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Abstract
A series of recent studies formulated the diffu-
sion prediction problem as a sequence prediction
task and proposed several sequential models based
on recurrent neural networks. However, non-
sequential properties exist in real diffusion cas-
cades, which do not strictly follow the sequential
assumptions of previous work. In this paper, we
propose a hierarchical diffusion attention network
(HiDAN), which adopts a non-sequential frame-
work and two-level attention mechanisms, for dif-
fusion prediction. At the user level, a dependency
attention mechanism is proposed to dynamically
capture historical user-to-user dependencies and
extract the dependency-aware user information. At
the cascade (i.e., sequence) level, a time-aware in-
fluence attention is designed to infer possible future
user’s dependencies on historical users by consid-
ering both inherent user importance and time decay
effects. Significantly higher effectiveness and ef-
ficiency of HiDAN over state-of-the-art sequential
models are demonstrated when evaluated on three
real diffusion datasets. The further case studies il-
lustrate that HiDAN can accurately capture diffu-
sion dependencies.

1 Introduction
The emergence of online media has brought fundamen-
tal changes to information diffusion styles. Due to these
changes, diffusion cascades are massively triggered and
traced. These observed diffusion processes provide rich
sources for companies to do marketing through forecast-
ing advertisement diffusion or for governments to maintain
stability through tracking opinion diffusion. All these re-
lated applications require for a good understanding of diffu-
sion mechanisms and accurate predictions of diffusion dy-
namics. These great requirements have driven many re-
searchers, in recent years, to study diffusion phenomena
on online media and particularly focus on diffusion predic-
tion problem [Bourigault et al., 2016; Wang et al., 2017b;
2017a].

Since retrievable information diffusion cascades are of-
ten recorded as sequences, researchers recently formulated
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Figure 1: An example of non-sequential diffusion dependency.

the problem as a sequence prediction task: given the his-
torically infected users in an information cascade, the next
infected user is predicted. With the great success of re-
current neural network (RNN) in sequence modeling, a se-
ries of RNN-based sequential models were proposed and
their effectiveness was demonstrated on the real diffusion
data [Du et al., 2016; Wang et al., 2017b; 2017a]. These
models sequentially encode the historical information as hid-
den states and predict next infected user based on the com-
pressed states. Though a cascade is in the form of sequence,
the real diffusion process behind it does not strictly follow
the sequential assumption. This is because there exists an
underlying user connection graph, which may not be ex-
plicitly unobserved but can directly determine the diffusion
dependencies among users. For example, given a cascade
{(A, tA), (B, tB), (C, tC), (D, tD)} and an underlying graph
as shown in Figure 1, the sequential models assume that the
infections of C and D are influenced by the hidden states h2
(compressed information of A and B) and h3 (compressed
information of A, B and C) respectively. But in fact, C
and D are directly dependent on A and B according to the
graph structure. This kind of non-sequential dependency has
also been identified as an important characteristic of diffu-
sion sequences in the previous work [Wang et al., 2017b].
Though the gating mechanisms in existing sequential models
[Hochreiter and Schmidhuber, 1997] can selectively drop the
information of B from hidden state h2 when generating C,
they also lead to the loss of dependency of D on B in hidden
state h3. The hidden states of the compressed information
are not expressive enough for such non-sequential diffusion
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dependency, thus the prediction power is limited.
In this paper, we propose a Hierarchical Diffusion

Attention neural Network (HiDAN) for the problem of pre-
dicting diffusion when the underlying graph is unknown. To
capture unique properties of diffusion sequences, we devise
a non-sequential architecture with two-level attention mecha-
nisms. Specifically, a user-level dependency attention is sug-
gested to dynamically capture diffusion dependencies among
historical users. A fusion gate is then designed to selectively
integrate user’s self information and its dependency context.
Based on the dependency-aware historical user information, a
cascade-level influence attention, which considers both inher-
ent importance and time-decay effects, is developed to infer
the influence of historical users on potentially infected future
users. The inferred influence can be interpreted as the pos-
sible dependencies of the future user on all historical users.
We evaluate the proposed model against state-of-the-art se-
quential diffusion prediction models on three real diffusion
datasets. The significantly better performance demonstrates
the effectiveness of our model. The case studies on synthetic
datasets further indicate that the learned dependency atten-
tions are mostly consistent with the true underlying graph.
In addition, HiDAN also shows its higher efficiency than se-
quential models in experiments. The main contributions of
this paper are summarized as follows:

