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Abstract

Previous indoor positioning research has mainly been focused on using Wi-Fi and RFID. In recent years, researchers
began to study using Bluetooth 4.0 and Bluetooth Low Energy (BLE) for indoor positioning purposes. In general,
positioning techniques based on received signal strength indicator (RSSI), such as signal propagation and fingerprint, is
commonly used in wireless/mobile networks. These techniques have certain limitations and tradeoff in terms of accuracy,
ease of implementation and practical application/deployment. For example, both methods require a training process
before deployment. In this paper, we present a decentralized BLE-based positioning protocol that does not require
training before deployment. The training process can automatically be done on-the-fly by the anchor nodes. While the
anchor nodes are broadcasting, they also scan for signals emitted by other anchors. This collaborative communication
process exchanges location information and signal strength measurements between each anchor. This process builds a
signal-to-distance reference list for the target node to estimate physical distance in a more accurate way. Experimentation
in a real indoor environment shows that the proposed collaborative positioning method can achieve an error of 1.5 meters
on average. This is generally applicable for most indoor positioning applications for locating people. Furthermore, its
implementation is simple and practical, because it does not require training before positioning estimation and is adaptive
to environmental changes.
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1. Introduction

GPS (Global Positioning System) is currently the most
commonly used localization and positioning technology,
for games, entertainment, transportation, logistics, emer-
gencies, etc. As GPS relies on the use of satellites, it can-
not be applied effectively in an indoor environment be-
cause the satellite signals are blocked by walls and other
obstacles. Therefore, there is a need to study indoor posi-
tioning systems.

Research on indoor positioning technologies has been
conducted for more than two decades. Most focus on Wi-
Fi and RFID. However, compared with GPS, it seems that
a robust implementation in the consumer market (e.g., in-
door navigation by end-users using smartphones) is still
uncommon. One of the reasons is related to the difficulty
in deploying Wi-Fi- and RFID-based positioning meth-
ods directly to smartphones because of various limitations,
such as hardware modification, to smartphones. This re-
sults in a gap between research and application.

Until a few years ago, with the introduction of Blue-
tooth 4.0 specification and Bluetooth Low Energy (BLE),
there was a growing interest in studying BLE for position-
ing purposes. In fact, the BLE-based positioning technique
is a promising technology for positioning service because of
its benefits of lower cost, ease of deployment, availability
in mobile phones, etc.

1.1. Positioning approach

In general, to determine the position of a node, dis-
tance calculation must be performed first. Common to
all wireless technologies, there are basically three major
approaches to estimate the distance between two nodes,
namely time-based, channel state information (CSI)-based
(CSI is also referred to as phase information) and received
signal strength indicator (RSSI)-based. The time-based
method relies on using the time-of-flight (i.e., signal trav-
eling time) to estimate the distance. To do this accurately,
precise and synchronized clocks are required. The phase-
based method has attracted a great deal of attention in
recent years. Although this method can achieve high ac-
curacy rates (the distance error can be reduced to the cen-
timeter range), it is not easy, cost-effective or practical
to implement in today’s smartphones. RSSI-based meth-
ods make use of signal strength for distance estimation,
as signal strength has a negative correlation with distance
in general. The RSSI-based method is currently the most
commonly used method for Wi-Fi, RFID or Bluetooth due
to its ease of implementation.

Research on indoor positioning using different wireless
technologies has a history of nearly two decades. [1] is one
of the representative works in this area. The paper cat-
egorizes indoor positioning methods into two approaches,
which are later referred to as signal propagation approach
and fingerprinting approach. Generally speaking, the ob-
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jectives of an indoor positioning system are to (1) deter-
mine the position of an object accurately e.g., a person, a
smartphone, an Internet of Things (IoT) sensor, etc., and
(2) develop a system that has high scalability and is easy
to implement. In the past, most research typically focused
on the first objective, while the second one was sometimes
ignored. This is also one of the reasons why there are not
many popular indoor positioning systems in the consumer
market.

As mentioned, there are two key approaches for indoor
positioning, namely, signal propagation and fingerprint-
ing. The signal propagation method, which is sometimes
referred to as simple trilateration, seeks to convert sig-
nal strength measurement into physical distance based on
a model, such as using Log-distance path loss model in
Equation 1 [2] [3].

RSSI@d = RSSI@dr − 10n log
d

dr
+ X (1)

In theory, signal strength and distance have a nega-
tive correlation. If the correlation relationship is known,
distance can be determined based on signal strength. How-
ever, this assumption is only valid in an ideal environment
(e.g., vacuum space) without any interference. In a real-
world environment, especially for an indoor environment,
the relationship depends heavily on different environmen-
tal factors. The solution to this problem is to use a train-
ing phase to estimate the environment-based parameters
for determining the relationship or model. After calculat-
ing an estimated distance, one can then estimate the loca-
tion accordingly. In general, the estimation procedure is
often referred to as trilateration. Compared to fingerprint-
ing, the advantage of the propagation-based technique is
that it requires less training. Hence it is more scalable,
although the accuracy is lower than that of fingerprint-
ing. By means of a training phase, fingerprinting seeks
to create a signal database at different points-of-interest
(PoI) in the indoor environment, so that position esti-
mation can be conducted by finding the database record
with the highest similarity. In general, the fingerprinting
method can achieve higher accuracy at the expense of a
time-consuming training phase (i.e., to generate the signal
database).

The aforementioned positioning methods require a train-
ing phase in order to perform position estimation in an
indoor environment. However, this is a time- and effort-
consuming process. Furthermore, these methods have low
scalability, as periodic re-training is often required. To ad-
dress this issue, this paper proposes a decentralized, adap-
tive BLE-based positioning protocol for indoor position-
ing estimation. Although it can also be classified as a
signal propagation method, it does not require prior man-
ual training of the parameters. In particular, training will
be done on-the-fly automatically and it can self-adjust to
environmental changes over time.

1.2. Major contributions

The main advantages and contributions of this work
are as follows:

• The proposed method does not require a manual
training stage before deployment, while at the same
time it can achieve comparable accuracy.

• A centralized medium for storage and processing is
not required.

• The implementation is practical and can be deployed
to smartphones relatively easily. No modification to
current smartphones is required.

• Although modification to the beacons (i.e., refer-
ence nodes) is needed, we found that it can easily
be achieved based on our testing. It also provides
insights to manufacturers to design better beacon
hardware to achieve higher positioning accuracy.

The rest of the paper is organized as follows. Section
2 explains the advantage of using BLE over other wireless
technologies. Section 3 summarizes selected recent BLE-
based related work. Section 4 explains the challenges in
indoor positioning. Section 5 introduces our proposed de-
centralized BLE positioning protocol. Section 6 and ex-
plains the adaptability of the signal propagation model to
improve distance estimation and the positioning algorithm
respectively. Section 8 presents the experimentation setup
and results. We also discuss the effect on positioning accu-
racy by various factors. Section 9 presents the conclusion.

2. Comparison of BLE positioning with other po-
sitioning technologies

In this section, we first give an overview of various posi-
tioning technologies using Wi-Fi, RFID, 4G/5G, and BLE.
The aim is to compare BLE positioning with other posi-
tioning technologies to evaluate its advantages. In the next
section, we shall discuss the related work on BLE position-
ing.

2.1. Wi-Fi

Wi-Fi is one of the most widely used technologies for in-
door positioning. As Wi-Fi signals are regularly broadcast
by access points (APs), user terminals can easily make use
of the Wi-Fi signals for positioning purposes. Common
positioning techniques include RSSI, time-of-arrival and
fingerprint [1]. Angle-of-arrival can also be used, based on
the MUSIC protocol [4], for example. Furthermore, pub-
lic fingerprint databases are also available for positioning
purposes (e.g., [5]). In addition to the traditional device-
based approach, there has also been considerable interest
in studying device-free approaches (e.g., by monitoring re-
flected signals), such as MaTrack (Dynamic-MUSIC) [6]
and a behavior-based approach using Wi-Fi channel-state
information [7].
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Due to Wi-Fi’s popularity, the major benefit of Wi-
Fi positioning is that it can be provided through exist-
ing infrastructure (i.e., without additional investment) [8].
However, Wi-Fi APs are primarily designed for communi-
cations rather than positioning purposes (i.e., with a dif-
ferent design goal). Furthermore, while there are many
Wi-Fi APs, they may be owned or managed by different
organizations or people. That means, some APs may be
changed (e.g., signal power may be adjusted) or some-
times disabled, resulting in a less certain configuration.
This makes the development of a collaborative positioning
method more difficult. Compared to BLE, if an organiza-
tion wants to deploy a large number of Wi-Fi APs for po-
sitioning purposes, the cost will be much higher. Although
most smartphones can support Wi-Fi, some mobile plat-
forms restrict the use of Wi-Fi scanning for positioning
purposes. For example, as reported by [9], Apple’s iOS
currently only allows developers to develop mobile apps to
scan the RSSI of a connected AP, but not nearby (uncon-
nected) APs. In other words, it may be practically difficult
to implement certain Wi-Fi positioning methods.

