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Abstract

Causal broadcast is a communication abstraction designed for asynchronous systems. It ensures
that the messages broadcast by the processes are delivered in their broadcast causality order, namely,
if the broadcast of a message m causally precedes the broadcast of a message m′, no process de-
livers m′ unless it has previously delivered m. Several algorithms implementing causal broadcast
have been proposed for asynchronous systems prone to any number of process crashes. These al-
gorithms rely on an underlying Reliable Broadcast abstraction, whose message cost is n2. This
paper presents a simple causal broadcast algorithm whose cost is n messages per causal broadcast.
This is obtained at the cost of protocol messages whose size can be up to n application messages.
Hence, the proposed algorithm is particularly interesting for applications whose messages are small.
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1 Introduction: Computing Model and Causal Broadcast

1.1 Computing Model

Process model The system is made up of a set of n processes denoted p1, ..., pn. Each process is
sequential (which means it executes one step at a time), and asynchronous (which means it progresses
at its own speed, which can vary with time and remains always unknown to the other processes).

Any number of processes can crash. A crash is a premature halt (after it crashed, if it ever does, a
process executes no more steps). A process that does not crash is called correct. A process that crashes
is called faulty.

Communication model Processes can send and receive messages through channels. It is assumed that
any pair of processes is connected by a bidirectional channel. Channels are reliable and asynchronous.
Reliable means that messages are neither corrupted, nor duplicated, nor lost. Asynchronous means that,
albeit finite, the transit duration of a message is arbitrary.

The sending and the reception of a message are atomic steps. The processes can also use a broadcast
macro-operation, denoted broadcast (msg) where msg is a message, which is a shortcut for “for each
j ∈ {1, ...n} do send (msg) to pj end for”. Let us observe that this macro-operation is not reliable,
namely, if the sender crashes while executing it, an arbitrary subset of processes (possibly empty) receive
the message.

A message created at the application level is called application message. A message generated by
the algorithm implementing causal broadcast is called protocol message. When clear from the context,
we use only the term message.

1.2 Causal Broadcast

Definition Causal broadcast was introduced by K. Birman and T. Joseph in a pioneering work on
fault-tolerant distributed systems [3]. It is a communication abstraction that provides the processes with
two operations denoted causal_broadcast() and causal_deliver(), that allow to broadcast and deliver
messages. When a process invokes causal_broadcast(m), we say it c-broadcasts the message m; simi-
larly when the invocation of causal_deliver() returns the message m, we say it c-delivers the message m
(or m is c-delivered). Without loss of generality, it is implicitly assumed that all messages c-broadcast
by the processes are different (this can be easily realized by associating a pair – local sequence number,
sender identity – with each message, as done in this article). Formally, causal broadcast is defined by
the following properties.

• Validity. If a process c-delivers a message m from a process pi, pi previously c-broadcast m.

• Integrity. A process c-delivers a message m at most once.

• Causal Delivery. If a process c-broadcasts a message m and later c-broadcasts a message m′, or
a process c-delivers a message m and later c-broadcasts a message m′, no process c-delivers m′

before c-delivering m.

• Termination. A message c-broadcast by a correct process is c-delivered by all correct processes.

Validity states that no spurious message can be c-delivered. Integrity states there is no message du-
plication. Causal Delivery states that the messages are c-delivered according to the causal links relating
their c-broadcasts and c-deliveries [7]. Finally, Termination states that the correct processes c-deliver at
least the messages they c-broadcast.
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Example A simple example of a causal broadcast execution is presented at the left of Fig. 1. Because
they are c-broadcast by the same process p1, no process can c-deliverm1 beforem0. The same holds for
m3 and m4 which are c-broadcast by p2: no process can c-deliver m4 before m3. As the c-broadcasts
of m2 and m1 are not causally related, they can be c-delivered in a different order at distinct processes.
The same holds for m2 and m3. Hence, the execution depicted in the figure satisfies the c-broadcast
properties. Differently, if the message m2 (i) had been delivered at p2 before it issued the broadcast of
m3, and (ii) delivered before m3 at process p1, the execution would be incorrect. This is because m3

would causally depend on m2 and consequently no process would be allowed to deliver m3 before m2.