• To the best of our knowledge, we are the first to develop a
non-sequential neural network framework for diffusion
prediction problem, which is well-adapted to properties of
real diffusion cascades.

• We propose two-level attention mechanisms for cascade
modeling, i.e., a user-level dynamic dependency atten-
tion, which effectively captures historical diffusion depen-
dencies, and a cascade-level time-aware influence atten-
tion, which infers future dependencies by modeling user
inherent importance and time-decay effects.

• The experiments on three real datasets demonstrate the sig-
nificantly improved effectiveness and efficiency of the pro-
posed model compared with state-of-the-art approaches.

2 Method
2.1 Preliminary
A diffusion cascade can be represented as c =
{(u1, t1), (u2, t2), ..., (uc, tc)}, where the element (ui, ti)
denotes that user ui is infected in this cascade at time ti. The
infected users are ordered by time, thus ti−1 < ti. Generally,
the diffusion prediction problem can be formulated as: given
the infection history {(u1, t1), ..., (ui, ti)} of a cascade, the
task is to predict user ui+1, who will be infected next. Given
a training cascades set C = {c1, ..., cM}, the goal is to build
a model that is able to learn the function of the conditional
probability p(ui+1|{(u1, t1), ..., (ui, ti)}).

2.2 The HiDAN Model
The framework of the proposed HiDAN is illustrated in Fig.
2. Initially, each user of an input cascade is embedded as a
user embedding. Given the embedded user information, the
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Figure 2: Overview of the HiDAN model. e, d, u and c correspond
to user embedding, dependency context embedding derived by user-
level attention, dependency-aware user embedding constructed by
fusion gate and cascade embedding composed by cascade-level at-
tention, respectively. The details will be described in subsection 2.2.

user-level attention mechanism dynamically captures the dif-
fusion dependencies between each user and its context users.
A gating mechanism is developed to integrate a user’s own
information and his/her dependency context. Based on the
dependency-aware user information, the cascade-level atten-
tion computes the influence of historical users on possible fu-
ture users by capturing users’ inherent importance and the
time-decay effects. Given the cascade embedding constructed
with the influence attention, the model then predicts the next
infected user.

User Embedding
At time ti, the sequence of already infected users {u1, ..., ui},
ordered by infection time, is regarded as the input to the
model. The raw representation of each input user uj ∈
{u1, ..., ui} is the one hot vector of user ID, i.e., xj ∈ RN ,
where N is the total number of distinct users. To extract ex-
pressive high-level features of users, we transform the raw
input x to the user embedding e via a fully-connected layer:

ej = fx(Wxxj + bx) (1)

where Wx ∈ Rd×N , bx ∈ Rd are learnable parameters, d is
the size of the embedding and fx is the non-linear activation
function.

User-Level Dynamic Dependency Attention
This attention mechanism aims at capturing diffusion de-
pendencies among input cascade users and extracting
dependency-aware user features. The diffusion dependency
describes who possibly infect(s) whom in the diffusion pro-
cess, which possesses the following two characteristics. (1)
Each cascade user can only be infected by its previous users,
thus the dependency of uj only exists on {u1, ..., uj−1}. The
previously infected users {u1, ..., uj−1} are referred to as the
diffusion context users of uj . (2) Diffusion dependency is
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Figure 3: Dependency attention mechanism: an example for uD .

directional, i.e., the high dependency of uj on uk does not in-
dicate same level of dependency of uk on uj . This is mainly
because the dependency relationship is often directed in the
real user graph. For example, in Twitter, a star user, who is
followed by millions of users, frequently infects his/her fol-
lowers instead of being infected by followers. Therefore, it
requires differentiating different roles that users play in the
directed dependencies.