2.2. RFID

RFID is another commonly used technology for in-
door positioning. A RFID system can be passive or ac-
tive and has three key components: RFID reader, antenna
and RFID tag. In general, RFID positioning relies on the
use of RSSI, angle-of-arrival, phase-of-arrival, fingerprint,
time-of-flight and reference tags. For active RFID sys-
tems, LANDMARC [10] is one of the earliest and most
widely cited active RFID indoor positioning systems based
on the use of reference tags. Researchers have also pro-
posed many improved versions of LANDMARC, such as
3-D LANDMARC [11], and LANDMARC with adaptive
kNN algorithm [12]. Over the years, various active RFID
indoor positioning systems have been developed, such as
[13], [14], and [15]. For example, iLocate [15] uses virtual
tags and frequency hopping to enhance accuracy. For pas-
sive RFID positioning systems, they are typically used for
local area tracking such as equipment [16], robot [17] and
autonomous vehicle [18]. Available approaches include the
use of RSSI (e.g., [19]) and phase-of-arrival (e.g., [20]). By
utilizing the phase information, it is possible to develop
a highly accurate passive RFID system, such as Tagoram
[21].

The advantages of RFID positioning are that it is light-
weight, low cost and well suited for tracking assets with
passive RFID tags. However, additional infrastructure is
often required for its implementation. Furthermore, as
most smartphones do not support RFID, it is difficult to
deploy RFID indoor positioning for consumers or mobile
users in general.

2.3. 4G/5G

Today, GPS is the most commonly used positioning
technique used with mobile phones or terminals. How-

ever, it cannot be used effectively in the indoor environ-
ment. The 4G/LTE standard specifies three core posi-
tioning methods, namely: enhance cell ID, Assisted Global
Navigation Satellite Systems (A-GNSS) and Observed Time
Difference of Arrival (OTDOA) [22] [23]. It also specifies
the LTE Positioning Protocol to support the aforemen-
tioned positioning methods. However, the aforementioned
positioning methods are more suitable for outdoor posi-
tioning in general.

With the recent development of 5G, researchers have
started to study its potential for indoor positioning. As
suggested by [24], some 5G features may improve the ac-
curacy of indoor positioning. For examples, small cell net-
works and mmWave enhance signal reliability and qual-
ity, and enable more accurate time-of-arrival (ToA) es-
timation. Also, massive Multiple-Input-Multiple-Output
(MIMO) antennas provide higher signal-to-noise-ratio and
thus ToA estimation uncertainty can be reduced. In addi-
tion, with the help of MIMO antenna arrays, beamforming
enables position estimation using a more accurate angle-
of-arrival (AoA) and angle-of-departure (DoA).

2.4. BLE

While BLE is a relatively new indoor positioning tech-
nology, there has been growing interest in studying BLE
positioning methods because of their potential and advan-
tages. Currently, most BLE positioning methods typically
use RSSI and fingerprinting [9] [25] (please see the related
work section). The introduction of the AoA function in
the new BLE 5.1 specification may complement existing
methods. However, the AoA application programming in-
terface remains unavailable.

As discussed in [9], BLE advantages include better
power efficiency for mobile devices and faster scanning
responsiveness. Furthermore, because BLE beacons are
cheap and easy to deploy (about $3 USD per beacon),
they can be densely deployed to enhance positioning ac-
curacy. In addition, as most current smartphones support
BLE, many positioning-based applications can be devel-
oped and easily introduced. However, as most BLE bea-
cons are battery powered, there is a need to monitor the
beacons and change the batteries periodically.

In summary, compared to other indoor positioning tech-
nologies, BLE positioning offers several advantages. First,
BLE is lightweight, cost-effective and energy-efficient. Sec-
ond, BLE beacons can easily be deployed in an indoor
environment. Last but not least, most smartphones are
equipped with BLE, so it is particularly well suited for sup-
porting indoor position-based mobile applications. To con-
tribute to the development of BLE positioning, we present
an innovative collaborative positioning method for BLE in
this paper.

3. Related Work

In this section, we discuss the related work on BLE
positioning, which can be classified into three main ap-
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proaches: fingerprint, signal propagation and proximity.
Although considerable research has been done on indoor
positioning in general, there has been considerable interest
in recent years in researching BLE RSSI-based positioning
techniques. [26] presented a kNN and weighted kNN fin-
gerprinting approach with both Chebyshev and Euclidean
metrics. [9] proposed a BLE-fingerprinting-based position-
ing method. In this work, during a training phase, a signal
fingerprint database is constructed. Position estimation is
performed by comparing received signals (i.e., by a mo-
bile phone) and the signal fingerprint map based on Eu-
clidean distance and Bayesian estimator. The paper also
discussed the advantages of using BLE-based positioning
techniques as compared with WiFi-based techniques such
as fast scanning, more energy-efficient and easy to im-
plement. [27] also presented a fingerprinting approach.
They incorporated a method named eight-neighborhood
template matching (ENTM) to generate templates with
RSSI values for unknown points to improve the position-
ing accuracy. According to [9] [28] [29], position accuracy
can be further enhanced if the channel information is also
provided in the fingerprint database, and the channel infor-
mation is included during similarity measurements. How-
ever, this information is not commonly available in today’s
smartphones (i.e., by the mobile phone operation system)
[30]. [25] presented another fingerprinting method with an
autoencoder. Autoencoder is based on a type of unsuper-
vised neural network, which can be used in the training
phase (i.e., generation of fingerprints) to eliminate noise,
and to better handle RSSI fluctuations and the loss of bea-
con information. Generally, after generating a fingerprint
database, the user position can be estimated based on the
similarity between real-time measurements and training
records in the database. Typically, methods such as near-
est neighbor (NN), k-nearest neighbor (kNN) and weighted
kNN. [28] can also be used for reference for more distance
and similarity metrics.

The signal propagation model with a trilateration ap-
proach is one of the most commonly used signal-based po-
sitioning methods. [31] compared this approach for four
wireless/mobile technologies, namely Wi-Fi, BLE, Zigbee,
and LoRaWAN with the focus on IoT and positioning.
In general, the signal propagation model with a trilater-
ation approach can achieve higher scalability. However,
it requires a significant amount of training effort to ob-
tain the model parameters to estimate the distance accu-
rately. In other words, it is heavily dependent on the qual-
ity of the model parameters. One of the most widely used
models is the log-distance model [3]. Regression methods
can be used for training the model parameters. Based on
the signal propagation approach, [32] presented a BLE-
based positioning scheme based on optimization method-
ology and filtering mechanism (e.g., Gaussian filter). [33]
studied an online self-calibration method for regular and
dynamic updating of model parameters to enhance posi-
tioning accuracy. Using a Kalman filter, [34] presented a
weighted centroid localization scheme with the aiming of

tackling attenuation and noise issues. Position estimations
are carried out based on the importance of the beacons
(i.e., according to their signal strengths). Positions are
estimated based on weightings assigned to the beacons in
accordance with their signal strengths. [35] also proposed
a method to enhance positioning accuracy by including
the channel information in the broadcasting packets (i.e.,
for frequency diversity), employing Kalman filtering and
using weighted trilateration. [36] presented three differ-
ent regression methods to determine model parameters
for proximity-based positioning (which will be discussed
in the next paragraph). Note that these regression meth-
ods can also be applied to trilateration. After estimating
the physical distances between the target node and the
reference nodes, the position can then be determined by
means of trilateration. However, the trilateration prob-
lem cannot ideally be solved by linear algebra (i.e., perfect
equations cannot be determined due to noise). Instead,
different optimization methods, such as least-square esti-
mation, should be used.

Apart from trilateration, location can also be estimated
using a proximity-based method. For example, iBeacon,
proposed by Apple Inc., was one of the first proximity-
based positioning techniques. In this approach, instead of
providing an exact location, the output is the proximity of
a region or PoI. The corresponding positioning techniques
are also different. With the aim of generating proximity-
based positioning reports, [36] and [37] presented a frame-
work based on beacon deployment information and an
RSS-based model. [38] presented a non-static positioning
method using time series proximity reports, which take
into account the motion of mobile terminals. Based on
the motion model, particle filtering and smoothing meth-
ods can be used to estimate a user/terminal position based
on previous measurements (i.e., also taking movement into
account). [39] employed a compressive sensing technique
for proximity detection. It seeks to tackle the problem
of incomplete/missing signals when beacons are sparsely
placed. [40] presented an improved method with a gener-
alized similarity filter to further enhance proximity detec-
tion. For the proximity-based approach, [41] discovered an
interesting finding - that positioning accuracy may in some
cases actually be degraded with an increasing number of
beacons (i.e., dense deployment). To achieve better posi-
tioning accuracy under dense deployment, it also proposed
an adaptive scanning method with a heuristic algorithm.

