
Multiple Resolution Bit Tracking Protocol
for Continuous RFID Tag Identification

Weiping Zhu∗, Mingzhe Li∗, Jiannong Cao†, Zongjian He‡ and Rong Xie∗§
∗School of Computer Science, Wuhan University, P. R. China

†Department of Computing, The Hong Kong Polytechnic University, Hong Kong
‡Centre for eResearch, Faculty of Science, University of Auckland, New Zealand

Email: {wpzhu,mzli,xierong}@whu.edu.cn, csjcao@comp.polyu.edu.hk, jason.he@auckland.ac.nz

Abstract—In recent years, radio frequency identification
(RFID) technology has been applied in various fields to identify
objects efficiently. Anti-collision protocols are important for
RFID tag identifications because it can overcome the problem of
unsuccessful identification caused by simultaneous transmission
of IDs from multiple tags. Considering that identification is usu-
ally performed multiple times, the latest anti-collision approach
uses the previous identification results for later identifications,
and can identify two tags per unit time. Existing anti-collision
protocols ignore bit information, causing low performance prob-
lems. In this study, we propose a new approach called multiple
resolution bit tracking protocol (MRB) to improve this perfor-
mance further. This approach dynamically computes a tag set
that can be unambiguously identified irrespective of any missing
sub-set. The tags in the tag set are requested to transmit their
IDs in the same time slot and terminate their identifications after
proper processing. We perform extensive simulations to validate
the performance of our proposed approach. The results show
that MRB can achieve 3.7 tags per unit time, which is 1.85 times
the number achieved using the existing approaches.

Index Terms—RFID, multiple resolution, collision tracking
tree, MRB.

I. INTRODUCTION

Radio frequency identification (RFID) is an automatic

identification technology that uses radio communication to

obtain the IDs stored in tags. RFID is widely used in

many applications such as supply chain management, human

surveillance, and animal management. Compared to the bar-

code technology, RFID has various advantages, such as non-

line-of-sight capability, long distance identification, and high

reliability.

A typical RFID system consists of a reader and several

tags. During the identification process, the reader sends out

a request to the tags, and the tags reply with their pre-stored

IDs over a shared wireless medium. When more than one tag

transmit their IDs simultaneously, their signals collide, and

the reader cannot identify any tags. Therefore, an efficient

approach is required to reduce such collisions, which is called

a tag anti-collision approach in the RFID field.

The tag identification process is usually performed contin-

uously; thus, the result of the first identification can facili-

tate and speed up latter identifications. The tree-based anti-

collision approach is an important type of RFID tag anti-

collision approach for such kind of identification. A tree-based

§Corresponding Author: Rong Xie, Email: xierong@whu.edu.cn

approach [1], [2] follows a tree traversal to continuously split a

set of tags into two subsets until each set has only one tag and

can be identified without collision. The tree-based approaches

are developed mainly based on two algorithms: binary tree

(BT) [3], [4] and query tree (QT) [5], [6] algorithms. Accord-

ing to a previous study [7], BT usually outperforms QT in

terms of identification time; thus, we will focus on the BT-

based approaches.

BT consists of several rounds of identification, and in each

round the reader sends a request and requires the tags to

respond. Every time after the tags reply with their IDs, the

reader notifies the tags about the result of identification, which

can be idle, singleton, or collision, denoting no tag, one tag, or

more tags responded, respectively. Subsequently, the collided

tags are separated into two groups randomly. Such a process is

repeated; eventually, there is only one tag in a group, which is

identified. Based on BT, the adaptive binary splitting protocol

(ABS) [8] records the identification sequence number (called

slot number) in the first identification for each identified tag,

and later identification can be performed based on such slot

numbers rather than starting from scratch. The pair resolution

blocking ABS algorithm (PRB) [9] identify two tags together

each time unit, thereby achieving performance better than that

of ABS. Recently, the bit collision tracking technique [10],

[11], [12], [13], [14] is used to speed up the identification pro-

cess. This technique can determine the location of collisions

at the bit level when multiple tags transfer their IDs. This

provides more information than previous tag anti-collision

approaches.

However, this technique has not been used for multiple

times’ identifications. We believe that when using the bit

collision tracking technique, a performance of two tags per

unit time is not optimal because bits of tags can provide more

information. It can be improved further. More tags can be

identified per unit time by taking advantage of the tags’ bit

information.

In this study, we proposed a new tree-based RFID anti-

collision protocol called multiple resolution bit tracking pro-

tocol (MRB). When identifying the tags, we introduce the

concept of unique collided set. Each unique collided set

includes tags with successive IDs and any sub-set tags of it can

be determined using the bit tracking technique. We develop an

approach to dynamically compute a unique collided set each

The following publication W. Zhu, M. Li, J. Cao, Z. He and R. Xie, "Multiple Resolution Bit Tracking Protocol for Continuous RFID Tag Identification,"
2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Monterey, CA, USA, 2019, pp. 100-108 is available at
https://doi.org/10.1109/MASS.2019.00021.

This is the Pre-Published Version.

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

time and request the tags available in the unique collided set to

reply and get identified. The total identification time is propor-

tional to the number of the unique collided set. We perform

extensive simulations to validate our proposed approach. In

summary, this study makes the following contributions:

• We proposed the concept of unique collided set. This

concept contributes to the theory of identifying multi-

ple tags simultaneously in the tree-based anti-collision

approaches. This concept also extends the bit tracking

technique to provide more useful information based on

the identification result of tags in the previous rounds.

• We developed the MRB protocol for RFID tag anti-

collisions. MRB can achieve 3.7 tags per unit time when

identifying tags, which is 1.85 times the number achieved

using the existing approaches.

• We performed extensive simulations to validate the per-

formance of our proposed approach. The results show

that our approach achieves good performance in various

scenarios.

The remainder of this study is organized as follows.