Based on the above understanding, we propose a dynamic
attention mechanism to capture the diffusion dependency for
each input user. The dependency attention score between user
uj ∈ {u1, ..., ui} and its context user uk ∈ {u1, ..., uj−1} is
measured as follows:

αkj =
exp(〈Wc

eek,W
t
eej〉)∑j−1

l=1 exp(〈Wc
eel,W

t
eej〉)

(2)

where Wc
e,W

t
e ∈ Rd×d are transformation matrices for the

context user and the target user respectively; 〈·, ·〉 represents
the inner product. Wc

e,W
t
e are employed to differentiate user

roles in directed dependencies. When checking whether uj
is dependent on uk, uk is regarded as the context user and
transformed by Wc

e, while uj is treated as the target user and
transformed by Wt

e. When checking dependency with the
opposite direction, the roles of uk and uj are reversed, thus
dependency scores are different. Similar to most attention
mechanism, we apply a softmax function to derive the proba-
bility distribution. Therefore, αkj denotes the probability that
uj is dependent on uk over all his/her context users.

The useful context information of uj , denoted as dj , is
computed via the following attention weighted sum:

dj =

j−1∑
k=1

αkjek (3)

The above dependency attention process for one specific
user is illustrated in Fig. 3. Since dependency attentions and
context embeddings are computed independently for each in-
put user in the proposed non-sequential framework, we are
able to parallelize the dynamic processes as matrix compu-
tation. Given a input cascade c, where the cascade length is
l and the embedding matrix of l users is E ∈ Rd×l, we re-
place time-consuming enumeration by using a mask matrix
M ∈ Rl×l, where each entry Mi,j = 0 if i < j; otherwise
Mi,j = −∞. Then we derive the matrix of attentions as:

A = softmax((Wc
eE)T (Wt

eE) + M) (4)
where A ∈ Rl×l. Each row vector αj in A represents uj’s
attentions on its context users. The mask forces the softmax
function to compute valid attentions only over uj’s context
users and assign 0 to other users (infected later than uj). The
matrix of context embeddings can be derived as: D = AET .

Dependency-Aware Fusion Gating
For each input cascade user uj , we now have user embed-
ding ej and his/her diffusion context embedding dj . To selec-
tively integrate the important information of two embeddings,
a concise and effective fusion gating mechanism is employed.
It produces a dependency-aware user representation uj as fol-
lows:

gj = sigmoid(W1
gej + W2

gdj + bg) (5)

uj = gj � ej + (1− gj)� dj (6)

where W1
g,W

2
g ∈ Rd×d and bg ∈ Rd. g is used to drop

unimportant parts of user embedding ej and add new infor-
mation of its diffusion context embedding dj such that the
fused embedding uj is aware of the diffusion dependency.

Cascade-Level Time-Aware Influence Attention
At the cascade level, we also consider the non-sequential de-
pendency, in which all historical users could trigger the fu-
ture infection with different probabilities. We interpret such
future dependencies as dynamic influence of historical users
on the whole cascade, and propose a time-aware influence
attention mechanism. Based on the inferred influence, we
compose dependency-aware embeddings u to cascade-level
features for final prediction. This attention mechanism cap-
tures two factors: the inherent importance of users to cascade
and the dynamic time-decay effects.

The inherent importance of uj describes how important the
information in the dependency-aware embedding uj is to the
cascade. If only considering the inherent importance, we can
define the influence with the self-attention mechanism [Lin et
al., 2017] as: 〈w, fu(Wuuj + bu)〉.