Table 1 summarizes these selected related works. In
general, the baseline accuracy should be approximately
one to two meters on average, with 90th percentile ranging
from two to four meters. This will be used as the baseline
for the proposed method.

4. Challenges in indoor positioning

4.1. Distance measurement

Currently, signal propagation and the RSSI fingerprint-
ing method are two of the most commonly used tech-
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Table 1: Summary of different positioning techniques

Work Approach Model Major Contribution
[9] Fingerprint Gaussian Process regression,

Bayesian Likelihood
Compared various fading mitigation schemes, scanning win-
dow mechanisms, advertising periods, beacon density, finger-
print dimensionality and transmission power.

[25] Fingerprint Studied Autoencoder, kNN Positioning in a 3-D space as compared to a normally 2-D
space.

[26] Fingerprint kNN and weighted kNN Presented a BLE-based kNN and weighted kNN fingerprinting
approach with both Chebyshev and Euclidean metrics.

[27] Fingerprint Eight-Neighborhood Tem-
plate Matching (ENTM)

According to the authors, the proposed algorithm was able
to achieve better positioning result than kNN and weighted
kNN method.

[28] Fingerprint Channel and orientation fin-
gerprinting, Weighted kNN

Compared 38 different distance and similarity metrics for fin-
gerprinting matching.

[31] Signal prop-
agation

Log distance path loss model,
Trilateration

Compared Wi-Fi, BLE, Zigbee and LoRaWAN using signal
propagation approach.

[32] Signal prop-
agation

Log distance path loss
model with Gaussian filter
and piecewise fitting, Tay-
lor series expansion based
positioning

Introduced different techniques to improve positioning accu-
racy and training such as Gaussian filter, piecewise fitting,
unified sampling and device-oriented training model. Used
enhanced methods for positioning, such as weighted sliding
windows and distance weighted filter based on the trilateral
relations theorem. It is suggested to use active learning to
regularly adjust the pre-trained model, to further enhance
positioning accuracy.

[34] Signal prop-
agation

Log distance path loss with
Kalman filter and moving av-
erage, Weighted centroid

Presented Kalman filter and weighted centroid location esti-
mation technique to tackle attenuation and noise problems

[35] Signal prop-
agation

Broadcasting channel infor-
mation, Kalman filter and
weighted trilateration

Employed frequency/channel diversity, Kalman filtering and
weighted trilateration to enhance positioning accuracy.

[36] Proximity Gaussian process regression
(GPR) based RSS model,
Cramer-Rao bound (CRB)
and Barankin bound (BB)

Proposed advanced Gaussian process regression (GPR) RSS
models and introduced Cramer-Rao bound or Barankin
bound to minimize positioning errors.

[38] Proximity Motion model and particle
smoothing algorithm

Used the motion of the devices for proximity positioning in-
stead of static positioning.

[39] Proximity Similarity filter, compressive
sensing

Investigated a positioning system with sparse beacon deploy-
ment and designed a compressive sensing approach.

[41] Proximity Adaptive scanning heuristic
algorithm with differential
evolution

Presented a positioning system with dense beacon deployment
and designed a dynamic and adaptive scanning technique.

niques to estimate indoor position in an indoor environ-
ment. As mentioned above, it is time-consuming to con-
struct a signal fingerprint database for the indoor environ-
ment, therefore the signal propagation-based method is
relatively more scalable. However, to accurately estimate
the position is still challenging, mainly due to the nonlin-
earity and fluctuation of measurements. Therefore, it is
hard to estimate the distance between two nodes based on
RSSI. For example, although the widely known log dis-
tance model, (i.e., Equation 1, [3]) is commonly used, the
result is not very accurate, because it is highly dependent
on the quality of the training of the parameters (i.e., the
path-loss exponent n and the reference RSSI: RSSI at d).

Also, factors including noise, reflection, multi-path effect,
etc. will also affect the quality, resulting in a very fluctu-
ated measurement. Figure 1 shows the measurements of
a BLE beacon’s RSSI from an Android phone at different
distances. This shows that (1) the RSSI range at differ-
ent distances is always overlapping. In other words, given
a measurement, there might be more than one possible
distance, and (2) the RSSI and distance are not always
negatively correlated. Some of the measurements at 3.5 m
are actually larger than the measurements at 1.5 m.
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Figure 1: Measurements taken from two beacons at different distance
by the same device

4.2. Training

Although signal propagation is said to be more scal-
able, training of the model’s parameter is still required.
For example, with reference to Equation 1, the RSSI value
at a reference distance dr, namely RSSI@dr, and the
path-loss exponent n are three unknown variables. In
order to determine the values, taking extensive measure-
ments before deployment is required. Another challenge is
that the path-loss exponent is often dependent on differ-
ent devices, different environments, or even different an-
chor placements. In other words, sometimes training the
variables per environment and per device is required. This
leads to an increasing amount of effort to accurately esti-
mate distance.

4.3. Device heterogeneity

In a BLE positioning system, any BLE equipped sen-
sors can potentially become the anchor nodes. However,
they are not necessarily identical. For example, they may
be equipped with different chips designed and produced
by different manufacturers. The different materials of the
enclosure will also differ. These factors may affect the
traveling of the signal, and thus the distribution of mea-
surements. Figure 19 is an extreme example, when a mo-
bile phone took several measurements from two different
broadcasting nodes in the same room. This shows that
the distribution of measurements can vary considerably,
even in the same room and with the same measurement
device. Also, the broadcasting interval and broadcasting
power of the beacons may be different. All of these factors
will affect accuracy when using RSSI to estimate physical
distance on the scanner. One of the ways to minimize the
effect of device heterogeneity is to carry out training per
anchor, in addition to the above-mentioned training. Sim-
ilarly, this requires a significant amount of effort, and is
thus not scalable.

4.4. Requirement of centralized storage medium

Generally, most current methodologies based on Wi-
Fi, RFID or iBeacon require a centralized medium (e.g., a
server or the local storage of the target node) to store the

Figure 2: Measurements taken from two broadcasting anchors mea-
sured by the same device at the same distance

Figure 3: Typical cloud-based positioning architecture

location information of the deployed anchors. For exam-
ple, the iBeacon architecture suggests that the location of
beacons should be stored in a server. Once the scanner has
received the signal, it looks up the required information,
such as the coordinates of the broadcaster, the broadcast-
ing settings, etc., based on the broadcaster ID, to carry
out a further calculation. The drawbacks are that it re-
quires additional resources to maintain a server. Also, the
scanner must be connected to the Internet. An illustration
is shown in Figure 3. In this paper, we propose a decen-
tralized BLE positioning protocol that does not require a
centralized means to store and update information. By en-
coding the information into the advertising data, the mo-
bile terminals can easily receive information through the
advertising packets. We explain our approach in detail in
the next section.

5. Decentralized BLE positioning protocol

In the paper, we have proposed a decentralized BLE
positioning protocol. We aim to solve the above-mentioned
challenges, while at the same time improve the positioning
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accuracy. In this section, we explain the components of our
proposed protocol.

First, our proposed protocol does not require a central-
ized medium to store the information of the anchors (e.g.,
coordinates). Instead, we encode the required positioning
data to the BLE advertising packet emitted by the anchor
nodes. The information required is:

• the unique identifier of the anchor, either the mac
address or a custom-defined unique ID

• position of anchors in the local 2D coordinate system
(e.g., x and y or north and east)

• the reference signal strength at different distances,
such as RSSI at one meter (rssi@1m), RSSI at four
meters (rssi@4m), etc.

5.1. Anchor node
The positioning system consists of a number of anchor

beacons. These BLE beacons, also called anchor nodes,
are placed at a predefined location and will not be moved
frequently. In our proposed method, anchor nodes are re-
sponsible for both broadcasting and scanning. We assume
that the anchor node has a minimum level of computa-
tional resources to store a small amount of data and ex-
ecute simple programming code, such as storing an array
of numbers, calculating a mean value and executing a for-
loop code. Although most commercially available BLE
beacons today cannot do scanning, based on our investi-
gations, we believe this functionality can be enabled at the
software level. Also, some beacons available on the market
are equipped with decent hardware. For example, the Es-
timote Mirror beacon is equipped with a quad-core 64-bit
1.2 GHz CPU and 1 GB memory. In other words, this
assumption is highly feasible and easily achievable.