Section II briefly surveys the related works. Section III

describes the system model and problem formulation. MRB

is presented in Section IV. Section V shows the mathematical

analyses for MRB. Section VI reports the results of the

simulation experiments. Finally, Section VII concludes this

study.

II. RELATED WORK

We briefly review the related works to our problem in this

section before describing our proposed algorithm.

A. Anti-collision Approaches

RFID tag anti-collision approaches can be classified into

two categories: tree-based and Aloha-based approaches. The

Aloha-based approaches [15], [16], [17], [18] divide the

identification process into several frames, and in each frame

there are several time slots. In a frame, each tag randomly

selects a time slot to respond, and the response is received

successfully only if one tag selects that time slot. The tree-

based approaches [1], [2], [19], [20] follow a tree traversal

to continuously split a set of tags into two subsets until

each set has only one tag and can be identified without

collision. Generally, the Aloha-based approaches are faster

in identifying new tags, while the tree-based approaches can

more easily utilize the previous identification results for later

identifications. Considering that the identification is usually

performed continuously, we focus on tree-based approaches

in this study.

The tree-based approaches are developed mainely based on

binary tree (BT) [3], [4], [21] and query tree (QT) [5], [6]

algorithms. The former uses random binary numbers to split

tags while the latter uses tag IDs. According to the previous

study [7], BT outperforms QT in terms of identification time.

Based on BT, adaptive binary splitting protocol (ABS) [8]

takes advantage of the identification result in the last round

to speed up the identification process. Based on ABS, PRB

[9] blocks the identification of new arriving tags from the

previous identified tags (called staying tags) by memorizing its

interrogating reader’s ID in each tag. Moreover, two tags are

allowed to be transmitted their IDs simultaneously. If both tags

do not leave, the slot will be collided. If only one tag responds,

the reader stores its ID and infers that the other tag has been

left. If no tag responds, the two tags are confirmed to be left.

BCTT [22] is proposed to further improve the execution time

by allocating a unique short ID to each identified tag and

using such short ID in later data transmission to reduces the

data amount to be transmitted. In this study, we will further

reduce the time slots required for identification.

B. Bit Tracking based Approaches

Recently, the bit tracking technique [10], [11], [12], [13],

[14] is used to speed up the identification process. This

technique can determine the collisions in the bit level when

multiple tags transfer their IDs. In [10], collision tree protocol

(CT) utilizes the collided bits to generate proper prefixes to be

sent and split tag groups. In [11], Chen et al. presents an algo-

rithm named new enhanced anti-collision algorithm (NEAA)

based on BT. All tags are initially partitioned into multiple

sets according to number of bit 1 in their IDs; each set of tags

will reply the reader at the same time. The ID transmission

can be split into several parts according to the collision results.

In a special case, several tags can be identified in one time

slot if all their IDs have only one bit 1 or 0. In [13], Lai et
al. proposed an optimal binary tracking tree protocol (OBTT)

to separate the tags into proper sets to reduce collisions in the

identification. It first estimates the number of tags based on

the locations of collided bits, splits the tags into an optimal

number of sets based on the estimation and the first collided

bit, and and then follows BT to identify tags. Multi-reader

RFID tag identification using bit tracking algorithm (MRTI-

BT) [14] improves OBTT by transferring only a part of tag ID

for collision resolution. Multibit identification protocol (MBI)

[12] identifies the tag IDs multibit by multibit. The collided

ID strings of the previous time slot are grouped according

to a special scheme and then deduced simultaneously. In this

study, we further use bit tracking technique to allow as many

as possible tags to transfer their information, based on previous

identification results.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

We assume that in a warehouse, library, or shopping mall,

there are N objects required to be monitored. Each object is

attached with an RFID tag. We use an RFID reader to obtain

the IDs of the tags from time to time. Each time identification

is called a round of identification. The tags may move in and

out the interrogation region of an RFID reader. We call the

tags arriving tags if they are not present in the previous round

and arrive in current round, and call the tags staying tags if

they keep present in the previous and current round.

Tree-based anti-collision protocol is assumed used for the

ID collection. Each round of identification is divided into

several frames and each frame includes several slots. A slot is

called idle, signlton, or collision when no tag responds, only

one tag responds or multiple tags respond, respectively.

In the physical layer, Manchester coding are used in

the communications, where a 0 bit is coded by a positive

transition, while a 1 bit is coded by a negative transition.

Consequently, if two tags simultaneously transmit bits of

different values, then the positive and negative transitions of

the received bits cancel each other out; thus, a subcarrier signal

is received for the duration of an entire bit. The collisions of

multiple tags can be determined in the bit level. Supposing that

the ID of tag A is “10101” and the ID of tag B is “10110”,

when tags A and B send their IDs simultaneously using the

Manchester coding method, the signal received by the reader

is “101xx,” where “x” represents a collided bit.

The identification is performed for multiple times. Each

identified tag is assumed assigned a unique short ID, and the

association between a short ID and a full tag ID is recorded

in the reader. In the later identification process, a tag transits

its short ID, rather than its tag ID, to reduce the cost of data

transmission.

Given the system models described above, we need to

design a protocol to identify the tags in the interrogation

region of an RFID reader as quickly as possible.

IV. THE PROCEDURE OF MRB

In this section, we propose our solution, MRB. MRB allows

several tags to reply simultaneously to reduce the number of

time slots. In the following subsections, we illustrate the key

procedures used in MRB.

A. First Round Identification

At first, following ABS [8], our approach adopts a tree-

based approach to eliminate collisions. Each tag has two

counters, allocated slot counter (ASC) and progressed slot
counter (PSC). The reader also has two counters, terminated
slot counter (TSC) and progressed slot counter (PSC). The

PSCs of the reader and all the tags are the same, recording

the number of tags that have been identified. ASC is used to

allocate tags into different groups to reduce collisions. Initially,

both PSC and ASC are set to 0.