However, user influence is generally assumed to decrease
as time passes. This is known as the time-decay effect. Em-
pirical studies [Gomez Rodriguez et al., 2011] have shown
that time-decay patterns in different data are not identical,
thus predefining the form of time-decay function is often
impractical [Cao et al., 2017]. We estimate the time-decay
factor in HiDAN via a neural function directly. For uj ∈
{(u1, t1), ..., (ui, ti)}, the past time at current step ti can be
represented as ∆tj = ti − tj . We discretize the informa-
tion of past time as a one-hot vector vec(∆tj) = tj ∈ RT ,
where tjn = 1 if tn−1 < ti − tj < tn. The critical
time points of the discretization, such as tn−1 and tn, are
defined by splitting the time range (0, Tmax] into T inter-
vals {(0, t1], ...(tn−1, tn], ..., (tT−1, Tmax]}, where Tmax is the
max observation time. We aim at mapping the past time tj to
a vector λj , describing latent features of time-decay. To cap-
ture the non-linearity of the decay effect, we compute λj via
the following fully connected layer:

λj = sigmoid(Wtt
j + bt) (7)

where Wt ∈ Rd×T and bt ∈ Rd.
Taking both inherent importance and time decay factors

into consideration, we define the following time-aware influ-
ence attention:

βj =
exp(〈w,λj � fu(Wuuj + bu)〉)∑i

k=1 exp(〈w,λk � fu(Wuuk + bu)〉)
(8)
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where Wu ∈ Rd×d, bu ∈ Rd and w ∈ Rd. The decay
factor vector λj serves as a soft gate, which selectively drops
the information of already infected users according to their
infection times.

Given the user influence βj , this layer finally composes all
dependency-aware user embeddings and constructs the cas-
cade embedding at time ti as follows:

ci =
i∑

j=1

βjuj (9)

Prediction Layer
Given cascade embedding ci at ti, HiDAN predicts the prob-
ability of next infected user over all possible users as:

p̂(ui+1|ci) = softmax(Wcci + bc) (10)

where Wc ∈ RN×d, bc ∈ RN .

2.3 Model Optimization
Given the training set C = {c1, ..., cM}, the learning objec-
tive is to minimize the following negative log-likelihood loss:

L(C) = −
M∑

m=1

nm−1∑
i=1

log p̂(ui+1|cmi ) (11)

where ui+1 is truly infected user in cascade cm at time ti+1.
The backpropagation algorithm is utilized in the training pro-
cess. As for parameters updating, we employ stochastic gra-
dient descent (SGD) method with mini-batch and adopt the
Adam optimizer [Kingma and Ba, 2015].

3 Experiments
3.1 Data
To verify the effectiveness of the proposed model, we conduct
comparative experiments on the following three real datasets,
which are representative in information diffusion studies.

• Memes [Leskovec et al., 2009]: This dataset contains ar-
ticles from mainstream news websites or blogs. Each cas-
cade records the diffusion process of a specific key phrase
and is represented by a sequence of webpage links associ-
ated with corresponding timestamps.

• Weibo [Zhang et al., 2013]: This dataset consists of con-
tent reposting logs crawled from Sina Weibo, a Chinese mi-
croblogging site. Each reposting log represents a diffusion
process, in which users are ordered as a sequence according
to the time they repost.

• Twitter [Weng et al., 2013]: This dataset records the dif-
fusion processes of hash-tags in Twitter. The sequences of
users and timestamps of using the same hash-tags are traced
as diffusion cascades.

Following the previous work [Wang et al., 2017b], we se-
lect frequent users and corresponding cascades as experimen-
tal data. The detailed statistics are presented in Table 1. We
randomly sample 80% of cascades for training and the rest
for validating and testing with an even split.

Memes Weibo Twitter
# Users 1,109 8,190 13,755

# Cascades 42,492 43,365 72,103
Avg. Cascade Length 8.8 22.5 9.4

Table 1: Statistics of experimental data.

3.2 Baselines
We compare the proposed model, HiDAN, with the following
popular and strong sequential baselines.

• RNN: RNN represents the basic recurrent neural network
sequential model.

• LSTM [Hochreiter and Schmidhuber, 1997]: Long short-
term memory (LSTM) network is a stronger RNN-based
sequential model, which employs an effective gating mech-
anism to control the information flow in sequence.

