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Abstract

Generative Adversarial Network (GAN) has been widely used to generate
impressively plausible data. However, it is a non-trivial task to train the
original GAN model in practice due to the vanishing gradient problem. This
is because the JS divergence could be a constant (i.e., log2) when original data
distribution and generated data distribution hold a negligible overlapping
area. Under such a scenario, the gradient of generator is 0. Most efforts
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have been devoted to designing a more proper difference measure while few
attentions have been paid to the former aspect of the issue.

In this paper, we propose a new method to design a noise distribution
having a guaranteed non-negligible overlapping area with raw data distri-
bution. The key idea is to transform the noise from the randomized space
into the raw data space. We propose to obtain the transformation as the
basis matrix in non-negative matrix factorization because the basis matrix
has the underlying features of the raw data. The proposed idea is instanti-
ated as Sketch-then-Edit GAN (SEGAN) where sketches are the noises after
transformation and are adopted as the name since they contains basic fea-
tures of the raw data. Moreover, a new generator for editing the sketches
into realistic-like data is designed. We mathematically prove that SEGAN
solves the gradient vanishing problem, and conduct extensive experiments
on the MNIST, CIFAR10, SVHN and Celeba datasets to demonstrate the
effectiveness of SEGAN.

Keywords: Generative adversarial network; vanishing gradient problem;
non-negative matrix factorization.

1. Introduction

Recently, generative adversarial network (GAN) [13] has been widely used
for generating synthetic but realistic-like data in various machine learning
tasks [42] [24] [37] [47] [23] [45]. In general, a typical GAN model consists of
two components, a discriminator D and a generator G. The discriminator D
can be viewed as a detective who can determine whether the current data are
from the realistic dataset or generated by the generator G, and the generator
G specializes in generating the simulation data to fool the discriminator
D into accepting them as real ones [8]. In particular, the generator G is
modelled such that it can transform a vector of noises z sampled from an easy-
to-sample distribution (e.g., Uniform distribution) into a synthetic instance,
and the discriminatorD takes a sample as the input and outputs a probability
that the input is real. D and G are adversarially trained until they reach
a Nash equilibrium [9] where the discriminator cannot tell the difference
between the real data and the synthetic data.

Despite of the effectiveness of the elegant framework, the original GAN
has been known hard to train in practice due to the vanishing gradient prob-
lem, which is caused by a negligible overlapping area between generated data
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and raw data distributions, because the Jensen–Shannon (JS) divergence is
a constant and the gradient of generator is 0 under such a scenario [13] [3].
In particular, both the raw data distribution (pr) and the generating dis-
tribution (pG) lie in low-dimensional manifolds, and they have very limited
chances to overlap because they usually have disjoint supports [2]. Under
such a scenario, the Jensen–Shannon (JS) divergence is a constant (log2)
when pr and pG have a negligible overlapping area, and the gradients of the
generator can be zero. More details about the vanishing gradient problem in
the traditional generator are shown in Section 3.

Many methods have been proposed to tackle the issue by utilizing a more
proper difference measure. Energe-based GAN (EBGAN) [46] uses the mar-
gin loss function to replace the original loss function. However, a study [3]
has proved that minimizing the margin loss equals to minimize the total
variation distance [34], and such modification cannot address the vanishing
gradient problem when pr and pG have no overlapping area. Least Squares
GAN (LSGAN) [26] proposes to utilize the least square loss function. We
found that LSGAN cannot address this problem when there is a negligible
overlapping area between pr and pG because the generator’s loss is a fixed
value as pr = 0 and pG 6= 0 (and vice verse), and the gradients are still
0 in such cases [2]. Wasserstein GAN (WGAN) [3] proposes to utilize the
Wasserstein distance [31] to measure the dissimilarity between pr and pG even
though there is no overlapping area between the two distributions. However,
WGAN needs more iterations to push pG to pr as pG is far away from pr at
the initial stage. Moreover, there still exists the challenge on addressing the
issue when one uses the Adam optimizer [3].

Few efforts have been devoted to approaching the issue from the aspect
of the overlapping area, which may be because the raw data distribution is
usually unknown and lies in a low-dimensional manifold in practice such that
it is very difficult to determine a generating distribution having a negligible
overlapping area with the raw data distribution. Note that the generating
distribution depends on both the noise distribution and the parameters in
the generator (i.e., a neural network), but the noise distribution takes the
dominant role in the generating distribution since the support of the gen-
erating distribution is contained in the noise distribution [2]. One heuristic
strategy is to introduce the same continuous noises into both the raw data
distribution and the generating distribution because the noises can make the
two distributions match [2].

