledge composition in KCN.

After parsing, the parser will invoke different knowledge
engines to retrieve the knowledge or take the corresponding
actions in the network and/or at the edge devices.

After receiving the knowledge returned from different
knowledge engines, the orchestrator will compose/fuse various
knowledge together and return either composed knowledge to
a user or take appropriate actions in networks. The compo-
sition/fusion is guided by various rules which are generated
through human-generated knowledge or machine-generated
knowledge. For instance, in case a parking spot is found,
the user’s current location and the traffic on its path to the
destination will be fused at first to help decide the approximate
arrival time. The user’s destination will also be utilized to
help decide which server to contact for retrieving parking spot
information (assuming that the parking spot information of
different areas is stored in different servers, each of which
corresponds to one area). These fused pieces of information
will then help decide which parking spots shall be provided
to the user.

D. Knowledge distribution

A knowledge distribution module bridges actuation/sensing
devices, knowledge creation and composition modules. The
key objective is to disseminate knowledge and control informa-
tion to relevant devices according to users’ intent and network
policies. There are three scenarios for knowledge distribution:
distributing knowledge to 1) devices for human consumption,
2) actuation devices for consumption of automated systems,
e.g., a surveillance system distributes road hazard alerts to
autonomous vehicles, and 3) sensing devices for better control.
To guarantee different QoS for different knowledge data pack-
ets, We promote a paradigm of SDN equipped with machine
learning for intelligent control, as described next.

1) SDN: Different applications have different requirements
on networking performance. To support these diverse re-
quirements, the network infrastructure should allow logical
abstraction and flexible reconfiguration.

Based on logical abstraction, network slicing is able to sup-
port various network functionalities and diverse performance
requirements. The performance requirements include through-
put, latency, coverage, priority, security, etc. Network slicing is
a major technique in SDN and network functions visualization
(NFV) [4], which enables a network infrastructure to be logi-
cally divided into multiple network service slices. Each slice
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Fig. 4. Illustration of the knowledge distribution in KCN.

provides independent logical network functions and various
network resources to satisfy particular application require-
ments. Thus, network slicing enables concurrent deployment
of multiple logically independent partitioned networks which
share common physical network infrastructure. The functional
separation by abstractions simplifies resource provisioning for
different network services and facilitates integration of knowl-
edge collection and knowledge dissemination. Fig. 4 illustrates
the knowledge distribution in KCN. Various tasks (e.g., crowd-
sourcing, routing) require diverse QoS performance of the
network. Network slicing and virtualization optimize network
resource allocation to support different network functionalities
and performance requirements so that the knowledge (e.g.,
generated rules, image/video descriptors) can be properly
distributed over the network.

2) Machine learning for intelligent control: Machine learn-
ing algorithms implement user specified rules and optimize
network resource allocation by learning to meet diverse net-
work performance requirements of knowledge distribution.
The network itself should provide interfaces and functionalities
for the machine learning algorithms to flexibly work on it.

For crowdsourcing applications, the knowledge distribution
module needs to value crowdsourcing tasks [6] before col-
lecting raw data or knowledge and disseminating knowledge
to actuation/sensing/display devices. An incentive mechanism
should provide incentives and encourage participants to share
and contribute their raw data and extracted knowledge to
the network. Active crowdsourcing workers can advertise the
availability and potential value of raw data labeled with its
price. Meanwhile, the network should try to fetch valuable
data and knowledge from many free sources (e.g.,, public
online post) at little cost. The network then synthesizes all
available knowledge and generate new knowledge. The newly
discovered knowledge will be disseminated over the network
and new data collection and knowledge creation tasks will be
assigned to sensing devices and crowdsourcing workers.

An important problem is how to route to sensing devices
to collect data and disseminate knowledge and control infor-
mation over the network. The naming primitives and routing
protocols of CCN can support flexible specification of knowl-
edge of users’ interest. With this capability, in an example of
security monitoring and path planning, crowdsourcing workers

Parking.comAvailabilityAvailability

Availability 
&Location 

Send Raw Data

Sensor

Query Availability 
Using IP 

IP
Availability Analysis 

from Raw Data 

Fig. 5. Illustration of the traditional way of the application for the parking
space sharing.

can advertise the new data collected in dangerous areas by
specifying the geographic coordinates and time stamps; the
network will distribute the data with user-specified QoS; upon
receiving this information, a path-planning software can find
a safest route for a woman to go from her office to home
(particularly useful for a woman who works at night). The
network can also recruit crowdsourcing workers by publishing
sensing tasks and specifying the incentives. The network
can disseminate newly discovered knowledge by specifying
potential values so that intended receivers can receive the
knowledge with desired QoS, and exploit the knowledge for
their own purposes.

In summary, machine learning algorithms take over the
control of underlying network infrastructure and orchestrate
network slices. Within each slice, they can dynamically recon-
figure it within the performance constraints. During knowledge
distribution, machine learning algorithms will gradually learn
and evolve over time with little human intervention.

III. KCN BENEFITS AND RESEARCH OPPORTUNITIES

A. Key KCN benefits

1) Although users could perform sophisticated interactions
with the digital space, KCN does not require complex com-
putations on the end devices. User’s intent in KCN will be
analyzed automatically. Therefore, KCN lowers the bar to
encourage more end users to participate into KCN networks.

2) The data model and abstraction extracted by learning
techniques can significantly reduce the data volume to be
transmitted inside the network, which could maximize the
networking resources and prompt the amount of concurrent
users in the system simultaneously.