Figure 1: A causal broadcast execution and its message precedence graph

A short historical perspective As already said, causal broadcast was introduced by K. Birman and T.
Joseph in [3]. Its first implementation was done in the ISIS system [2], where each message was required
to carry its full causal past. A more efficient implementation was then introduced [4]. While it is now
well accepted as a meaningful communication abstraction, causal broadcast initiated a controversy in the
operating system community (see e.g., [1]). Several causal broadcast algorithms have been presented in
the literature (e.g., see the textbooks [5, 11]), which use an underlying reliable broadcast abstraction.

Efficient implementations of causal broadcast for failure-free systems are presented in several arti-
cles and textbooks (e.g., [10, 12, 13, 14]). Formal characterizations of causal broadcast can be found
in [6, 8, 10].

A more low-level approach was introduced in [9], where is defined the notion of a conversation,
close to causal broadcast. The presentation of this paper is operating system-oriented and no precise
definitions (i.e., properties-based) are given.

Motivation All the causal broadcast algorithms suited to crash-prone asynchronous message-passing
systems we know are based on an underlying reliable broadcast abstraction. To ensure that each ap-
plication message c-delivered by a correct process is c-delivered by all correct processes, all reliable
broadcast algorithms use O(n2) protocol messages for each application message. However, while it is
sufficient, it has never been proved that reliable broadcast was necessary to implement causal broadcast.
Hence our investigation on the implementation of causal broadcast, which has given rise to the simple
algorithm presented in this paper. This algorithm requires O(n) protocol messages for the c-broadcast
of an application message. This is obtained at the price of protocol messages sometimes carrying a few
application messages (this depends on the application communication pattern). Hence, the proposed
algorithm seems suited to the case where application messages are small. The principle that underlies
the algorithm is the use of a precedence graph, which captures the causality relation on application mes-
sages. In some sense, the proposed algorithm can be seen as a variant of a reliable broadcast algorithm
customized to causal broadcast.

Precedence graph Such a graph G is associated with each execution. Its vertices are the application
messages. As far as its edges are concerned, there is a directed edge from a message m to a message m′

if (i) the invocations of causal_broadcast(m) and causal_broadcast(m′) are consecutive invocations by
the same process pi, or (ii) the c-delivery of m and the invocation of causal_broadcast(m′) by a process
pj are consecutive in the sense there is no invocation of causal_broadcast() by pj between them. The
figure depicts the precedence graph of the execution on its right. If the directed edge (m,m′) belongs
to G, we say that m′ causally depends (directly) on m, or m is an immediate causal predecessor of m′.
If there is a directed path from m to m′, we say that m′ depends (transitively) from m, or m is a causal
predecessor of m. Two messages m and m′ that are not causally related are said to be independent. The
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causal past of a message m is the set of all the messages m′ such that there is a directed path from m′

to m.

2 An Efficient Causal Broadcast Algorithm

Algorithm 1, described below, implements causal broadcast. The messages that are c-broadcast are
called application messages, while the messages generated by the algorithm are called protocol mes-
sages. As already indicated, this algorithm ensures that each invocation of causal_broadcast() generates
n protocol messages.

Local variables at a process pi Each process manages two local variables.

• sni is an integer variable, initialized to 0, used to associate a sequence number with each message
c-broadcast by pi.

• copri (for compressed predecessors is a sequence of triplets 〈m, j, sn〉 such that the message m
has been c-broadcast by process pj with sequence number sn. A triplet 〈m, j, sn〉 is contained into
copri if pi c-delivered m after its last c-broadcast and did not c-deliver any more recent message
from pj later (see Fig. 2).1

The symbol ε denotes the empty sequence, and ⊕ denotes the concatenation of a new element at
the end of the sequence.