First, the anchor node should broadcast its unique iden-
tifier, location (i.e., x and y coordinate), a reference RSSI
value RSSI@dr and the reference distance dr. The ID
and the location of the anchor are set before deployment.
RSSI@dr and dr will be updated automatically. The an-
chor node will also broadcast the reference RSSIs of other
anchors obtained by continuous scanning. As other an-
chors are also broadcasting, every anchor should receive
the signal from the other anchors. When the anchor re-
ceives the signal, it calculates the signal strength average
for each anchor node. The details of this updated process
are explained in Section 6.

5.2. Target node
The target node, also known as the receiving node, is

the object where its location is unknown, and thus requires
the location estimation. In general, the target node has
the ability to scan for nearby BLE signals and estimate
its location by positioning algorithms. A smartphone car-
ried by a human, a robot or an IoT sensor are examples
of a target node. In our study, we focus on the applica-
tion of locating humans, where the target node will be the
smartphone.

Figure 4: BLE advertising packet structure according to the specifi-
cation [42]

5.3. BLE advertisement packet

As mentioned, we encode the necessary information for
positioning in the broadcasting packet, instead of using a
central medium. Before we encode the data into an ad-
vertising packet, we need to calculate the size we can use.
According to the Bluetooth 4.0 specification, the BLE ad-
vertising data can hold up to 31 bytes of data. The adver-
tising data (AD) is constructed by numbers of AD struc-
ture data, namely AD1, AD2, ..., ADn. The total number
of AD in one packet varies, because the data each AD holds
may be different. For each AD, the first byte is the length
value of that AD data, the second byte is the data type in-
dicator, and the remaining bytes are the actual data. The
Bluetooth standard requires that all advertising packets
should have AD1 as the ‘Flags’ AD data. The Flags AD
type indicates its connection capability to others, such as
‘Limited Discoverable Mode’, ‘BR/EDR Not Supported’,
etc. Because Flags AD data is 3 bytes long, the remaining
spaces are 28 bytes. The BLE advertising data structure
is shown in Figure 4.

5.4. BLE Indoor Positioning Service

We encode the information we have into BLE Indoor
Positioning Service (IPS). Bluetooth SIG has released a
series of service specifications for different types of ap-
plications. The list of adopted services can be found at
[https://www.bluetooth.com/specifications/gatt/services].
Services are sets of characteristics (namely, properties) de-
fined for a commonly known way of information exchange.
For example, Heart Rate Service includes these character-
istics: Heart Rate Measurement, Body Sensor Location,
and Heart Rate Control Point. If a heart rate sensor fol-
lows this specification, a software developer can develop
a mobile app to connect to these sensors by following the
specification, without the need to study the vendor-specific
API. At the same time, vendors do not need to design their
own set of API for every sensor. By pre-defining the set of
properties and standardizing them as specifications, multi-
vendor interoperability can be achieved.

Our positioning approach also follows the BLE service
specification. Local coordinates are put into the BLE In-
door Positioning Service (IPS). According to the IPS spec-
ification [42], the characteristics defined for IPS are shown
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Figure 5: BLE advertising packet example with reference to the
specification [42]

in Table 2. This specification defines the data structure
required for estimating the location. For example, global
and local coordinates can be encoded in the BLE package
so that maintaining a centralized medium is not needed to
store the information.

Based on the specification, at this stage, only local co-
ordinates are needed and will be broadcast. The result
AD packet of Indoor Positioning Service broadcast will be
7 bytes long. For example, if the local XY coordinate of
an anchor is (5,24), the AD packet will be: 06 25 03 00 05
00 18.

5.5. Reference RSSI as additional data

In addition to the coordinates, the target node needs
the reference RSSI for estimating the physical distance.
Although Tx power, also referred to as signal strength at
one meter, is predefined by the BLE specification for a sim-
ilar purpose, we have found that sometimes this value is
not accurate. The original design of Tx power is measured
and calibrated before deployment. However, as the indoor
environment changes rapidly, and the quality of signals is
easily affected by these changes, pre-configured Tx power
is often not an up-to-date reference point to estimate dis-
tance.

Therefore, we encode a set of information called Ref-
erence RSSI List to the BLE packet for target nodes to
calculate distance. The details of this information are ex-
plained in the next section.

Instead of putting the value as Tx power, we put this
information as ‘Manufacturer Specific Data’ (AD type value
being 0xFF). As a result, we have 21 bytes (31-3-7, length -
AD1 - IPS) to encode our positioning data. An example of
our proposed advertisement package is shown in Figure 5.

6. Measuring and calculation of Reference RSSI

As mentioned above, our proposed method does not
require training before deployment and is able to automat-
ically achieve a continuous update process. In this section,
we explain this methodology in detail. When a target node

estimates the position, a reference data point is required
to estimate the physical distance based on RSSI. Although
in general a signal propagation model can be used, a train-
ing process is also required to train the parameters of the
model. In this paper, we propose the use of the list of
RSSI-distance reference pairs for a target node to estimate
physical distance.

6.1. Advertising RSSI-distance reference data from anchor
nodes

RSSI-distance reference pair is a key-value pair, for
example, (−63.8 : 2m), (−68.9 : 3m). These data are
constructed by scanning the signals from other anchors.
For example, when any given three anchors are deployed,
namely a1, a2 and a3, all anchors should continuously per-
form both scanning and broadcasting. For a1, it should
receive the signal strength from a2 and a3. Because the
packets include the RSSI and the location of the broadcast-
ers (a2 and a3), a1 can easily calculate the physical dis-
tances between itself and other anchors by calculating the
Euclidean distance. Based on the physical distance from
other anchors and the measured RSSI, an RSSI-distance
pair is formed. For each anchor, there should be n − 1
number of RSSI-distance pairs, where n is the total num-
ber of anchors seen by the receiver. For instance, a1 should
have the pairs measured from a2 and a3, a2 should have
the pairs measured from a1 and a3 and a3 should have the
pairs measured from a1 and a2. This list is encoded as
Manufacturer Specific Data’ (AD type value being 0xFF)
as explained above.

6.2. Measuring RSSI-distance reference data by the target
node

When the target node is scanning, it should receive in-
formation from the anchors, as well as the list of reference
RSSI. After combining the list from all anchors, the target
node should have (n− 1)× n pairs. With reference to the
example in the previous section, the target node should
receive six pairs of reference RSSI. A graphic illustration
is shown in Figure 6.

7. Positioning Algorithm

Among all anchors in a1, a2, ..., an, where n > 3, ev-
ery anchor ai will measure the RSSIs from other anchors,
namely m, where m is the array of measurements contain-
ing all measurements except for the scanner itself (i.e., i).
All anchors will broadcast these measurements (i.e., m) to
the target node.

7.1. Distance estimation

In order to estimate the position, the target node needs
to estimate the physical distance between it and the an-
chors based on the RSSI. Instead of using a propagation
model, we propose to utilize the measurements by the an-
chors to help with the distance estimation. As mentioned,
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Table 2: Characteristics defined for IPS according to the specification [42]

Characteristic Description
Indoor Position-
ing Configuration

This indicates whether the anchor will broadcast the positioning information. Note that if
broadcasting is unavailable, a mobile node should set up a connection with the anchor to obtain
the information.

Latitude An anchor must provide this compulsory information. Based on WGS84 datum, latitude should
range between -90 and 90.

Longitude An anchor must provide this compulsory information. Based on WGS84 datum, longitude should
range between -180 and 180.

Local North Co-
ordinate

This optional information can be used to provide coordinate information on a local system/map.
The value should range from -32767 to 32767 decimeters.

Local East Coor-
dinate

If Local North Coordinate is provided, this coordinate information (sometimes called x-
coordinate) is also required. Similar to Local North Coordinate, it ranges from -32767 decimeters
to 32767 decimeters.

Floor Number If required, this indicates the floor number of a location.
Altitude This optional number shows the altitude of a node in decimeters from 0 to 65535.

Special integer

This is an optional 8-bit integer:
bit 0: Stationary or mobile
bits 1-3: Update time
bits 4-6: Precision

Location Name This optional information (e.g., human-readable location) shows the corresponding name of the
node, including where the node is placed (e.g., the name of a shopping mall).

Figure 6: Example of RSSI-distance reference list

the anchors not only broadcast its deployed location, but
also the list of RSSI-distance pairs taken by anchors when
scanning other anchors. After the target node scans the
packets from anchor nodes, it will combine the list, as
shown in the table next to the target node in Figure 6.