• RMTPP [Du et al., 2016]: Recurrent marked temporal
point process (RMTPP) is the state-of-the-art sequential
models for sequence prediction. Besides modeling marker
(diffusion user) sequence, it additionally models timing in-
formation with a temporal point process.

The following state-of-the-art attention based sequential
models are compared. All of them compute attentions on hid-
den states.
• Att-RNN: Att-RNN employs a representative attention

mechanism [Luong et al., 2015] in RNN. Attentions are
computed between current hidden state and previous states.

• Att-LSTM: Att-LSTM employs the same attention mech-
anism as Att-RNN in the LSTM framework.

• CYAN-RNN [Wang et al., 2017b]: This is the latest
attention-based sequential method for cascade prediction.
Instead of using a single-chain RNN, it employs a encoder-
decoder architecture where a coverage-based alignment
mechanism is applied. Attentions are computed between
current decoder states and previous encoder states.
The following variants of HiDAN are also evaluated.

• HiDANNUA: This is a user-level attention-free variant,
which replaces dependency attention and fusion gate with
an average operation over embeddings of context users.

• HiDANNCA: This is a cascade-level attention-free variant.
Influence attention is substituted by the average operation.

• HiDANNT: This is a variant without considering time-
decay in cascade-level attention.

3.3 Evaluation Metrics and Settings
The performance is evaluated by predicting the next infected
user based on previous infections. Due to the large number
of potential targets, this prediction task is often regarded as
a ranking problem [Wang et al., 2017b]. Given the output
probabilities of all users, the ground-truth user, who is truly
infected at next step, is expected to get higher probability. We
adopt two widely used ranking metrics for evaluation: Mean
Reciprocal Rank (MRR) and Accuracy on top k (A@k) [Wang
et al., 2017b].

The size of hidden unit is set to 64 for all baselines. Other
parameters of baselines follow the recommended settings in
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Memes Weibo Twitter
Model MRR A@10 A@50 A@100 MRR A@10 A@50 A@100 MRR A@10 A@50 A@100
RNN 23.26 40.23 66.33 77.24 1.33 2.25 6.04 9.49 2.04 3.68 9.83 14.92

LSTM 24.08 41.49 67.23 77.92 1.40 2.63 7.23 11.49 2.47 4.69 11.78 16.63
RMTPP 23.35 41.37 66.34 76.99 1.35 2.28 6.69 10.73 1.73 3.17 8.96 13.64
Att-RNN 23.51 42.05 67.14 78.10 1.57 2.52 7.51 12.18 2.53 4.56 13.68 20.14

Att-LSTM 24.39 43.11 68.69 79.55 1.64 2.93 8.20 12.60 2.73 5.08 14.78 21.71
CYANRNN 17.62 35.84 57.29 69.81 1.06 1.53 5.18 7.83 1.19 1.82 5.69 8.97
HiDANNUA 16.60 33.41 61.59 73.75 1.44 2.76 8.14 12.69 2.50 4.72 11.86 16.71
HiDANNCA 20.41 38.78 65.55 77.70 1.38 2.47 7.14 11.29 2.45 4.60 11.02 16.32
HiDANNT 27.12 47.92 73.47 83.26 2.39 4.06 11.02 16.83 5.46 11.05 23.08 29.12
HiDAN 27.91 48.89 74.63 84.44 2.48 4.30 11.31 17.30 5.74 11.18 23.61 30.41

Table 2: Diffusion prediction performance.

original papers. For the proposed models, the dimension size
of d is also 64, the learning rate is 0.001, the max observa-
tion time Tmax is 120 hours, the number of splitting time in-
terval T is 40, and the non-linear activation functions fx, fu
are selected as Exponential Linear Unit (ELU) [Clevert et al.,
2016]. We also apply the Dropout [Srivastava et al., 2014]
with the keep probability 0.8 and the L2 regularization on pa-
rameters to avoid over-fitting.