In each slot, the tags, whose ASCs are equal to PSC,

transmit their IDs. If a tag’s ASC is less than its PSC, it

is recognized and keeps silent in the later process. For the

tags that have transmitted the data, the reader notifies them

about the identification result. The result can be idle, singleton,

or collision, denoting no tag, one tag, or more than one tag

replied, respectively. The tags perform different operations

according to the result, which can be described as follows:

• Idle: Each tag decreases its ASC by 1.

• Collision: The tags that transmitted IDs in the slot ran-

domly add a binary number to their ASCs. The other tags

add 1 to their ASCs.

• Singleton: Each tag adds 1 to its PSC.

On the reader side, PSC is increased by 1 when the slot is

a singleton slot. TSC keeps a track of the largest ASC in all

tags. The reader adds 1 to its TSC in the collision slot and

decreases 1 from its TSC in the idle slot. When the reader’s

TSC < PSC, it means that all the tags have been identified

and the entire process is completed.

Suppose that there are N tags in the reader interrogation

region, after the identification for the first round, the ASCs of

the tags are unique and continuous and have the values 0, 1,

2 ,..., N-1.

B. Later Rounds Identification

After the first round identification, MRB computes the set of

tags that can transmit their IDs simultaneously. The tags can

be uniquely identified based on the collided bits with each

other. We call the tags in such a set unique collided set. This

approach can identify multiple tags in a slot, therefore we call

such processing multiple resolution technique.

The unique collided set is formally defined as follows.

When the tags in a set (denoted by A) transmit their

IDs simultaneously, the resulting collision bits are denot-

ed by collisionBits(A). Two collision bits are defined e-

qual if each bit in them is the same, otherwise, are de-

fined unequal. For example, for tag set A = {“001”,“100”}
and set B = {“001”,“010”}, collisionBits(A) = “X0X” and

collisionBits(B) = “0XX”, which are not equal. The tags

in a unique collided set A should meet the following two

conditions:

a) The ASCs of the tags should be continuous

b) ∀A1, A2, A1 ⊆ A,A2 ⊆ A, and collisionBits(A1) �=
collisionBits(A2)

The tags in a unique collided set are requested to transmit

their IDs in the same time slot. The reader notify the tags

the collided bits. Considering that some tags may leave the

interrogation region of the reader, the tags can compute such

leaving tags and fill in their left ASCs. After the identification,

the staying tags’ ASCs keeps continuous.

C. The Details of MRB

We illustrate the details computing of unique collided set

dynamically and the processing of ASCs as follows:

The approach includes the operations for the reader and

tags. The reader operations can be seen in Algorithm 1 and the

tag operations can be seen in Algorithm 2. The reader begins

the operation using the function sendIdenRequest, followed

by the replies of the tags using the function receiveReader-
Request, then the reader notifies the tags the identification

result using the function receiveTagReplies, and finally the tags

change their statuses using the function changeASC.

There are several variables used in the reader. uniqueCol-
lidedSet is used to store the ASCs of tags in a unique collided

set up to now. collisionBitMapping is a data structure of

key-value, where the keys are all possible collision bits in

a tag set, considering that some of the tags in it may be

absent, and the values are IDs of tags lead to the collision

bits. curCollisionBitMapping is a similar data structure; where

the keys are the collision bits between the current tag under

consideration and the previous considered tags. Initially, col-
lisionBitMapping is added an element (noSignal, ∅) denoting

no signal received in the channel and the inferred absences of

all the tags in a unique collided set, curCollisionBitMapping
is set to (ID0, ID0) denoting only the first tag is present, and

uniqueCollidedSet is set to empty.

As shown in Algorithm 1, MRB traverses all ASCs of

tags and forms unique collided sets. From lines 5-9, cur-
CollisionBitMapping is computed considering that the current

tag and any subset of previously considered tags co-exist.

Initially, curCollisionBitMapping includes only the current tag

(line 4). If the union of curCollisionBitMapping and collision-
BitMapping have no repeated elements, the reader is able to

differentiate all situations when the current tag and all the tags

in uniqueCollidedSet transmit their IDs in one slot. Therefore

the uniqueCollidedSet and corresponding collisionBitMapping
are extended, and the next tag is considered following the same

process (lines 11-14). The process of extending the unique

collided set is stopped in either of two conditions, one is

the union of curCollisionBitMapping and collisionBitMapping
has repeated elements (line 15), the other is all staying tags

have been identified (line 23). Consequently, the starting ASC
(i.e. i in the protocol, denoted by PSC) and the size of

uniqueCollidedSet (denoted by groupSize) are broadcast to all

the tags (lines 16-18 and 24-26). When all the tags are handled,

isFinished is set to true.

On receiving the request from the reader, a tag handles it

using the function receiveReaderRequest of Algorithm 2. The

tags whose ASC values range from PSC and PSC+groupSize-1

reply their IDs when receiving the request from the reader.

Further, the reader listens to the channel and handles the

collision bit received in the function receiveTagReplies of

Algorithm 1. We stored all the collision bits and corresponding

tag IDs in collisionBitMapping; thus, it is easy to obtain the

replied tags according to the collisionBits (line 1). The tags

that did not reply are inferred absent and hence removed from

current tag list, i.e., collisionBitMapping. Correspondingly, the

tags’ ASCs are changed to fill in the removed tags’ (lines 8-

12). Finally, a string denoting the collision result is generated

and sent to the tags (lines 5, 7, and 15).

Finally, on receiving the notification from the reader, the

tags handle it using the function changeASC of Algorithm 2.

Each tag participated in the replies calculates the number of

tags whose ASCs are less then it and do not reply, and then

its ASC is decreased by this value. After this function, all the

staying tags keep continuous ASCs, which is compatible with

the ABS. It is noted that for the operations of tags, the tags

available only in a unique collided set reply and all of them

are confirmed present or missing in a time slot.