Figure 2: Meaning of the sequence copri

Considering a process pi, the meaning of copri is illustrated on Fig. 2, in which pi invoked first
causal_broadcast(m1) and later causal_broadcast(m2). Moreover, between these two consecutive in-
vocations, pi c-delivered the messagesm,m′, andm′′ (in this order). This means that, to ensure a correct
message c-delivery order, (i) no process must c-deliver m2 (i) before m1 (because m2 was c-broadcast
later by the same process pi), and (ii) before the messages m, m′, and m′′ (because their c-deliveries at
pi causally precede the c-broadcast of m2). Hence, copri is used to register all the messages c-delivered
by pi between any two consecutive invocations of causal_broadcast() it issues.

On the client side: the operation causal_broadcast (m) The code of this operation is pretty simple.
Process pi first increases sni, and then broadcasts the message seqmsg, which contains the sequence
copri ⊕ 〈m, i, sni〉 (lines 1-3). Let us notice that the triplet associated with the last message previously
c-broadcast by pi is suppressed from copri before the broadcast of seqmsg. As pi did not crash during
the previous broadcast, this message is received by all processes, and the only ordering information
needed is its sequence number, namely (sni − 1), which is explicitly encoded in the triplet 〈m, i, sni〉.

Let us observe that any protocol message seqmsg contains at least one triplet. The sequence of
triplets copri will be used as a causal barrier imposing to c-deliver all its messages before m. As just
indicated, the sequence number sni will be used to ensure that the previous message c-broadcast by pi
is c-delivered before m.

1The timstamps associated with messages of copri are the one that compose compressed vector clocks in [2]. Let us
observe that the compressed predecessors of pi include at most one messages from pj if pi, but can contain none of them. Said
differently, |copri| ≤ n.
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operation causal_broadcast (m) is
(1) sni ← sni + 1;
(2) if 〈−, i,−〉 belongs to copri then suppress it from copri end if;
(3) broadcast (seqmsg) where seqmsg = (copri ⊕ 〈m, i, sni〉);
(4) copri ← ε. % empty sequence %

when seqmsg = 〈m1, i1, sn1〉, · · · , 〈m`, i`, sn`〉 is received do
(5) for x from 1 to ` do
(6) if (mx not yet c-delivered) then
(7) wait(m, c-broadcast by pix with seq. nb. (snx − 1), is c-delivered);
(8) if 〈m, ix, snx − 1〉 belongs to copri then suppress it from copri end if;
(9) causal_deliver (mx);
(10) copri ← copri ⊕ 〈mx, ix, snx〉
(11) end if
(12) end for.

Algorithm 1: Efficient causal broadcast (code for pi)

On the server side: Message reception When a process pi receives a protocol message seqmsg
containing a sequence 〈m1, i1, sn1〉, · · · , 〈m`, i`, sn`〉, it considers each of its triplet, one after the other
( “for” loop, lines 5-12). Let 〈mx, ix, snx〉 the current triplet. It means that mx was c-broadcast by pix ,
and its sequence number is snx. There are two cases.

• If mx has already been locally c-delivered, pi proceeds to the next triplet, if any.

• If mx has not yet been locally c-delivered, pi first waits until the previous message (say m) c-
broadcast by pix is c-delivered (we can assume that each protocol message reception generates
a new thread in charge of the triplets in seqmsg). This is made possible thanks to the sequence
number snx (line 7). After this message m has been c-delivered, it is suppressed from copri
(line 8). This is due to the fact that the causal dependence between this message m and the
next message c-broadcast by pi must be updated, namely replaced by the new causal dependence
between mx and the next message c-broadcast by pi (line 8). Finally, mx can be c-delivered
(line 10).

As we can see, each iteration step of the “for” loop (lines 5-12) has a backward recursive flavor,
captured by the “wait” statement at line 7. This statement entails a recursive messages delivery, whose
aim is to guarantee causal delivery.

3 Proof of the Algorithm

Lemma 1 Each local variable copri contains at most n triplets.

Proof A local sequence copri is initialized to the empty sequence ε, and reset to this value each time
pi invokes causal_broadcast(). Then, when pi adds a new triplet 〈mx, ix, snx〉 to copri (line 10), it
previously suppresses the triplet 〈−, ix, snx − 1〉 if it is in copri (line 8). Hence, for any ix, copri
contains at most one triplet 〈−, ix,−〉, which proves the lemma. 2Lemma 1

The next corollary is an immediate consequence of the previous lemma and lines 2-3.