Physical distances between the target node and an-
chors are then estimated with the help of the combined
reference list. There are different possible ways to utilize
the list. We tested two approaches, namely curve fitting
and interpolation.

7.1.1. Curve fitting with least square

Curve fitting with least square technique is employed
to the aforementioned log distance model (Equation 1).

The measured RSSI and the known distance (i.e., the table
from the target node in Figure 6) are the input, while n
will be estimated by curve fitting technique using Python
SciPy Trust Region Reflective algorithm. Also, the bounds
of n are set from 1 to 10.

After n is estimated, the physical distance is estimated
based on the measured RSSI from the target node.

We also tested a case if RSSI@dr and dr are also un-
known, letting the curve fitting algorithm find these pa-
rameters together with n, and thus estimate the distance.
The details and results are presented in Section 8.3.

7.1.2. Interpolation

The input of interpolation is the same as the curve
fitting method (i.e., the table from the target node in Fig-
ure 6). Instead of using the log distance model, distance is
estimated based on linear interpolation and extrapolation.
The physical distance is estimated based on the measured
RSSI and two nearest known RSSI-distance pairs from the
reference list, assuming these two points form a straight
line.

The overall distance estimation algorithm is described
in Algorithm 1.

7.2. Positioning estimation

In this paper, we use the positioning algorithm as in
our previous publication [43]. The major difference is that
the training of the value to discretize RSSI into a different
bucket is no longer needed. Basically, this is a distance-
based technique instead of a fingerprint-based technique.
Based on the RSSI-distance reference list, the target node
is able to estimate the physical distance between it and
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Algorithm 1 RssiToDistance by curve fitting

Input: RSSI measurement RSSI, RSSI measurement at
1 meter RSSI@1m, Log-distance propagation model
logDistFunc, Array RL of reference RSSI-distance
measurements [(RSSI, d), ...]

Output: Estimated distance d
1: n = CurveFit(logDistFunc, Array of RSSIs in RL,

Array of distances in RL, lowerBound = 1, upper-
Bound = 10)

2: d = logDistFunc(RSSI, n, RSSI@1m)
3: return d
{CurveF it is the curve fitting function to find the best
n by putting multiple records of RSSI and distance into
logDistFunc.}
{logDistFunc is the Logarithmic Attenuation model
as shown in Equation 1. Note that n is the only un-
known in curve fitting.}

each anchor based on RSSIs. The target node uses the
physical distance and the location of each anchor (as found
in the advertising packet) to calculate the estimated circle
of each anchor. By calculating the combination of circles
from all anchors, and iteratively eliminating the points,
the estimated region is calculated, as shown in Figure 7
and [43]. For error calculation, we output the midpoint of
the region.

The overall positioning algorithm is described in Algo-
rithm 2.

Algorithm 2 Positioning

Input: Array B of beacon-RSSI pair [(b1 : RSSI), (b2 :
RSSI), ...], Array K of generated point-of-interest

Output: Estimated x and y
1: B = sorted desc B based on RSSI
2: for b in B do
3: R = [ ]
4: d = CovertRssiToDistance(RSSI)
5: for k in K do
6: if (CheckIfWithinCircle (k, b, d)) then
7: Add k into R
8: end if
9: K = R

10: end for
11: end for
12: return MidPoint(R)
{RssiToDistance is the function to convert RSSI into
distance explained in Section 7.1 and 1}
{CheckIfWithinCircle check if point k is within the
circle with centroid of bx and by and radius of d}
{MidPoint return the mid-point of the polygon from
the list of points R}

Figure 7: Calculating the estimated position based on iteration and
elimination as stated in [43]

(a) Broadcasting (b) Scanning

Figure 8: Android app for experiment

8. Experimentation and Results

We conducted experiments to investigate the accuracy
and practicality in different indoor environments using a
custom-built Android application. Currently, it is diffi-
cult to customize a commercial-off-the-shelf BLE beacon,
therefore we built an Android application and turned the
Android phone into an anchor to test our method. The
application is capable of both broadcasting and scanning
BLE packets. The anchor mode is able to scan the packet
by other anchors and calculate the mean of RSSI and the
physical distance. It then encodes this data based on the
above-mentioned structure and converts it into a byte ar-
ray to broadcast it.

We deployed the anchor nodes at pre-defined locations
and it broadcasted and scanned at the same time. After
anchor nodes receive a packet from other anchors, it is tem-
porarily stored in the memory. After a certain threshold,
such as ten seconds or receiving at least ten packets from
the same anchor, it will calculate the mean value of RSSI.
The application then turns the data into byte arrays, en-
codes into the broadcasting packets, and broadcasts these
together with its own location.

The target node will scan for the BLE packets. After
receiving the packet, it decodes the messages and extracts
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Figure 9: CDF of physical distance estimation error of different meth-
ods. PreTrn = Log model with pre-trained parameter. RT = Real-
time training. IP = Interpolation. CF = Curve Fitting.

the needed information (i.e., the location of the broad-
caster, the RSSI-distance reference list, and the RSSI) for
calculation. The target will also store the data temporar-
ily and calculate the RSSI mean value every two seconds,
thus estimating the position every two seconds.

As the main focus of the proposed method in this pa-
per is its real-time training capability, we first compare the
distance estimation result. Ideally, if the physical distance
estimation based on RSSI is accurate, the position estima-
tion will be accurate. Figure 9 shows the cumulative dis-
tribution function of the error of the pre-trained method
and real-time method. This result shows that for most
results, the real-time method is slightly better, but there
are also some extreme errors. However, given the fact that
the real-time method only uses a few records measured in a
very short period of time and then estimates the distance,
and does not require extensive training effort, the result is
promising.

We conducted experiments in classrooms and offices
by placing a different number of beacons in different lo-
cations and estimate the position of the target node. We
compared the pre-trained and real-time methods with tri-
lateration and the method in our previous publication in
[43] as mentioned above.

8.1. Positioning Accuracy

The 25th, 50th,75th,100th percentile and mean of the
positioning error are shown in Table 3. The cumulative
distribution function of the error is shown in Figure 10.
In the legend, ‘RT’ means our proposed real-time training
method and ‘PreTrn’ means the pre-trained method. ‘Tri’
is the trilateration method with least square estimation,
and ‘NUFO’ is the method in our previous publication.
The last number indicates the number of anchor nodes. We
can see that the real-time method (RT + NUFO) achieves
the best result. Approximately 80% of the results achieve

Figure 10: CDF of position estimation error of different methods.
PreTrn = Log model with pre-trained parameter. RT = Real-time
training. IP = Interpolation. CF = Curve Fitting. Tri = Positioning
using trilateration. NUFO = Positioning using NUFO algorithm.

Table 3: Percentile and mean of error distance in meters of different
methods

25th 50th 75th 100th Mean
PreTrn+Tri 5 1.74 1.86 2.07 3.53 1.94
PreTrn+NUFO 5 1.14 2.2 2.36 5.07 1.98
RT(IP)+Tri 5 1.85 2.01 2.27 4.28 2.12
RT(CF)+Tri 5 1.22 1.5 2.19 3.95 1.75
RT(IP)+NUFO 5 1.35 1.63 2.16 4.99 1.84
RT(CF)+NUFO 5 0.93 1.32 2.01 4.13 1.51

an error distance of less than two meters and the average
error is 1.5 meters.

It is also noteworthy that our proposed real-time curve
fitting method can also improve the positioning result us-
ing trilateration (RT (CF) + Tri), compared to the model
with a pre-trained parameter (PreTrn + Tri) because the
distance estimation is improved as mentioned in Figure 9

We also compared the effect of the number of anchors.
Figure 13 and Table 6 show that with more anchors the
positioning accuracy increases when using our proposed
approach. This is because, with more anchors, there are
more reference distance-RSSI pairs, and thus more data
can be used for curve fitting. For example, for three an-
chors there will be at most six pairs. For five anchors,
there will be 20 pairs. This gives more measurements for
the target node to estimate the parameters with curve fit-
ting, as a result of helping the target node to estimate the
distance based on the RSSI more accurately.

We also compare our proposed method with a basic fin-
gerprinting approach. For the proposed method, the best
option (i.e., RT (CF) + NUFO) was used. Essentially, we
obtained the fingerprints (i.e., average RSSI based on sig-
nal reception from the anchors/beacons) for the 40 sample
points where the experimental measurements were con-
ducted (i.e., an ideal case).
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Figure 11: Example of fingerprinting using the kNN algorithm

Based on the fingerprints and measured RSSI for a tar-
get point (T), the kNN method is used to estimate the
position of T. Let us explain the commonly used approach
(e.g., see [1] and [26]) with an example as shown in Fig-
ure 11 and Table 4.