In this paper, we attempt to propose a new method to address the issue
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of a negligible overlapping area. In particular, the idea is to build a noise
distribution which is similar to the raw data distribution such that a non-
negligible overlapping area can be guaranteed. Note that we do not attempt
to learn a parametric noise distribution that fits the raw data since the raw
data distribution is unknown and the task of fitting the raw data is actually
to be performed by the generator. Instead, we propose a non-parametric
approach which can produce samples. In particular, we firstly capture the
raw data features through the basis matrix obtained by the Non-negative
Matrix Factorization (NMF) [12]. NMF factorizes a data matrix X into a
basis matrix W and a latent data representation matrix H via X ≈ W ×H.
Each column of W is a latent feature of the data and H can be considered as
the new representations of data in terms of the basis W . We employ the non-
negative matrix factorization because the real data should be the addition of
basic features [12].

Afterwards, we produce a new noise input via multiplying W by a sample
z drawn from the standard Uniform distribution (0, 1), which realizes the
transformation of the original noises from a randomized space into the raw
data space. The standard Uniform distribution is employed to guarantee the
non-negativity of the addition of basic features. In this way, the new input
is a randomly linear combination of the basis features of X, and hence it
mimics a sample drawn from the raw data distribution. In this paper, the
new noise input is named as a sketch, and the idea is instantiated in a novel
model named Sketch-then-Edit GAN (SEGAN).

The way of constructing the sketch requires redesigning the architecture
of the generator. Because the size of the sketch is the same as that of the raw
data, the strided-fractional convolution [1], which is the major component of
a typical generator, is no longer needed. Instead, the generator should focus
on editing the sketch with basis features into complete and realistic-like data.
Note that the editing is necessary because the random combination of the
basic features may be far away from realistic data, e.g., a combination of the
tail of fish and the feet of cats can never be found in real world.

Note that our proposed idea belongs to the paradigm of Transfer Learn-
ing [33], but, to the best of our knowledge, the proposed SEGAN adopts a
novel strategy to realize the Transfer. Transfer learning focuses on storing
knowledge gained while solving one problem and applying it to a different but
related problem. In our paper, we use NMF model to store the knowledge
gained from raw data and apply the combination of knowledge and noise to
GAN model to generate simulation data.
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In summary, the major innovations and contributions of this paper are
as follows:

• To the best of our knowledge, this paper for the first time proposes
a new method to construct a noise distribution having a guaranteed
non-negligible overlapping area with the raw data distribution in the
GAN literature.

• This paper proposes a novel SEGAN model which learns a mapping
function parameterized by the generator of SEGAN from the afore-
mentioned noise distribution into the raw data distribution without
suffering from the vanishing gradient problem.

• Through comprehensive experiments on four datasets, we demonstrate
the effectiveness of the proposed approach.

The rest part of this paper is organized as follows. In Section 2 some
related methods are discussed. We review the GAN model and NMF method
in Section 3, and present our model in Section 4. In Section 5 we show our
experimental results and the conclusion is made in Section 6.

2. Related work

The GAN model has gained a lot of attentions due to its powerful genera-
tive capabilities, and plenty of variants have been proposed. Here, we mainly
review those studies for tackling the vanishing gradient problem. It is known
that the vanishing gradient problem is the joint consequence of two factors
which are the negligible overlapping area and the JS divergence, and the
issue may be solved with either a non-negligible overlapping area or a more
proper difference measure. Hence, we categorize existing studies according
to the factor with which they deal.

Overlapping Area. A study [2] has shown that the negligible over-
lapping area between pr and pG may be inevitable if pG lies in a random
low-dimensional manifold. Hence, from this aspect, we need to make some
manipulations on pr or pG or both of them. Wu et al. [39] and Roth et al.
[30] propose a similar heuristic, which is to add some noises to both of the
two distributions in the early phases of training, because the added noises
can enforce the two distributions to match. And then they gradually remove
the noises using annealing methods as the training continues. However, when
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one uses the JS divergence to measure pr and pG with additional noises, the
results are affected by those noises and cannot represent the true difference
between pr and pG [3].