D. Example of Identification

We illustrate the computing of unique collided set

using an example shown in Table II. Suppose that PSC
is 5, and there are four staying tags whose ASCs are

more than 4. The tags have the IDs of “001,” “010,”

TABLE I
NOTATIONS IN MRB

uniqueCollidedSet The ASC of candidate tags belonging
to a unique collided set

collisionBitMapping
(bitStr, IDList)

All possible collision bits of
uniqueCollidedSet and corresponding
IDs that lead to the collision bits

curCollisionBitMapping
(bitStr, IDList)

All possible collision bits between cur-
rent considering tag with previous con-
sidered tags, and corresponding IDs
that lead to the collision bits

keys(collisionBitMapping)
keys(curCollisionBitMapping)

The collision bits stored in collision-
BitMapping or curCollisionBitMap-
ping

noSignal It denotes no signal received in the
channel

IDi short IDs of the tag whose ASC is i
size(A) The number of elements in A
collisionBits Collision bits received in the channel
collisionBits(a,b) Collision bits when transmitting a and

b together
groupSize The number of tags in the current

unique collided set
isFinished It is used to denote whether the

identification of staying tags is finished
collisionResult It is used to record which bits are

collided, 0 for no-collision and 1 for
collision

collisionResult[a,b] It is the sub string of cr from the left
ath bit to the bth bit, both included

“100,” and “111”, respectively. MRB tries to add the

tags one by one into uniqueCollidedSet if the new added

tag make the uniqueCollidedSet satisfying the definition

of the unique collided set. Initially, uniqueCollidedSet and

curCollisionBitMapping is set empty, and collisionBitMapping
is set to {noSignal} denoting no tag transmission. At the step

1, tag “001” is added into uniqueCollidedSet. Since this is

the first tag considered, curCollisionBitMapping is the result

when sending tag “001” and collisionBitMapping is the empty

set together with curCollisionBitMapping. At the step 2, tag

“010” is added into uniqueCollidedSet. The possible collision

bits between it and the tag “001” can be “010” if tag “001”

is absent or “0XX” if tag “001” is present, which constitute

curCollisionBitMapping. curCollisionBitMapping is further

added to collisionBitMapping. At the step 3, tag “100” is

added into uniqueCollidedSet. curCollisionBitMapping is

“100” if all previous tags are absent, and it is “XX0,” “XXX,”

or“X0X” in other cases. Similarly, at the step 4, tag “111”

is added into uniqueCollidedSet. Further, in the computed

curCollisionBitMapping, XXX present 4 times (denoted

by XXX(4)), which denotes some transmissions cannot be

distinguished. For example, if tag “001,” “010,” and “100”

transmit signals to readers in a time slot simultaneously, the

reader will receive signal “XXX,” which is the same with the

transmission of tag “100” and “111”. Tag “111” is removed

from the uniqueCollidedSet and generates a new unique

collided set.

We further illustrate the change of ASCs of tags using an

example shown in Figure 1. In the first frame, there are three

Algorithm 1: MRB (Reader Operations)

Variable : collisionBitMapping=∅, isFinished=false, i=0
Function: sendIdenRequest()

1 uniqueCollidedSet = ∅
2 collisionBitMapping = {(noSignal,∅)}
3 while i < N do
4 curCollisionBitMapping = {(IDi, IDi)}
5 foreach e ∈ keys(collisionBitMapping) do
6 if e �= noSignal then
7 tags = collisionBitMapping(e) ∪ {IDi}
8 curCollisionBitMapping = curCollisionBitMapping

∪ (collisionBits(IDi,e), tags)
9 end

10 end
11 if there is no repeated elements in

keys(collisionBitMapping ∪ curCollisionBitMapping) then
12 collisionBitMapping = collisionBitMapping ∪

curCollisionBitMapping
13 uniqueCollidedSet = uniqueCollidedSet ∪ {i}
14 i = i+ 1
15 else
16 groupSize = size(uniqueCollidedSet)
17 PSC = i-groupSize
18 broadcast PSC and groupSize
19 receiveTagReplies()
20 uniqueCollidedSet = ∅
21 collisionBitMapping = {(noSignal, ∅)}
22 end
23 end
24 groupSize = size(uniqueCollidedSet)
25 PSC = i-groupSize
26 broadcast PSC and groupSize
27 isFinished = true
28 receiveTagReplies()

Variable : j=0
Function: receiveTagReplies(collisionBits)

1 identifiedTags = collisionBitMapping(collisionBits)
2 while j < groupSize do
3 if IDi-groupSize+j ∈ identifiedTags
4 then
5 collisionResult = collisionResult + “1”
6 else
7 collisionResult = collisionResult + “0”
8 remove IDi-groupSize+j from collisionBitMapping
9 foreach tag whose ASC > i-groupSize+j do

10 decrease the ASC by 1
11 end
12 i = i - 1
13 end
14 end
15 broadcast collisionResult and PSC
16 if isFinished=true then
17 return keys(collisionBitMapping)
18 end

tags that have been identified, whose IDs are “001”, “010”

and “100”, and ASCs are 0, 1 and 2, respectively. In the

second frame, tag “001” (whose ASC is 0) leaves reader’s

recognition region. By using our identification approach, the

reader firstly generates a unique collided set and put the

three tags into the same set. Then, the reader broadcast the

start ASC as 0 and the group size as 3. Tag “010” and

Algorithm 2: MRB (Tag Operations)

Variable : ASC
Function: receiveReaderRequest(int PSC, int groupSize)

1 if ASC ≥ PSC and ASC < PSC +groupSize then
2 transmit the ID
3 end

Function: changeASC(collisionResult, int PSC)
1 if ASC ≥ PSC then
2 s = number of “0”s in collisionResult[0, ASC-PSC]
3 ASC = ASC − s
4 end

“100” reply while tag “001” does not. So the reader receives

collisionBits “XX0”. The reader identifies the tags “010” and

“100”, generates collisionResult “110”, and broadcast it to the

tags. On receiving it, tags “010” and “100” decrease their ASC

by 1 and keep the ASCs continuous and starting from 0.