Corollary 1 A protocol message contains at most n triplets.

Lemma 2 Let us consider any two consecutive application messagesm andm′ c-broadcast by a process
pj . No process pi c-delivers m′ before m.
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Proof The proof is an immediate consequence of the “wait” statement of line 7, which imposes a FIFO
delivery order between each pair of processes. 2Lemma 2

Lemma 3 Let us consider any two application messages m and m′ such that causal_broadcast(m)
causally precedes causal_broadcast(m′). No process c-delivers m′ before m.

Proof If m and m′ are c-broadcast by the same process, the proof follows from Lemma 2. Let us
now consider the case where m and m′ are c-broadcast by different processes pi and pj . Let sn be the
sequence number associated withm. As causal_broadcast(m) causally precedes causal_broadcast(m′),
there is a directed path of messages in the precedence graph m = m1, m2, ..., mk = m′, where
k ≤ n− 1, and an associated sequence of distinct processes pj(1) = pi, pj(2), ..., pj(k) = pj such that
• m = m1 has been c-broadcast by pj(1) = pi and c-delivered by pj(2) (in fifo order),
• after pj(2) c-delivered m1, it c-broadcast m2, which was c-delivered by pj(3) (in fifo order), etc.,
• after pj(k) = pj c-delivered mk−1 (in fifo order), it c-broadcast m′ = mk.

Due to lines 7 and 9-10, and the definition of seqmsg at line 3, it follows that, for any x ∈ [1..k],
coprj(x) includes, for each process py, the last causal predecessor of mx c-broadcast by py (if any).
Hence, when a process receives seqmsg = 〈−,−,−〉, · · · , 〈m′, j,−〉, the triplets in seqmsg capture
the messages that must be c-delivered by pj before m′, and one of these triplets is equal to 〈−, i, sn′′〉
where sn′′ ≥ sn. It follows that pj cannot c-deliver m′ before m. 2Lemma 3

Remark The previous lemma shows that, from a “basic principles” point of view, Algorithm 1 is a
reduction of message causal delivery to (process-to-process) FIFO message deliveries.

Lemma 4 If a correct process (i) c-broadcasts a message m, or (ii) c-delivers a message m and later
c-broadcasts a message m′, the message m is c-delivered by all correct processes.

Proof Proof of (i). Let us assume by contradiction that there are application messages c-broadcast by
correct processes that are never c-delivered by some correct process. Let m be a message and pj its
correct sender, such that m is the first message that is not c-delivered by a correct process pi, while
pi c-delivers all its causal predecessor messages. This permanent blocking occurs at line 7. As pj is
correct, it broadcast a protocol message seqmsg = (copr ⊕ 〈m, j, sn〉). As m is the “first” (as defined
above) message entailing the permanent blocking of pi, all the messages in the prefix sequence copr,
are c-delivered2. Consequently, the processing of all triplets in copr terminates, and pi processes then
〈m, j, sn〉) (last iteration of the “for” loop). When this occurs, pi remains blocked forever waiting for
the previous message (say m′) c-broadcast by pj . But this permanent blocking means that m is not the
first message for which pi waits forever. This contradicts the assumption on m, and consequently, there
is no “first” message from pj never c-delivered by pi.

Proof of (ii). If a process pi c-delivers a messagem from a (correct or crashed process) pj , it adds the
triplet 〈m, k, sn〉 (where pk is the sender of m, and sn its sequence number) to copri at line 10. Hence,
this triplet will be broadcast when pi will issue it next invocation of causal_broadcast(). 2Lemma 4

Theorem 1 Algorithm 1 implements the Causal Broadcast abstraction. Moreover, an invocation of
causal_broadcast() costs n protocol messages, and each protocol message carries at most n application
messages.