3) The learning techniques used in KCN could develop
new networking protocols or slicing for automatically adapting
to the network resource dynamics and traffic diversities. In
addition, the system could further self evolve to pro-actively
adjusting networking settings. Finally, the derived control
logics could also guide the data content sensing to achieve
a cross-layer and jointly optimized performance.
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B. KCN implementation

As a proof of concept, we implement the smart parking
application under the KCN framework. Traditionally, when
users want to get services from networks, the terminal first
sends requests to ask for DNS resolution to get the server’s IP
address. Then the terminal uses this IP address to query the
database at the server and acquire the wanted knowledge. To
some extent, it is a host-oriented architecture as in Fig. 5.

However, KCN is a content-based architecture. We use the
digital object index (DOI) technology, its relevant software
Handle.net and Handle.net client libraries [1] to implement a
KCN version in Fig. 6, where the DOI prefix for the parking
service is 20.500.12183. As shown in Fig. 6, in Step 1, the user
places a request of Parking in District A. In Step 2, the user
terminal parses the request and converts it into the DOI format.
In fact, under DOI, every parking spot can be regarded as a
handle. For instance, 20.500.12183/Parking/A/ResidenceX/03
refers to parking spot #03 of Residence X in District A. In Step
3, the DOI resolution server receives this request and redirects
the request to the parking scheduling server whose IP address
is 35.203.154.107. In Step 4, upon receiving the request, the
Parking Scheduling server extracts the district information and
sends this query to the servers in District A for detailed parking
information. In Step 5, the servers in District A retrieve the
available parking spot information from the database. In Step
6, the information is sent to the user’s terminal. The user can
choose one spot from the available parking spots. In addition,
the occupation status of each parking spot is updated in time
according to surveillance video data and the decision of users.

There are three main advantages of this KCN-based design
compared with the host-oriented version: 1) With the DOI
technology, the parking service can be fully decentralized. It
can provide a generic and scalable platform to involve all
competitors to provide parking services. Users do not need to
switch among different competitors’ APPs when they search
for parking spots in different areas. 2) With the decentralized
design, the parking spot provider’s availability can be better

protected. This information will not be stored in any central
server, which can be potentially disclosed to a large number of
users. Instead, with KCN, the availability information about a
parking spot is only kept in a local server with much reduced
visibility. 3) With the decentralized design, it is also easy to
cope with the block-chain technologies for secure payment
and privacy protection.

C. Research opportunities

1) Big data collection and processing in KCN: Machine
learning techniques (e.g., deep learning, deep reinforcement
learning) have achieved remarkable breakthroughs. Such tech-
niques however need a large data set to train models and ex-
tract knowledge which involves high computational overhead.
Although the increasing number of computing devices would
pump more raw data into the network, how to collect relevant
quality data and efficiently train models remain elusive. We
envision that the data collection in KCN can benefit from
current naming primitives and routing protocols of CCN.
Machine learning techniques can leverage the CCN to flexibly
specify data of interest and collect the data set which can
then serve as input data to other machine learning techniques.
Distributed in-network processing promises to reduce network
traffic and balance computation overhead.

2) Knowledge management: KCN could benefit the sys-
tem management with complicated and varying user intents.
However, the management of knowledge itself in KCN also
calls for innovative frameworks. As knowledge in KCN can
be represented in different forms, e.g., models, properties of
network dynamics, trained models, key parameters, how to
effectively represent such knowledge so as to efficiently store,
retrieve, transfer the knowledge is challenging. We envision
that knowledge as an asset would have different forms to meet
various application requirements. For example, a machine
learning based access control scheme can exploit a trained
classifier as knowledge and directly incorporate the classifier
in the control scheme. The control scheme can fetch a set
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of trained parameters as knowledge and embed them into its
feature extraction algorithm.

3) Learning-based network optimization: Machine learning
based network performance optimization may help better al-
locate network resources and adapt to network dynamics. Tra-
ditional network optimization methods often monitor network
metrics (e.g., network throughput, latency, packet loss rates)
and heuristically control networks according to handcrafted
features extracted from the network metrics. By exploiting
knowledge in KCN, machine generated control methods [13]
may significantly improve the state of the arts and inspire
network scientists and engineers to revisit traditional design
principles and better understand network science and engi-
neering. The success of KCN would extend from networks as
communication infrastructure to other complex networks, e.g.,
transportation network, social network, etc.

IV. CONCLUSION

In this paper, we introduce and discuss the KCN networking
paradigm that could leverage the recent success from machine
learning to advance traffic control and networking system de-
signs. We present the KCN design rationale, core components,
benefits and also the research opportunities.

REFERENCES

[1] Handle.net. http://www.handle.net.
[2] Nemo project. http://nemo-project.net/.
[3] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.

Elsevier Computer networks, 54(15):2787–2805, 2010.
[4] N. M. M. K. Chowdhury and R. Boutaba. A survey of network

virtualization. Computer Networks, 54(5):862–876, 2010.
[5] L.-Y. Duan, V. Chandrasekhar, S. Wang, Y. Lou, J. Lin, Y. Bai, T. Huang,

A. C. Kot, and W. Gao. Compact descriptors for video analysis: the
emerging mpeg standard. arXiv preprint arXiv:1704.08141, 2017.

[6] J. Howe. The rise of crowdsourcing. Wired Magazine, 14(6):1–4, 2006.
[7] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. L. Braynard. Networking named content. In Proc. of ACM
CoNEXT, pages 1–12, 2009.

[8] C. Liu, L. Zhang, Z. Liu, K. Liu, X. Li, and Y. Liu. Lasagna: towards
deep hierarchical understanding and searching over mobile sensing data.
In Proc. of ACM MobiCom, 2016.

[9] Z. Liu, Z. Li, M. Li, W. Xing, and D. Lu. Mining road network corre-
lation for traffic estimation via compressive sensing. IEEE Transactions
on Intelligent Transportation Systems, 2016.

[10] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón,
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