Table 4: RSSI for the fingerprinting example

B1 B2 B3 B4 B5
S1 -74.2 -75 -74.5 -73.5 -79.25
S2 -60.9 -72.8 -77.1 -64.5 -68.1
S3 -76.25 -80.3 -76.3 -70.1 -78
S4 -64.5 -65.5 -69.8 -76.25 -71.1

T -77.3 -79.5 -75.1 -70.9 -76.2

In this example, there are four sample points S1, S2,
S3 and S4. Their fingerprints (i.e., average RSSI) from
the five beacons B1, B2, B3, B4 and B5 are shown in
Table 4 (e.g., the average RSSI for S1 from B1 is -74.2).
The measured RSSI for T is also shown in the last row
of the table. To determine the similarities between A and
B based on Euclidean distance of A and B, the following
function d(A,B) is defined:

d(A,B) =
√

(A1 −B1)2 + (A2 −B2)2 + ... + (An −Bn)2

where An and Bn represent the respective RSSI measure-
ment from beacon n. Based on the above table and for-
mula, it can be found that

• d(T, S1) = 6.8

• d(T, S2) = 20.6

• d(T, S3) = 2.66

• d(T, S4) = 21.04

That means, the nearest neighbor of T is S3, followed
by S1 and S2. For the kNN method, if we choose k = 1,
the estimated position will be the position of S3. If we
choose k = 2, the estimated position is Ek=2 or the mid-
point of S3 and S1. If we choose k = 3, the estimated

Figure 12: CDF of position estimation error of the proposed
method and fingerprinting with kNN algorithm

Table 5: Comparison of positioning errors in meters between the pro-
posed method and the fingerprint method using the kNN algorithm

25th 50th 75th 100th Mean
Proposed
method

0.93 1.34 2.01 4.15 1.51

Nearest neighbor
(kNN k = 1)

1.0 1.12 2.24 6.95 1.5

kNN k = 2 0.71 1.12 1.8 6.71 1.39
kNN k = 3 0.75 1.2 1.89 5.79 1.46
kNN k = 4 0.9 1.27 1.9 5.59 1.49
kNN k = 5 0.85 1.44 1.91 5.75 1.5

position is Ek=3 (i.e., the mean coordinates of S1, S2 and
S3).

To compare the fingerprint method with the proposed
method, we have repeated the previous position estima-
tion experiments using the fingerprint method with differ-
ent values of k. For the proposed method, the best option
(i.e., RT (CF) + NUFO) was used in the experiments.
Figure 12 shows the CDF of the fingerprint method in
comparison with the proposed method (with the best op-
tion). It can be seen that they have similar performance,
compared with the proposed method. Table 5 indicates
that k = 2 provides the best performance. The table also
shows the proposed method can achieve position estima-
tion accuracy that is similar to the fingerprint method,
which requires training of data. This indicates that the
proposed method should be effective. While the finger-
print method with k = 2 can achieve slightly better re-
sults, the training effort for the fingerprint approach is
much higher. For example, based on our experiment, it
took around one hour to construct a fingerprint database
for the 40 sample points, including data pre-processing.
The proposed method does not require a manual train-
ing effort. Furthermore, it was found that the fingerprint
approach had more extreme errors.
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Figure 13: CDF of error distance of different numbers of anchors.
The last digit at the legend indicates the number of beacons used.

Table 6: 25th, 50th, 75th , 100th percentile and mean error distance
in meters of different number of anchor

No. of anchors 25th 50th 75th 100th Mean
3 1.3 2.11 2.3 3.91 2.02
4 1.52 2.04 2.28 4.12 2.05
5 0.93 1.32 2.01 4.13 1.51

Table 7: Running time of different methods

Method Average running time (millisec-
onds)

PreTrn+Tri 9.93
PreTrn+NUFO 21.65
RT(CF)+Tri 45.6
RT(CF)+NUFO 61.54

8.2. Running time

Although our proposed methods achieved higher po-
sitioning accuracy, the running time is relatively slower
than other methods. As shown in Table 7, our proposed
method requires the longest running time among all tested
methods. Compared to the pre-trained method, the real-
time methods require about 30 to 40 milliseconds more to
be computed for both trilateration and NUFO position-
ing. However, despite the fact that the running time is
longer, we believe it has less effect on the user experience.
It is because normally a one to two second response time
for a smartphone-based indoor positioning system is fast
enough (i.e., updating the positioning every one to two
seconds), and 40 milliseconds difference in one second is
generally not noticeable.

8.3. Number of unknown parameters in curve fitting

The above-mentioned curve fitting method tries to find
the value of the path loss exponent, i.e., n in Equation 1.
This method assumes the reference RSSI is known, i.e.,
RSSI@dr. For example, the commonly used approach is

Figure 14: Comparison of CDF of error of distance estimation curve
fitting presented above. CF no prior = curve fitting without prior
knowledge

to measure RSSIs at one meter away from a beacon and use
the average of the measurements as RSSI@1. However,
this results in an additional effort to find the value. There-
fore, we tested the accuracy of the curve fitting method if
we have no prior information on the reference RSSI. In
other words, dr and RSSI@dr are not a measured value,
but the unknown parameters to be found by curve fitting
together with n.

Figure 14 compares the error of distance estimation be-
tween curve fitting with one parameter (i.e., n) and curve
fitting with three parameters, namely CF no prior in the
graph (i.e., n, dr and RSSI@dr). Figure 15 compares the
error of positioning between these two methods. Results
show that if dr and RSSI@dr are known beforehand, the
estimation results are better. One of the reasons is that
it is more difficult for the curve fitting algorithm to find
three unknown parameters compared to one unknown pa-
rameter. For example, the Python function occasionally
reported that the parameters could not be estimated and
optimized. Therefore, although finding dr and RSSI@dr
by curve fitting might be possible, it is recommended that
these two values be measured before deployment. This
can be done by a one-off manual measurement, or it is
also possible to use one of the anchors for the measure-
ment of RSSI@dr, i.e., putting one anchor at one meter
away from another anchor to measure continuously and
broadcast to the target node. Also, exploring other curve
fitting algorithms to optimize three unknown parameters
is also worth studying.

8.4. Deployment

It is expected that the proposed positioning system can
be deployed at a reasonable cost and effort. Basically, sim-
ple and lightweight programs can be embedded in the bea-
cons to implement the required protocols. Specifically, we
need to configure each beacon to provide its fixed coordi-
nates through the broadcasting packets. The deployment
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Figure 15: CDF of error distance between two curve fitting methods.
CF = curve fitting presented above. CF no prior = curve fitting
without prior knowledge.

effort should be similar to existing BLE beacon-based po-
sitioning techniques (e.g., iBeacon positioning system), as
the beacon coordinates should still be recorded and stored
(e.g., in a database). Note that each beacon only needs
to perform simple computations and send a small amount
of data through the BLE packets. The relatively intensive
processing is performed at the mobile terminals. There can
be various applications. For instance, to provide position-
based service at a shopping mall, the beacons with the
algorithm can be deployed throughout the shopping mall.
Customers can then use the position-based service through
a mobile app.

We have also conducted further experiments to study
the beacon deployment configuration using the best op-
tion of our proposed method (i.e., RT (CF) + NUFO).
In the original experiments, the beacons were deployed
or placed at the four corners and one in the middle of
the testing area (i.e., evenly spread out). We have also
conducted additional experiments using different place-
ment/deployment configurations (see Figure 16). For al-
ternative configuration 1 (shrink), the beacons were placed
closer to one another, while keeping the same distance be-
tween each. For alternative configuration 2 (divided), the
beacons were divided into two subgroups. For alternative
configuration 3, beacons were placed in a more random
manner.

Table 8: Comparison of positioning errors in meters with different
beacon configurations

25th 50th 75th 100th Mean
Default con-
figuration

0.93 1.34 2.01 4.15 1.51

Configuration 1 1.58 1.8 2.21 4.1 1.91
Configuration 2 1.65 2.15 2.76 4.81 2.12
Configuration 3 1.34 2.02 2.29 4.2 2.03

(a) Default configuration (b) Alternative Configuration 1

(c) Alternative Configuration 2 (d) Alternative Configuration 3

Figure 16: Different deployment configurations

Figure 17: CDF of position estimation errors with different beacon
configurations

Figure 17 shows the CDF for the position estimation
result. It can be seen that the default configuration pro-
vides the best result, but the four curves are basically sim-
ilar. Based on our experience in running the experiments,
a high degree of accuracy can generally be achieved by
spreading the beacons out evenly to provide good cover-
age. While the scope of this paper is not to study deploy-
ment configuration, future work can be conducted based
on this paper’s framework. In future, when beacons can be
densely deployed, implementation of the proposed method
can be greatly facilitated. A cluster of densely deployed
beacons can also provide more anchors or reference points
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to enhance position accuracy.