E. Compliance with Current Standard

We further discuss the compliance of MRB to ISO/IEC

18000-6B standard (i.e., BT) [3]. MRB is based on ABS;

therefore, a few modifications are required to the ISO/IEC

18000-6B standard to implement ABS. Besides this, in MRB,

a short ID is required in the tag. The reader should include PSC
and groupSize in the GROUP SELECT, SUCCESS, FAIL,

and DATA READ commands. The collision result should be

further included in the FAIL command. When receiving these

commands, the tags should reply their short IDs if their ASCs

are between PSC and PSC+groupSize. When receiving the

FAIL command, a tag should further extracts the collision

result and change its ASC based on it. The other process in

MRB are built above the physical layer, including calculating

uniqueCollidedSet, curCollisionBits, collisionBits and analyz-

ing tags’ response of the collision bits, which is compliance

with the ISO/IEC 18000-6B standard.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of MRB.

Suppose there are n tags, and each tag has a short ID of length

m. First, we analyze the probability of identifying these n tags

in a slot , then we calculate the mathematical expectations of

the number of tags identified in a slot.

A. Identification Probability

In our problem, a tag can be distinguished from other tags

if it owns at least one unique bit in its ID. A unique bit is a

bit for which all the other tags in the unique collided set have

a different value. For example, if tag A’s ID has the value of

1 at the second bit, this bit is a unique bit only if the second

bit of all the other tags in the unique collided set is 0.

Assuming the tags’ IDs follow a uniform distribution, a bit

of an ID has a probability of
(
1
2

)n−1
to be a unique bit. There

are total m bits that can be allocated to the tags as unique bits.

Considering the tags sequentially, we assume that the ith tag

has ki unique bits in its ID. Furthermore, after the i-1 tags

TABLE II
AN EXAMPLE OF UNIQUE COLLIDED SET COMPUTATION

step number current ASC current ID uniqueCollidedSet keys(curCollisionBitMapping) keys(collisionBitMapping) continue?
1 5 001 {5} {001} {001,noSignal} yes
2 6 010 {5,6} {0XX,010} {010,0XX,001,noSignal} yes
3 7 100 {5,6,7} {XX0,XXX,X0X,100} {100,X0X,XX0,XXX,010,0XX,001,noSignal} yes
4 8 111 {5,6,7,8} {1XX,XXX(4),X1X,XX1,111} {1XX,XXX(5),X1X,XX1,111,

100,X0X,XX0,010,0XX,001,noSignal}
no

Reader

Tag 010
ASC=1 Tag 100

ASC=2

broadcast 0 and 3

Tag 001
ASC=0

step 1

Reader

Tag 001
ASC=0

Tag 010
ASC=1

Tag 100
ASC=2

last frame

Reader

Tag 010
ASC=1 Tag 100

ASC=2

send 010

Tag 001
ASC=0

step 2

send 100

Reader

Tag 010
ASC=0 Tag 100

ASC=1

broadcast 011

step 3

Tag 001
ASC=0

receive XX0

Fig. 1. An example of the ASC Change

determined their unique bits, the probability that the ith tag

has ki unique bits is

Cki

m−
i−1∑

t=1
kt

(
1

2

)ki(n−1)

(1)

Further, we calculate the probability of a tag set, in which

their unique bits are k1, k2...., kn, as shown below:

n∏
i=1

Cki

m−
i−1∑

t=1
kt

(
1

2

)ki(n−1)

(2)

Let P(n, m) denote the probability that all n tags in a set

can be identified, where the length of the tags’ ID is m. We

enumerate all the possibilities of unique slots allocated to the

tags, and obtain P(n, m) as follows:

P (n,m) =
∑

n∑

i=1
ki≤m

⎛
⎝ n∏

i=1

Cki

m−
i−1∑

t=1
kt

(
1

2

)ki(n−1)
⎞
⎠ (3)

It is noted that the sum of ki cannot exceed m.

B. Mathematical Expectation

Let Q(n+1, m) denote the probability that n tags can be

identified, while the (n+1)th tag cannot be identified together

in a slot. This means that the (n+1)th cannot have a unique

bit with the previous considered tags. First, we calculate the

probability that there are no tags that have unique bit as

1− C2
n+1 ×

(
1

2

)n+1

× 2 (4)

We compute Q(n+1, m) as follows:

Q(n+ 1,m) = P (n,m)×
(
1− C1

n+1

(
1

2

)n−1
)m−

n∑

i=1
ki

(5)

Further, we compute the mathematical expectations of the

number of tags identified in a time slot. At least two tags are

identified within one time slot; thus, n is not less than 2. In

addition, each tag must own at least one unique bit; thus, n
must not exceed m. We calculate the mathematical expectation

as follows:

E =

m∑
n=2

n×Q(n+ 1,m) (6)

When n is 50 and m is 8, this value is 3.43 tags per time

slot; when n is 50 and m is 16, this value is 3.61 tags per

time slot. This result is much better than 2 tags per time unit

achieved by existing approaches.

C. Discussions

In this paper, we assumed that the communication is

reliable, i.e., the requests from the readers and responses from

the tags are intact. Although this assumption is commonly

used in the existing tag identification algorithms [23], [24],

[25], it may not be true for real applications. To solve

this problem, we can build a probability model for the

communication like in [1], [26], [27], and require the readers

and tags to communicate for sufficient times according to a

required readability. The detailed design is out of the scope

of this study and is left as future work.

VI. PERFORMANCE EVALUATION

We evaluate the performance of MRB by comparing it

with existing tree-based algorithms and bit tracking based

algorithms including ABS, PRB, BCTT, OBTT, MRTI-BT, and

MBI. A hundred simulations are repeated to obtain each data

point of the figures.