3.4 Evaluation Results
As shown in Table 2, the proposed HiDAN consistently and
remarkably outperforms all compared methods in terms of
MRR, A@10, A@50 and A@100 on three datasets. The su-
periority of HiDAN on diffusion prediction is clearly demon-
strated. In addition, we observe the following important find-
ings.
• The non-sequential framework is capable for cascade

modeling. HiDAN significantly outperforms all baselines.
Even without either of the important attention mechanisms,
its variants can still achieve competitive and better per-
formance than attention-free sequential models on Weibo
and Twitter datasets. This indicates that the proposed
non-sequential architecture is capable of modeling cascade
without sequential assumptions.

• Attention mechanism is beneficial for diffusion predic-
tion. Almost all attention-based sequential models perform
better than their non-attention versions. Excluding atten-
tions from the full HiDAN also brings notable decreases on
performance. The proposed hierarchical attentions are spe-
cific for capturing historical non-sequential dependencies
and inferring future dependencies. Attentions in sequential
models also aim at computing long-term dependencies to
alleviate sequential assumptions. This finding is consistent
with our argument that modeling non-sequential dependen-
cies is important for diffusion prediction.

• HiDAN is more effective in capturing diffusion depen-
dencies. Compared with state-of-the-art attention-based
sequential models, HiDAN gains a very significant im-
provement. The attention-based sequential models define
attentions on hidden states, which represent the accumu-
lated information but not independent information of each
historical user. They cannot clearly capture user-to-user
dependencies. Differently, HiDAN does not sequentially
compress user information but directly computes user-level

attentions with unique user embeddings. HiDAN captures
dependencies more explicitly and effectively.

• Time decay matters to influence modeling. HiDAN out-
performs its variant HiDANNT across all datasets. Taking
time information into account helps infer user influence
(dependencies) on future infections more accurately.

3.5 Case Studies on Diffusion Dependency
The experimental results have shown that user-level depen-
dency attention plays an important role in HiDAN. Here, we
further investigate whether the proposed mechanism is better
at capturing user-to-user diffusion dependencies. Since it is
very difficult to access the complete graph of real data, we
utilize two synthetic data (CP-Exp and RD-Exp) provided in
the previous work [Wang et al., 2017b] for case studies. The
graphs are created by Kronecker Generator [Leskovec et al.,
2010]. Given the created graph, cascades are generated by
simulation processes [Gomez Rodriguez et al., 2011].

We visualize attention matrices of the sampled cases
learned by HiDAN and its best competitor Att-LSTM. Mean-
while, the adjacency matrices of the users who are involved
in the cases are visualized as ground-truth. As illustrated in
Fig. 4, each element (ui, uj) in the learned attention matri-
ces indicates how much uj is infected by ui. The deeper the
color is, the greater the attention is. Each element (uk, ul)
in the ground-truth matrices denotes whether or not there is
a directed edge from uk to ul (i.e., black indicates ‘yes’ and
gray indicates ‘no’).

Compared with Att-LSTM, attentions learned by HiDAN
are more consistent with ground-truth dependencies. De-
spite of employing attention mechanism, Att-LSTM mainly
focuses on the most recent hidden state. On the contrary, Hi-
DAN is more aware of cross dependencies, especially long-
term and multi- dependencies. In the sampled case of the CP-
Exp data (left 3 images), the dependencies of all users except
u12 are correctly allocated by HiDAN. In the sampled case of
the RD-Exp (right 3 images), HiDAN accurately captures de-
pendencies for u30, u1 and u24. It is interesting that both u11
and u15 have multiple paths connected to previously infected
users, as shown in the ground-truth matrix. HiDAN is able to
recognize such kind of multiple diffusion paths.

3.6 Efficiency Analysis
Apart from effectiveness, higher efficiency is another cru-
cial advantage of HiDAN. To demonstrate this, we conduct a
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(a) Dependencies learned by Att-LSTM

(b) Dependencies learned by HiDAN

(c) Ground-truth dependencies

Figure 4: Case studies on learned dependencies.

training time comparison. All models except CYAN-RNN1

are implemented with Tensorflow and trained on the same
GTX1080Ti graphic card with the same batch size.