2Let us observe that it is possible that the message seqmsg broadcast by pj carries a triplet 〈m′′, k,−〉 such that pk crashed
while broadcasting the sequence of triplets 〈−,−,−〉, · · · , 〈m′′, k,−〉, and this sequence was never received by pi. But in
this case, if any, pk did not crash during its previous invocation of broadcast() and consequently, pi eventually receives the
last message c-broadcast by pk before m′′.
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Proof The Validity property follows directly from the text of the algorithm and the reliability of the
network (none of them creates messages nor modifies their content). The Integrity property follows from
line 6. The Causal Delivery property follows from Lemma 3 and the Termination property follows from
part (i) of Lemma 4. The message cost properties follows from Lemma 1 and Corollary 1. 2Theorem 1

4 Ensuring a Stronger Termination Property

A stronger termination for crashes during an invocation of broadcast() As already indicated, if a
process crashes while executing broadcast(seqmsg), some processes can receive seqmsg, while others
do not. Let P1 be the former set of processes, and P2 the later. If the correct processes of P1 (if any) do
not issue new invocations of causal_broadcast() (whose internal broadcast() will forward messages in
seqmsg to the processes of P2), the correct processes of P2 would never c-deliver messages in seqmsg
sent by processes that crashed during their last invocation of broadcast(). This raises the following
question. In addition to the basic termination property, how to ensure the following stronger termination
property:

• Strong Termination. If a correct process pi c-delivers a message m, the message m is c-delivered
by all correct processes.

This Strong Termination property ensures that all correct processes c-deliver the same set of messages. If
the message m has been c-broadcast by a correct process, the basic termination property ensures strong
termination. So, we have only to consider the case where the sender ofm crashed while it was executing
the unreliable macro-operation broadcast(). Hence, answering the question amounts to ensure that any
message that (i) is broadcast by a process that crashes and (ii) is c-delivered by a correct process, is
c-delivered by all correct processes.

A look at Lemma 4 To this end, we rely on part (ii) of Lemma 4. This lemma states more than
the termination property, which demands only that, if a correct process c-broadcasts a message m, all
correct processes c-deliver m. It additionally states that, if a correct process c-delivers a message m and
later c-broadcasts a message m′, the message m is c-delivered by all correct processes. In particular,
if all correct processes repeatedly c-broadcast messages during an infinite execution, then the algorithm
ensures strong termination.

From termination to strong termination It follows from the previous discussion that the strong
termination property can be obtained as follows. Let pi be a process that after some time does no
longer invoke causal_broadcast(). This process is then required to c-broadcast a control application
message (encoded in a default value, e.g., ⊥), only if its variable copri contains non-⊥ application
messages. According to the algorithm, this invocation entails the required forwarding of the compressed
predecessor application messages (which always succeeds if pi is not a faulty process). 3

A note on complexity For each message m c-broadcast by a process pi, at most one message⊥might
be c-broadcast by any other process pj . Therefore, in the worst case, this strategy might lead to the
same number of messages as causal broadcast algorithms based on reliable broadcast. However, in
practice, there are common situations in which the complexity would be much lower: (1) processes that

3A similar issue occurs when one has to solve early-deciding consensus in crash-prone synchronous message-passing
systems. When a process attains a round r in which it knows the decision estimates of all the processes that were not crashed at
the beginning of round r, it can compute the decision value and decide it. But, as it has no means to know if the other processes
know the same set of estimate values, it must execute an additional round during which it propagates the decision value before
terminating (see [11] for more details).
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repeatedly c-broadcast messages never need to c-broadcast ⊥ messages, and (2) one ⊥ message can
be used to forward up to n − 1 messages. In particular, in an execution where processes first jointly c-
broadcast and c-deliver x ≥ nmessages, and only then c-broadcast one⊥message each,O(nx) protocol
messages will be exchanged between processes, compared to O(n2x) messages for an algorithm based
on reliable broadcast.

5 Conclusion

This article has presented a causal broadcast algorithm for asynchronous message-passing systems in
which any number of processes can crash. Differently from causal broadcast algorithms based on re-
liable broadcast (which requires O(n2) protocol messages for each causal broadcast), the proposed
algorithm generates only n protocol messages per causal broadcast. To this end, it replaces “early mes-
sage forwarding” used in reliable broadcast by “late message forwarding”, and reduces causal message
delivery to fifo message delivery.
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