Let l denote the length of tag ID, s denote the length of a

short ID, and n denote the number of tags. The execution time

is computed as a function of the bits transmitted. The requests

sent from the reader are the same in these approaches; thus,

0 100 200 300 400 500
number of tags

0

50

100

150

200

250

300

350

400
e
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

ABS

PRB

MRTI-BT

OBTT

MBI

MRB

Fig. 2. Execution times of different approaches
with varying number of tags

0 100 200 300 400 500
number of tags

0

20

40

60

80

100

e
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

BCTT

PRB-SN

MRTI-BT-SN

OBTT-SN

MBI-SN

MRB

Fig. 3. Execution times of different approaches
(replying short ID) with varying number of tags

0 100 200 300 400 500
number of tags

0

200

400

600

800

1000

1200

1400

nu
m

be
r o

f s
lo

ts

ABS
PRB
MRTI-BT
OBTT
MBI
MRB

Fig. 4. Number of slots of different approaches
with varying number of tags

0 100 200 300 400 500
number of tags

0

200

400

600

800

1000

1200

1400

n
u

m
b

e
r

o
f

s
lo

ts

BCTT

PRB-SN

MRTI-BT-SN

OBTT-SN

MBI-SN

MRB

Fig. 5. Number of slots of different approaches
(replying short ID) with varying number of tags

0 100 200 300 400 500
length of tag ID

0

50

100

150

200
e
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

ABS

PRB

MRTI-BT

OBTT

MBI

MRB

Fig. 6. Execution times of different approaches
with varying length of tag ID

0 20 40 60 80 100
length of short ID

0

5

10

15

20

25

30

35

40

e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

BCTT

PRB-SN

MRTI-BT-SN

OBTT-SN

MBI-SN

MRB

Fig. 7. Execution time of different approaches with
varying length of short ID

0 2 4 6 8 10
length of fixed prefix of short ID (bits)

1

2

3

4

5

6

7

8

9

e
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

BCTT

PRB-SN

OBTT-SN

MBI-SN

MRB

Fig. 8. Execution time of different approaches with
varying length of a fixed prefix of short ID

4 6 8 10 12 14 16
length of short ID (bits)

0

2

4

6

8

10

n
u

m
b

e
r

o
f

ta
g

s
 i

d
e

n
ti

fi
e

d
 p

e
r

s
lo

t

Actual value

Theoretical value

Fig. 9. Theoretical and actual values of the iden-
tified tags in a time slot

0 100 200 300 400 500
number of tags

0

0.5

1

1.5
ex

ec
ut

io
n

tim
e

(m
s)

MRB
MRB-R

Fig. 10. Execution time of MRB and MRB-R with
varying number of tags

they are not considered. Each bit is transmitted for bμs. By

default, we set l=96 bits, s=16 bits, n=50, and b=5.

A. Impact of Number of Tags

First, we vary the number of tags to compare the execution

time for the different approaches; the result is shown in Fig. 2.

It can be seen that the execution times of all the approaches

increase with the increase of the number of tags. The execution

times of OBTT, MBI, and MRTI-BT are greater than those of

ABS, PRB, and MRB, because the information in previous

identification is not utilized. The execution time of PRB is

half of that of ABS, because of PRB’s pair resolution strategy.

MRB further reduces the execution time by allowing multiple

tags to be identified in a time slot. When the number of tags is

500, the execution time of MRB is 3.26% of ABS, 6.52% of

PRB, 2.05% of BCTT, 2.28% of MBI, and 2.87% of MRTI-

BT, respectively.

To keep the comparison fair, we revise the approaches by

allowing them to use a short ID rather than a tag ID to reply

to the reader. The result is shown in Fig. 3. We add the suffix

“-SN” to their names to distinguish the modified approaches.

BCTT in fact equals to ABS-SN in this environment. It can

be seen that the execution times are greatly reduced compared

with those shown in Fig. 2, while their trends are similar.

When the number of tags is 500, the execution time of MRB

is 16.99% of BCTT, 33.99% of PRB-SN, 8.19% of OBTT-SN,

8.74% of MBI-SN, and 8.86% of MRTI-BT-SN, respectively.
The execution time computed above depends only on the

data amount to be transmitted; thus, we further compare the

number of slots in different approaches while varying the

number of tags. The results are shown in Fig. 4 and 5.

Similarly, the slots of OBTT, MBI, MRTI-BT (and also OBTT-

SN, MBI-SN, and MRTI-BT-SN) are more than those of ABS,

PRB, and MRB (BCTT, PRB-SN, and MRB). The number

of slots of ABS is the same with BCTT, and so with PRB

and PRB-SN. This is because the identification processes of

them are the same, but using short ID instead of tag ID in

the transmission. According to the figure, the trends of these

approaches are similar to that shown in Fig. 2 and 3. Therefore,

if the execution time also considers the transition of time slots,

the result is similar to the one achieved. When the number

of tags is 500, the number of time slots of MRB is 16.89%

of ABS and BCTT, 33.78% of PRB and PRB-SN, 10.34%

of OBTT, 10.16% of OBTT-SN, 9.90% of MBI, 9.97% of

MBI-SN, 8.56 % of MRTI-BT-SN, and 6.31% of MRTI-BT,

respectively.

B. Impact of Length of Tag ID
Further, we vary the length of tag ID to evaluate the

execution time of different approaches; the result is shown

in Fig. 6. The approaches that use a short ID rather than a

tag ID in the data transmission are not affected by this factor,

therefore they are not included in this figure. It can be seen

that the execution times of OBTT, MBI, and MRTI-BT are

still greater than those of ABS, PRB, and MRB. The execution

times of ABS and PRB increase with the increased length of

ID, because they directly transmit their IDs in each reply to the

reader. When the length of tag ID is 96 bits, the execution time

of MRB is 6.67% of ABS, and 13.34% of PRB, respectively.