Difference Measure. More researchers focus their attentions on design-
ing difference measures [46] [3] [2] [26]. EBGAN [46] found that the margin
loss function can get better quality of gradients when pG is far away from
pr. It has proven that if the discriminator and the generator reach to the
Nash equilibrium [9] (pG = pr almost everywhere), V (G,D) (the loss func-
tion of the GAN model is defined as V (G,D) shown in Eq.(1)) equals to a
positive margin (m). However, the study [3] has proved that EBGAN can
be though of as the generative approach to the total variation distance [34],
and also gives that total variation distance displays the same regularity as
the JS divergence. Thus, EBGAN still suffers from the problem of vanishing
gradients.

Margin Adaptation GAN (MAGAN) [36] adopts the adaptive margin
loss function to replace the original loss function to stabilize training. Thus,
this model is very similar to EBGAN. The difference is that MAGAN can
converge under more relaxed assumptions. Since this study adopts the same
loss function, it still cannot address the vanishing gradient problem.

WGAN [3] is one of the state-of-the-art algorithms for addressing the
vanishing gradient problem, because of the superior smoothing characteris-
tics of the Wasserstein distance [31]. Such characteristics can quantify the
distance between pr and pG even though the supports of them are disjoint. In
WGAN, the discriminator is attached with a function f ∗w(x), which has been
limited over the 1-Lipshitz continuity. For satisfying the Lipshitz continuity,
∂f∗w(x)
∂x

has been limited to a specific range (e.g., (-0.01, 0.01)). That is to
say, WGAN clips the weights w after each training epoch. The limitation of
WGAN is that only certain optimizers (e.g., RMSProp or SGD) are suitable
for optimizing WGAN [3] but momentum based ones (e.g., Adam) may even
turn the gradients into being negative.

Loss-Sensitive GAN (LS-GAN) [29] is also based on the Lipshitz con-
tinuous assumption. The difference between WGAN and LS-GAN is that
WGAN is to maximize the difference of expectation of f ∗w(x) between pr and
pG while LS-GAN makes pairwise comparisons between the loss of real and
that of generated samples. LS-GAN is effective even without batch normal-
ization. However, the derivation and implementation of LS-GAN are very
complicated, which makes the adoption of LS-GAN not cost-effective.

Least Squares GAN (LSGAN) [26] argues that the Sigmoid Cross Entropy
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loss function [44] for the discriminator may lead to the problem of vanish-
ing gradient problem when updating the generator using the fake samples.
Therefore, LSGAN uses Least Squares to measure the difference between pr
and pG rather than the Sigmoid Cross Entropy. However, such measure met-
ric still cannot address the vanishing gradient when one of pG or pr → 0 and
the other one 6= 0 as the discriminator reaches the optimal state.

The Relevance of Sketch-then-Edit GAN to Existing Studies.
The model proposed in this paper approaches the vanishing gradient problem
from the aspect of the overlapping area. But instead of another heuristic,
we propose a new method to make the pG overlap the pr. In particular,
we transform the noises sampled from a randomized space, e.g., a Uniform
distribution, into the raw data space. Note that other studies [7] [27] use
the term “sketch” to indicate “outline” of an image and utilize GAN to
render color of outline. In our study, the “sketch” indicates a combination
of randomized noise and salient features of original data. More details are
shown in Section 4.

3. Preliminaries

3.1. Generative Adversarial Network

The original GAN is formally described as below to establish the con-
tinuity. The GAN model was first proposed by Goodfellow [13] as a novel
generative model to simultaneously train a generator and a discriminator
using the following objective function:

min
G

max
D

V (G,D) = Ex∼pr(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

D is the discriminator, G is the generator, and both are neural net-
works. x comes from a distribution pr(x) underlying the raw dataset and z
comes from a pre-defined noise distribution pz(z) which is usually an easy-
to-sample distribution, e.g., Uniform distribution or Gaussian distribution.
The discriminator is a binary classifier which takes an input from either the
raw data or the generator and produces a probability that the input comes
from the raw data. The generator is designed to build a mapping function
from pz(z) to the raw data distribution pr(x) such that it can produce a
synthetic instance with a noise input z. Maximizing Eq. (1) with respect to
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D enhances the capability of the discriminator to tell the difference between
a real instance and a synthetic one while minimizing Eq. (1) with respect
to G improves the mapping function such that the synthetic data are more
realistic-like. During the training process, the discriminator and the gener-
ator are alternatively optimized. In the initial stages, the discriminator is
usually stronger than the generator and can easily distinguish the real data
from synthetic data. As the training continues, the mapping function is grad-
ually improved, and the model gets the convergence when the discriminator
and the generator reach a Nash equilibrium [9] where D(G(z)) = D(x) =
0.5.