8.5. Multiple users

Like GPS, the proposed method makes use of distributed
processing, hence performance should not depend on the
number of users (i.e., it is a scalable solution). Basically,
through the collaborative algorithm, the beacons can learn
from each other and then broadcast that information to
the users of the system. Each user then utilizes the infor-
mation to estimate his/her position using his/her mobile
phone (i.e., in a distributed manner).

We have conducted experiments to test the proposed
method in a multi-user environment. As before, for the
proposed method, the best option (i.e., RT (CF) + NUFO)
was used. For each experiment, there were five users (i.e.,
mobile phones) in the testing area, placed in random po-
sitions. Each mobile phone computed its position individ-
ually and simultaneously based on the proposed method.
In the experiments, the mobile phones were placed in more
than 20 positions in the testing area (i.e., many different
configurations were tested). Based on the experiments,
the positioning errors of each user were determined.

Figure 18 and Table 9 show the experimental results. It
can be seen that the results for all users are similar. This
indicates that as expected, the proposed method works
well in a multi-user environment because of its distributed
processing nature.

Figure 18: CDF of position estimation errors for multiple users

Table 9: Comparison of positioning errors in meters for multiple
users

25th 50th 75th 100th Mean
User 1 1.01 1.69 2.35 4.61 1.74
User 2 1.47 2.09 2.51 5.02 1.97
User 3 0.82 2.08 2.55 3.58 1.81
User 4 1.01 1.52 2.41 3.04 1.66
User 5 1.39 1.58 1.86 2.92 1.55

(a) RSSI samples by user 2’s device

(b) RSSI samples by user 5’s device

Figure 19: RSSI measurements at 1.5 m from a beacon

Table 10: Measurement differences between user 2 and user 5

Mean RSSI Standard
deviation

Average
number of
measure-
ments per
second

User 2’s device -73.3 4.29 6.98
User 5’s device -77.14 1.76 7.03

However, based on our observation and experience, some
mobile phones may achieve better results than others be-
cause of better hardware (e.g., BLE chip and antenna) so
as to alleviate the fluctuation of RSSI as well as the effect
of noise. To further analyze the effect of device differences,
we conducted measurements by all the devices used in the
multi-user experiment simultaneously at 1.5 m apart from
a beacon. As shown in Figure 19 and Table 10, user 5’s
device (i.e., the best-performing device) received signals
with less fluctuation and smaller standard deviation when
compared to user 2’s device (i.e., the worst-performing de-
vice). We believe that a more stable measurements by a
better device will have a better positioning accuracy. This
is effectively similar to GPS – while each mobile phone
receives the same GPS signals for distributed processing,
some mobile phones may achieve better positioning accu-
racy due to their use of better hardware and software.
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9. Conclusion

Using BLE for positioning has several advantages, such
as lower deployment cost, and no platform restrictions for
broadcasting and scanning BLE data. We believe that us-
ing BLE for positioning is a more effective solution in the
end-user market. In this paper, we propose a decentral-
ized positioning protocol that does not require a central-
ized server or manual training process. Based on modi-
fications of the beacons, the beacons will broadcast and
scan simultaneously to automatically achieve a training-
like process on-the-fly. This also ensures that the param-
eters of the signal propagation model are up-to-date, thus
ensuring the estimation result will be accurate. Our pro-
posed protocol provides a solution to the major challenges
of indoor positioning, namely difficulties in estimating the
distance based on RSSI, the need for training and the need
for re-training over time. Also, our proposed protocol is
designed and tested specifically for BLE and smartphones.
These show that our proposed method is simpler and eas-
ier to implement and more practical for mass deployment
compared to other wireless methods, such as Wi-Fi and
RFID. Based on experimentation in a real indoor environ-
ment, we can conclude that our proposed method is also
accurate, achieving an accuracy of approximately 1.5 m
(with 90th percentile below 3 m in general). This is gen-
erally applicable in most indoor positioning systems when
locating humans. At the time of writing, we see that some
recently-released smartphones are already equipped with
Bluetooth 5. This provides us with opportunities to study
the advantages of using Bluetooth 5 with this method in
the future.
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Z. Peng, J. Huerta, Wi-fi crowdsourced fingerprinting dataset
for indoor positioning, Data 2 (4) (2017). doi:10.3390/

data2040032.
[6] X. Li, S. Li, D. Zhang, J. Xiong, Y. Wang, H. Mei, Dynamic-

music: Accurate device-free indoor localization, in: Proceed-
ings of the 2016 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing, UbiComp ’16, Association for
Computing Machinery, New York, NY, USA, 2016, pp. 196–207.
doi:10.1145/2971648.2971665.

[7] Z. Wang, K. Jiang, Y. Hou, W. Dou, C. Zhang, Z. Huang,
Y. Guo, A survey on human behavior recognition using channel
state information, IEEE Access 7 (2019) 155986–156024. doi:

10.1109/ACCESS.2019.2949123.

[8] S. He, S. . G. Chan, Wi-fi fingerprint-based indoor position-
ing: Recent advances and comparisons, IEEE Communications
Surveys Tutorials 18 (1) (2016) 466–490. doi:10.1109/COMST.

2015.2464084.
[9] R. Faragher, R. Harle, Location fingerprinting with bluetooth

low energy beacons, IEEE Journal on Selected Areas in Commu-
nications 33 (11) (2015) 2418–2428. doi:10.1109/JSAC.2015.

2430281.
[10] L. Ni, Y. Liu, Y. C. Lau, A. Patil, Landmarc: indoor loca-

tion sensing using active rfid, in: Pervasive Computing and
Communications, 2003. (PerCom 2003). Proceedings of the
First IEEE International Conference on, 2003, pp. 407–415.
doi:10.1109/PERCOM.2003.1192765.

[11] M. A. Khan, V. K. Antiwal, Location estimation technique us-
ing extended 3-d landmarc algorithm for passive rfid tag, in:
2009 IEEE International Advance Computing Conference, 2009,
pp. 249–253. doi:10.1109/IADCC.2009.4809016.

[12] K. Han, S. H. Cho, Advanced landmarc with adaptive k-nearest
algorithm for rfid location system, in: 2010 2nd IEEE Interna-
tionalConference on Network Infrastructure and Digital Con-
tent, 2010, pp. 595–598. doi:10.1109/ICNIDC.2010.5657852.

[13] A. R. Jimenez Ruiz, F. Seco Granja, J. C. Prieto Honorato,
J. I. Guevara Rosas, Accurate pedestrian indoor navigation
by tightly coupling foot-mounted imu and rfid measurements,
IEEE Transactions on Instrumentation and Measurement 61 (1)
(2012) 178–189. doi:10.1109/TIM.2011.2159317.

[14] C. Huang, L. Lee, C. C. Ho, L. Wu, Z. Lai, Real-time rfid
indoor positioning system based on kalman-filter drift removal
and heron-bilateration location estimation, IEEE Transactions
on Instrumentation and Measurement 64 (3) (2015) 728–739.
doi:10.1109/TIM.2014.2347691.

[15] D. Zhang, L. T. Yang, M. Chen, S. Zhao, M. Guo, Y. Zhang,
Real-time locating systems using active rfid for internet of
things, IEEE Systems Journal 10 (3) (2016) 1226–1235. doi:

10.1109/JSYST.2014.2346625.
[16] A. Shirehjini, A. Yassine, S. Shirmohammadi, Equipment loca-

tion in hospitals using rfid-based positioning system, Informa-
tion Technology in Biomedicine, IEEE Transactions on 16 (6)
(2012) 1058–1069. doi:10.1109/TITB.2012.2204896.

[17] E. DiGiampaolo, F. Martinelli, Mobile robot localization using
the phase of passive uhf rfid signals, IEEE Transactions on In-
dustrial Electronics 61 (1) (2014) 365–376. doi:10.1109/TIE.

2013.2248333.
[18] E. DiGiampaolo, F. Martinelli, A passive uhf-rfid system for

the localization of an indoor autonomous vehicle, IEEE Trans-
actions on Industrial Electronics 59 (10) (2012) 3961–3970.
doi:10.1109/TIE.2011.2173091.

[19] S. Saab, Z. Nakad, A standalone rfid indoor positioning system
using passive tags, Industrial Electronics, IEEE Transactions
on 58 (5) (2011) 1961–1970. doi:10.1109/TIE.2010.2055774.