It is reasonable that each staying tag is allocated a short ID

because they will be identified multiple times later.

C. Impact of Length of Short ID
To explore the effect of the length of short ID on the

execution time, we varied the length of short ID from 16 to

96 bits in our evaluation; the result is shown in Fig. 7. BCTT,

PRB-SN, MRTI-BT-SN, OBTT-SN, MBI-SN, and MRB are

included in the figure. It is noted that the length of short ID

depends on the number of tags identified, because a short ID

represents a unique ID of a tag.
As shown in the figure, the approaches have a higher

execution time with the increase of the length of short ID.

MRB has a slower increasing speed compared to those of other

approaches. This is because the increased length of short ID

identifies more tags together in a same slot. Among all the

approaches, MRB achieves the least execution time.

D. Impact of Distribution of Short ID
In the above simulations, we assume that tag IDs and short

IDs follow a uniform distribution. However, in the practice,

0 0.2 0.4 0.6 0.8 1
missing rate of tags

0

0.5

1

1.5

2

2.5

3

ex
ec

ut
io

n
tim

e
(m

s)

MRB
MRB-R

Fig. 11. Execution time of MRB and MRB-R with varying missing rate of
tags

there is a high probability that most tags’ IDs or short IDs

share the same prefix. To simulate the occurrence of this

situation, we fix a prefix in a short ID and make the other

parts of short ID uniformly distributed. The performance of

ABS and PRB are not affected by the distribution of short ID

or tag ID because they do not use this information. We vary

the length of the fixed prefix from 0 to 10 bits to check the

performance. The result is shown in Fig. 8.

It can be seen that with less fixed prefix of short ID, MRB

has better performance because each tag has more freedom to

choose unique bits and it is more likely to identify more tags

in a slot. MBR’s performance deteriorates when the length of

fixed prefix increases. The execution time of MBR when the

length of fixed prefix is 0 is 70.63% of that when the length

of fixed prefix is 10. The execution times of BCTT and PRB-

SN are stable because the distribution of short ID has not

affect their communications. The execution time of OBTT-

SN is slightly decreased with the increase of the length of

fixed prefix of short ID, while MBI has a significant reduction.

When the length of fixed prefix of short ID is more than 10, the

execution time of MBI is less than that of MRB. However, in

this case, the short ID has less than 6 bits valid ID, and hence

can support no more than 64 tags. In a common scenario,

MRB has the least execution time.

E. Comparison of Theoretical Value and Actual Value

In section V, we compute the average number of tags that

can be identified in a slot. Further, we compare the computed

values with those obtained in the simulations.

We change the length of short ID and compare their values.

The result is shown in Fig. 9. As shown in the figure, when the

length of short ID increases from 5 to 16 bits, the theoretical

and actual values are quite close. This confirms the correctness

of the computation in the performance analysis. According to

the figure, in our experiments, MRB can achieve 3.7 tags per

unit time when using a 16 bits short ID, which is 1.85 times

the number achieved using PRB.

F. MBR Performance in a Dynamic Environment

ABS has a desirable performance in a dynamic environment,

in which the tags may move out of the interrogation region

of the reader and the new tags may move into the region.

The data structure in ABS, including ASC and TSC, changes

accordingly. To make MBR compatible with ABS, the tags

should be allocated ASCs continuously. There are several

approaches to implement this. One is the MRB approach

proposed in this study. An alternative approach is to record the

ASCs of all missing tags and allocating them to the arriving

tags. We call this approach as MRB-R.

We compare the execution time of these two approaches

by varying the number and missing rate of the tags. The

results are shown in Fig. 10 and Fig. 11. The result shown

in Fig. 10 is performed in a scenario with both 10% missing

tags and 10% arriving tags. It can be seen that the execution

time of MRB-R increases linearly with the number of tags,

whereas the execution time of MRB increases quite slowly

as compared to that with MRB-R. Further, we vary the

missing rate from 0.1 to 0.9 to check the performance of

MRB and MRB-R. The result is shown in Fig. 11 and the

trend is similar to that observed in Fig. 10. This is because

the number of missing tags depends on both the missing rate

and the total number of tags. These results clearly show that

MRB outperforms MRB-R.

VII. CONCLUSION

In the study, we propose a new RFID anti-collision protocol

called MRB by using the multiple resolution technology. We

proposed the concept of unique collided set in which the tags

can transmitted simultaneously. The tags in it can be identified

without collisions based on Manchester coding system and

our designed protocol. According to our evaluation, MRB can

achieve 3.7 tags per unit time when identifying tags, which is

1.85 times the number achieved using the existing approaches.

MRB is compatible with ABS and hence can handle various

dynamic environment.

ACKNOWLEDGMENT

We thank Yifei Ma for analyzing the performance of MRB.

This research is supported in part by National Natural Science

Foundation of China No. 61502351, National Key R&D

Program of China No. 2018YFC1604000, Chutian Scholars

Program of Hubei, and 2018 Science and Technology Trans-

formation Project of Grain Administration of Hubei Province

“Grain and Oil Quality & Safety Assurance System Research”.

REFERENCES

[1] M. Shahzad and A. X. Liu, “Probabilistic optimal tree hopping for RFID
identification,” IEEE/ACM Transactions on Networking, vol. 23, no. 3,
pp. 796–809, 2015.

[2] Y.-C. Lai, L.-Y. Hsiao, H.-J. Chen, C.-N. Lai, and J.-W. Lin, “A novel
query tree protocol with bit tracking in RFID tag identification,” IEEE
Transactions on Mobile Computing, vol. 12, no. 10, pp. 2063–2075,
2013.

[3] ISO/IEC 18000-6, “Information technology automatic identification and
data capture techniques–radio frequency identification for item manage-
ment air interface–part 6: Parameters for air interface communications
at 860–960 mhz,” 2004.