3.2. Vanishing Gradient Problem

In the initial stage of training a GAN model, the generated data are
basically noises. The discriminator reaches to the optimal status (D∗ =
pr

pr+pG
) with a high probability under such scenario [13]. We then sub-

stitute the optimal discriminator (D∗) back into Eq. (1), and we obtain
max
D

V (G,D) = −log4 if and only if pr = pG. We continue to subtract this

expression from min
G
V (G,D∗), and we obtain:

V (G,D∗) = −2log2 + 2JSD(pr(x)||pG(x)) (2)

That is to say, the difference between pr and pG is determined by the
JS divergence (JSD), so minimizing the difference is to minimize the JS
divergence when the discriminator is optimal. The smaller the JS divergence
is, the closer the two distributions (pr and pG) are.

The JS divergence works well for updating the generator’s parameters if
there is an overlapping area between pr and pG. And the generator obtains
the minimum value (−2log2) when pr(x) = pG(x) (JSD = 0 under such
scenario). The challenge is that JSD(pr(x)||pG(x)) = log2 if there is no
overlapping area between pr and pG. Unfortunately, it is of high probability
that in practice two distributions may be disjoint because both of pr and pG
lie in low-dimensional manifolds in the mapping space [2]. In other words,
JSD = log2 is often the case. V (G,D∗) is 0 when we substitute JSD = log2
into Eq. (2). The generator’s gradients vanish under such scenario because
the derivative of a constant (0 in this case) is 0.
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3.3. Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) is a linear dimensionality re-
duction technique [12] [35] [41] [43]. Given a data matrix X ∈ Rp×n, NMF
amounts to computing a basis matrix W ∈ Rp×r that only contains basis
elements (or features) of X, and a latent representation matrix H ∈ Rr×n

through X ≈ W × H. Here, p ∈ R is the number of dimensions of the
raw data, n ∈ R is the number of data points, and r ∈ R is the number
of reduced dimensions of the latent representations with r < min(p, n). In
this way, each data point X(:, j) (1 ≤ j ≤ n) can be approximated by a
linear combination of the columns of W where the corresponding coefficients
of the columns are in H(:, j). Since both W and H are restricted to be non-
negative, NMF can automatically extract sparse and interpretable features
(e.g., eyes, noses) from the raw data [12].

The motivations of using NMF are two-folds: 1). The real data are
usually non-negative (e.g., image datasets) in practice, and the NMF method
can keep non-negativity and automatically extract interpretable non-negative
features [20]. 2). NMF has a strong interpretability for the regional features
from the raw data [21] due to the fact that each basis feature is part of the
original sample (e.g., a nose or mouth).

There are some other unsupervised dimensionality reduction methods
such as Principal Component Analysis (PCA) [38], Singular Value Decom-
position (SVD) [10], Independent Component Analysis (ICA) [22], and they
are widely adopted in practice. PCA and SVD have no assumptions on the
basis matrix and the representation matrix, but instead aim to obtain an op-
timal factorization. Note that the SVD is equivalent to principal component
analysis (PCA) after mean centering of the data points. ICA enforces each
column of the basis matrix to be independent of all the others. In this way,
all these methods may produce both positive and negative basis features, and
hence are not as suitable as NMF for SEGAN.

4. The proposed SEGAN

4.1. Overview

The major innovation of SEGAN is the idea of constructing a noise dis-
tribution having a non-negligible overlapping area with the raw data distri-
bution. However, it is difficult to learn a parametric function as the noise
distribution that fits the raw data because no information about the raw
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data distribution is known as prior knowledge. Moreover, the task of cap-
turing the raw data distribution is actually expected to be performed by
the generator. To solve this challenge, we note that a parametric function
is essentially not necessary since the input into the generator is samples in-
stead of the parametric function. Hence, the problem is simplified to how to
obtain samples from such an unknown noise distribution. To this end, we
propose to firstly draw noise samples from a Uniform distribution, and then
transform the samples into the raw data space. To guarantee the successful
transformation into the raw data space, the basis matrix in the non-negative
matrix factorization is employed. In particular, a new sample is obtained as
the multiplication of the basis matrix by a vector of noises from the Uniform
distribution. Samples constructed in this way are essentially random com-
binations of basis features of the raw data, and hence they indeed lie in the
raw data space. The samples are referred to as sketches in this paper. To
produce synthetic data based on sketches, the generator with a new architec-
ture is required. Hence, the following subsections explain how the sketches
are constructed in details and what the new generator should be.