[20] A. Buffi, P. Nepa, F. Lombardini, A phase-based technique for
localization of uhf-rfid tags moving on a conveyor belt: Perfor-
mance analysis and test-case measurements, IEEE Sensors Jour-
nal 15 (1) (2015) 387–396. doi:10.1109/JSEN.2014.2344713.

[21] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, Y. Liu, Tago-
ram: Real-time tracking of mobile rfid tags to high precision
using cots devices, in: Proceedings of the 20th Annual Interna-
tional Conference on Mobile Computing and Networking, Mo-
biCom ’14, Association for Computing Machinery, New York,
NY, USA, 2014, pp. 237–248. doi:10.1145/2639108.2639111.

[22] R. S. Campos, Evolution of positioning techniques in cellular
networks, from 2g to 4g, Wireless Communications and Mobile
Computing 2017 (2017).

[23] Spirent, An overview of lte positioning.
URL https://www.spirent.com/assets/wp/wp_lte_

positioning_overview/

[24] Y. Lu, P. Richter, E. S. Lohan, Opportunities and challenges
in the industrial internet of things based on 5g positioning,
in: 2018 8th International Conference on Localization and
GNSS (ICL-GNSS), 2018, pp. 1–6. doi:10.1109/ICL-GNSS.

2018.8440903.

16

https://doi.org/10.1109/INFCOM.2000.832252
https://doi.org/10.1109/35.339880
https://doi.org/10.1017/CBO9780511841224
https://doi.org/10.1145/2829988.2787487
https://doi.org/10.3390/data2040032
https://doi.org/10.3390/data2040032
https://doi.org/10.1145/2971648.2971665
https://doi.org/10.1109/ACCESS.2019.2949123
https://doi.org/10.1109/ACCESS.2019.2949123
https://doi.org/10.1109/COMST.2015.2464084
https://doi.org/10.1109/COMST.2015.2464084
https://doi.org/10.1109/JSAC.2015.2430281
https://doi.org/10.1109/JSAC.2015.2430281
https://doi.org/10.1109/PERCOM.2003.1192765
https://doi.org/10.1109/IADCC.2009.4809016
https://doi.org/10.1109/ICNIDC.2010.5657852
https://doi.org/10.1109/TIM.2011.2159317
https://doi.org/10.1109/TIM.2014.2347691
https://doi.org/10.1109/JSYST.2014.2346625
https://doi.org/10.1109/JSYST.2014.2346625
https://doi.org/10.1109/TITB.2012.2204896
https://doi.org/10.1109/TIE.2013.2248333
https://doi.org/10.1109/TIE.2013.2248333
https://doi.org/10.1109/TIE.2011.2173091
https://doi.org/10.1109/TIE.2010.2055774
https://doi.org/10.1109/JSEN.2014.2344713
https://doi.org/10.1145/2639108.2639111
https://www.spirent.com/assets/wp/wp_lte_positioning_overview/
https://www.spirent.com/assets/wp/wp_lte_positioning_overview/
https://www.spirent.com/assets/wp/wp_lte_positioning_overview/
https://doi.org/10.1109/ICL-GNSS.2018.8440903
https://doi.org/10.1109/ICL-GNSS.2018.8440903


[25] C. Xiao, D. Yang, Z. Chen, G. Tan, 3-d ble indoor localization
based on denoising autoencoder, IEEE Access 5 (2017) 12751–
12760. doi:10.1109/ACCESS.2017.2720164.

[26] Y.-C. Pu, P.-C. You, Indoor positioning system based on ble
location fingerprinting with classification approach, Applied
Mathematical Modelling 62 (2018) 654 – 663. doi:https:

//doi.org/10.1016/j.apm.2018.06.031.
[27] M. Li, L. Zhao, D. Tan, X. Tong, Ble fingerprint indoor localiza-

tion algorithm based on eight-neighborhood template matching,
Sensors 19 (22) (2019). doi:10.3390/s19224859.

[28] G. D. Blasio, A. Quesada-Arencibia, C. R. Garćıa, J. C.
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Pérez Bullones, A bluetooth low energy indoor positioning sys-
tem with channel diversity, weighted trilateration and kalman
filtering, Sensors 17 (12) (2017). doi:10.3390/s17122927.

[36] F. Yin, Y. Zhao, F. Gunnarsson, F. Gustafsson, Received-
signal-strength threshold optimization using gaussian processes,
IEEE Transactions on Signal Processing 65 (8) (2017) 2164–
2177. doi:10.1109/TSP.2017.2655480.

[37] F. Yin, Y. Zhao, F. Gunnarsson, Proximity report triggering
threshold optimization for network-based indoor positioning, in:
2015 18th International Conference on Information Fusion (Fu-
sion), 2015, pp. 1061–1069.

[38] Y. Zhao, C. Fritsche, F. Yin, F. Gunnarsson, F. Gustafs-
son, Sequential monte carlo methods and theoretical bounds
for proximity report based indoor positioning, IEEE Transac-
tions on Vehicular Technology 67 (6) (2018) 5372–5386. doi:

10.1109/TVT.2018.2799174.
[39] P. C. Ng, L. Zhu, J. She, R. Ran, S. Park, Beacon-based proxim-

ity detection using compressive sensing for sparse deployment,
in: 2017 IEEE 18th International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2017,
pp. 1–6. doi:10.1109/WoWMoM.2017.7974317.

[40] L. Zhu, R. Ran, P. C. Ng, J. She, Using generalized similar-
ity filter to enhance proximity detection for sparse beacon de-
ployment, in: 2017 International Conference on Information
and Communication Technology Convergence (ICTC), 2017,
pp. 433–438. doi:10.1109/ICTC.2017.8190754.

[41] P. C. Ng, J. She, S. Park, High resolution beacon-based prox-
imity detection for dense deployment, IEEE Transactions on

Mobile Computing 17 (6) (2018) 1369–1382. doi:10.1109/TMC.
2017.2759734.

[42] Bluetooth Special Interest Group, Indoor Positioning Service,
Bluetooth R© Service Specification.

[43] Y. H. Ho, H. C. B. Chan, Blueprint: Ble positioning algorithm
based on nufo detection, in: GLOBECOM 2017 - 2017 IEEE
Global Communications Conference, 2017, pp. 1–6. doi:10.

1109/GLOCOM.2017.8254483.

17

https://doi.org/10.1109/ACCESS.2017.2720164
https://doi.org/https://doi.org/10.1016/j.apm.2018.06.031
https://doi.org/https://doi.org/10.1016/j.apm.2018.06.031
https://doi.org/10.3390/s19224859
https://doi.org/10.1109/ACCESS.2018.2837497
https://doi.org/10.1109/ACCESS.2018.2837497
https://doi.org/10.1109/IIAI-AAI.2016.22
https://doi.org/10.1109/IIAI-AAI.2016.22
https://doi.org/10.1109/IPIN.2017.8115871
https://doi.org/10.1109/IPIN.2017.8115871
https://doi.org/10.1109/ACCESS.2018.2843325
https://doi.org/10.1109/ACCESS.2018.2843325
https://doi.org/10.1109/IPIN.2014.7275525
https://doi.org/10.1109/IPIN.2016.7743644
https://doi.org/10.1109/ICUFN.2016.7536951
https://doi.org/10.3390/s17122927
https://doi.org/10.1109/TSP.2017.2655480
https://doi.org/10.1109/TVT.2018.2799174
https://doi.org/10.1109/TVT.2018.2799174
https://doi.org/10.1109/WoWMoM.2017.7974317
https://doi.org/10.1109/ICTC.2017.8190754
https://doi.org/10.1109/TMC.2017.2759734
https://doi.org/10.1109/TMC.2017.2759734
https://doi.org/10.1109/GLOCOM.2017.8254483
https://doi.org/10.1109/GLOCOM.2017.8254483

	Introduction
	Positioning approach
	Major contributions

	Comparison of BLE positioning with other positioning technologies
	Wi-Fi
	RFID
	4G/5G
	BLE

	Related Work
	Challenges in indoor positioning
	Distance measurement
	Training
	Device heterogeneity
	Requirement of centralized storage medium

	Decentralized BLE positioning protocol
	Anchor node
	Target node
	BLE advertisement packet
	BLE Indoor Positioning Service
	Reference RSSI as additional data

	Measuring and calculation of Reference RSSI
	Advertising RSSI-distance reference data from anchor nodes
	Measuring RSSI-distance reference data by the target node

	Positioning Algorithm
	Distance estimation
	Curve fitting with least square
	Interpolation

	Positioning estimation

	Experimentation and Results
	Positioning Accuracy
	Running time
	Number of unknown parameters in curve fitting
	Deployment
	Multiple users

	Conclusion