As shown in Table 3, HiDAN has relatively fewer param-
eters than Att-LSTM and CYAN-RNN. More importantly,
HiDAN is super faster than all compared sequential mod-
els. This can be attributed to its non-sequential architecture.
The recurrent layer in sequential models has an approximate
O(ld2) complexity. However, HiDAN replaces the recur-
rent layer with the dependency attention, which can be paral-
lelized with matrix computation as shown in Eq.(4), and time
complexity is only about O(l2d). Compared with hidden size
d (64 in experiments), average cascade length l (9, 23 and
10 in experiments) is often smaller in real data. Therefore,
HiDAN has a lower complexity at the historical user encod-
ing layer. Additionally, without sequential assumptions, Hi-
DAN can compute outputs of all steps in parallel with a O(1)
complexity at the prediction layer, whereas sequential mod-
els need to output step by step with a O(l) complexity. These
dramatically speed up the training of HiDAN especially when
the cascade length is getting larger.

1Released code is in JAVA. GPU training time is unknown. But
as an RNN-based model, it is at least not faster than RNN.

# Param. Memes Weibo Twitter
RNN 6.2k 22 s 145 s 261 s

LSTM 24.8k 34 s 190 s 346 s
RMTPP 8.8k 24 s 148 s 265 s
Att-RNN 14.5k 29 s 152 s 273 s

Att-LSTM 33.1k 38 s 203 s 422 s
CYAN-RNN 27.1k ≥22 s ≥145 s ≥261 s

HiDAN 25.6k 12 s 36 s 85 s
Table 3: Average training time (seconds) per epoch.

4 Related Work
Diffusion Prediction
Inspired by the theoretical independent cascade (IC) model
[Kempe et al., 2003], most previous work focused on IC-
based methods for diffusion prediction [Saito et al., 2009;
Gomez Rodriguez et al., 2011]. Since these methods require
strong hypothesis of diffusion patterns, which is hard to spec-
ify and verify in practice, they are often not effective on real
data [Wang et al., 2017b]. Several recent studies formulated
this problem as sequence prediction task and a series of RNN-
based models were proposed. RMTPP [Du et al., 2016] is the
first RNN-based model for predicting cascade dynamic. It
models both timing and user information in sequences with
a basic RNN framework. Topo-LSTM [Wang et al., 2017a]
employs the LSTM framework and considers the topology.
However, the requirement for complete graph limits its appli-
cation on the data without graph information. Another rep-
resentative work is CYANRNN[Wang et al., 2017b], which
adopts an encoder-decoder framework and a machine transla-
tion alignment mechanism. Different from previous sequen-
tial models, we are the first to develop a non-sequential neural
network for diffusion prediction.

Attention in Neural Network
Attention mechanism has been widely used in many
sequence-based tasks, including neural machine translation
[Luong et al., 2015; Bahdanau et al., 2015] and sequence
embedding [Lin et al., 2017]. In a series of recent works,
the attention mechanisms have proven more expressive in
the RNN-free architecture. The RNN-free attention neural
network Transformer [Vaswani et al., 2017] was firstly pro-
posed for machine translation task. Another representative
model [Shen et al., 2018] was then proposed for various sin-
gle sequence problems. Besides, some researchers [Lin et al.,
2017] focused on developing self attention network to capture
the importance of elements in sequences. Inspired by them,
we propose hierarchical attentions which are well adapted to
unique properties of diffusion cascades on different levels.

5 Conclusion
In this paper, we propose a hierarchal attention neural net-
work for diffusion prediction, which is well adapted to the
non-sequential characteristics of diffusion cascades. The pro-
posed two-level attentions are able to capture historical user-
to-user dependencies and infer future dependencies. The ex-
periments on three real diffusion datasets demonstrate the ef-
fectiveness and efficiency of our model when compared with
state-of-the-art sequential models.
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