[4] W.-C. Chen, S.-J. Horng, and P. Fan, “An enhanced anti-collision
algorithm in RFID based on counter and stack,” in Proc. of the 2nd
International Conference on Systems and Networks Communications
(ICSNC), 2007, pp. 21–21.

[5] T.-P. Wang, “Enhanced binary search with cut-through operation for
anti-collision in RFID systems,” IEEE communications letters, vol. 10,
no. 4, pp. 236–238, 2006.

[6] J. Ryu, H. Lee, Y. Seok, T. Kwon, and Y. Choi, “A hybrid query tree
protocol for tag collision arbitration in RFID systems,” in Proc. of IEEE
International Conference on Communications, 2007, pp. 5981–5986.

[7] G. Bagnato, G. Maselli, C. Petrioli, and C. Vicari, “Performance analysis
of anti-collision protocols for RFID systems,” in Proc. of IEEE the 69th
Vehicular Technology Conference (VTC Spring), 2009, pp. 1–5.

[8] J. Myung, W. Lee, and J. Srivastava, “Adaptive binary splitting for
efficient RFID tag anti-collision,” IEEE communications letters, vol. 10,
no. 3, pp. 144–146, 2006.

[9] Y.-C. Lai and C.-C. Lin, “Two blocking algorithms on adaptive bina-
ry splitting: single and pair resolutions for RFID tag identification,”
IEEE/ACM Transactions on Networking (TON), vol. 17, no. 3, pp. 962–
975, 2009.

[10] X. Jia, Q. Feng, and C. Ma, “An efficient anti-collision protocol for RFID
tag identification,” IEEE Communications Letters, vol. 14, no. 11, pp.
1014–1016, 2010.

[11] Y.-H. Chen, S.-J. Horng, R.-S. Run, J.-L. Lai, R.-J. Chen, W.-C.
Chen, Y. Pan, and T. Takao, “A novel anti-collision algorithm in RFID
systems for identifying passive tags,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 1, pp. 105–121, 2010.

[12] Y. Wang, L. Yi, H. Leung, R. Chen, and L. An, “A multi-bit identification
protocol for RFID tag reading,” IEEE Sensors Journal, vol. 13, no. 10,
pp. 3527–3536, 2013.

[13] Y.-C. Lai, L.-Y. Hsiao, and B.-S. Lin, “Optimal slot assignment for
binary tracking tree protocol in RFID tag identification,” IEEE/ACM
Transactions on Networking, vol. 23, no. 1, pp. 255–268, 2015.

[14] A. Fahim, T. Elbatt, A. Mohamed, and A. Al-Ali, “Towards extended
bit tracking for scalable and robust RFID tag identification systems,”
IEEE Access, vol. 6, no. 99, pp. 27 190–27 204, 2018.

[15] R. Jayadi, Y.-C. Lai, and C.-C. Lin, “Efficient time-oriented anti-
collision protocol for RFID tag identification,” Computer Communica-
tions, vol. 112, pp. 141–153, 2017.

[16] X. Liu, B. Xiao, S. Zhang, and K. Bu, “Unknown tag identification
in large RFID systems: An efficient and complete solution,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 6, pp.
1775–1788, 2015.

[17] Y. Wang, J. Liu, X. Wang, F. Zhu, and L. Chen, “Missing tag
identification in open RFID systems,” in Proc. of IEEE International
Conference on Communications, 2017, pp. 1–6.

[18] Y. Yin, L. Xie, J. Wu, and S. Lu, “Focus and shoot: Exploring auto-focus
in RFID tag identification towards a specified area,” IEEE Transactions
on Computers, vol. 65, no. 3, pp. 888–901, 2016.

[19] H. Gou, H.-c. Jeong, and Y. Yoo, “A bit collision detection based
query tree protocol for anti-collision in RFID system,” in Proc. of
IEEE 6th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), 2010, pp. 421–428.

[20] L. Zhang, W. Xiang, X. Tang, Q. Li, and Q. Yan, “A time-and
energy-aware collision tree protocol for efficient large-scale RFID tag
identification,” IEEE Transactions on Industrial Informatics, 2017.

[21] M. Jacomet, A. Ehrsam, and U. Gehrig, “Contactless identification
device with anticollision algorithm,” in Proc. of IEEE Conference on
Circuits, System, Computers and Communications, 1999, pp. 269–273.

[22] J. Liu and Q. Feng, “A blocking collision tracking tree algorithm
in mobile RFID systems,” in Progress In Electromagnetics Research
Symposium-Spring (PIERS), 2017, pp. 2520–2525.

[23] X. Liu, B. Xiao, S. Zhang, and K. Bu, “One more hash is enough:
Efficient tag stocktaking in highly dynamic RFID systems,” in Proc. of
IEEE International Conference on Communications, May 2016, pp. 1–6.

[24] T. Li, S. Chen, and Y. Ling, “Identifying the missing tags in a large
RFID system,” in Proc. of ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC), 2010, pp. 1–10.

[25] X. Liu, K. Li, G. Min, Y. Shen, A. X. Liu, and W. Qu, “Completely
pinpointing the missing RFID tags in a time-efficient way,” IEEE
Transactions on Computers, vol. 64, no. 1, pp. 87–96, Jan 2015.

[26] L. Xie, B. Sheng, C. C. Tan, H. Han, Q. Li, and D. Chen, “Efficient tag
identification in mobile RFID systems,” in Proc. of IEEE International
Conference on Computer Communications (INFOCOM), 2010, pp. 1–9.

[27] K. Fyhn, R. M. Jacobsen, P. Popovski, and T. Larsen, “Fast capturełre-
capture approach for mitigating the problem of missing RFID tags,”
IEEE Transactions on Mobile Computing, vol. 11, no. 3, pp. 518–528,
2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /All
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