4.2. Sketch Construction

We illustrate the process of constructing sketches in Fig. 1 where the
MNIST dataset is employed as the example. On the one hand, a matrix
X ∈ Rp×n is firstly constructed from the raw data (sub-figure (a)) where
p ∈ R is the number of dimensions of images after vectorization and n ∈ R is
the number of images. Then, the basis matrix is obtained via non-negative
matrix factorization as W ∈ Rp×r where each column of W is a basis feature
and r is the total number of basis features. Here r is set to 10 for illustrating
how to create the sketch. The visualization of each basis feature is conducted
after reconstructing it into an image in sub-figure (b) of Fig. 1. It shows
that each image is a salient feature of a digit.

On the other hand, a vector of noises (zr×1) is sampled from a Uniform
distribution (pz(z)) in Fig. 1. Then, the vector is multiplied to the basis
matrix W to form a sketch. The multiplication realizes the transformation
of each noise vector from a randomized space corresponding to the chosen
pz(z) into the raw data space. More concretely, each sketch is a random
combination of all the basis features denoted as follows:

Sketch = W · z (3)

10



Raw data

Sketches

W × z

NMF

X
Pz(z)

z

Repeat sampling

Basis matrix W

(b)

(c)

(a)

Figure 1: The illustration of constructing sketches where each sketch corresponds to a
vector z sampled from Pz(z).

where W indicates the basis matrix with size p×r while z refers to the noise
code with size r×1. 20 sketches are presented in the sub-figure (c) of Fig. 1.
Note that we repeat sample the noise code z from pz(z) 20 times, and each
time we utilize Eq. (3) to create a sketch. It is observed that some sketches
are already realistic-like digits while others have features of more than one
digit. The former is because the corresponding noise vector sampled from
the Uniform distribution are similar to a particular column of H while the
latter may be because the corresponding vector is a particular combination
of more than one column of H because each column of H can reconstruct a
particular digit. It also confirms that sketches constructed in this way need
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z
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Figure 2: The architecture of SEGAN.

to be further edited into realistic digits, which is to be performed by the
generator.

It is worth mentioning that when dealing with RGB images where the
three colors are in three channels, three matrices (XR ∈ Rp×n,XG ∈ Rp×n,XB ∈
Rp×n) are required to be constructed for the three channels. This is because
we need to maintain the three channels as input. We then simply apply
NMF to each of the channel-specific matrices and obtain three basis matri-
ces. According to Eq. (3), three channel-specific sketches can be constructed.
After that, the three channel-specific sketches are concatenated in the verti-
cal axis to create a complete sketch as the new noise input (See Fig. 2). Note
that there is no channel sketches for gray-scale image dataset (e.g., MNIST)
because the gray-scale image just holds one color channel.

Since the number of basis features (i.e., the value of r) needs to be pre-
determined, we discuss here the impact of r on the performance of SEGAN
as the guidance for choosing an appropriate value. When the number of basis
features is very small, e.g., 1 or 2 in extreme cases, the diversity of sketches
may be very limited according to Eq. (3). In this case, the diversity of
synthesis data produced by the generator is also very limited, which leads to
model collapse due to the similar inputs (i.e., similar sketches). When r takes
a very large value, each basis feature obtained in W may be too fine-grained
such that it may not be a salient feature. In other words, each Wi captures
the trivial details. For example, when we use the NMF method to extract
the salient features of a person using a moderate value r (e.g., the number of
r exactly equals to that of features), the salient features captured in the basis
matrix are hair, eyes, nose, etc. Instead, if r takes a very large value, the
features may focus on the individual pixels of eyes, hair, and etc. If we utilize
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those features to create the sketches, they basically have no difference from
the original noises sampled from the randomized space. This is validated by
the experiments shown in Section 5.

Note that a non-negligible overlapping area between the generating distri-
bution and the raw data distribution can be guaranteed when we only design
a noise distribution having a non-negligible overlapping area with the raw
data distribution, which is because the support of the generating distribu-
tion is contained in the input noise distribution when the mapping function
parameterized by the generator is composed of affine transformations and
pointwise nonlinearities [2].

4.3. Generator Design

For the traditional generator, it focuses on the upsampling method with
the fractionally-strided convolutions [1] to produce high-dimensional instances.
This is because the original noise input is usually a low-dimensional vector.
As we will explain in the following paragraph, the fractionally-strided con-
volutions are not suitable for SEGAN, and a new design is required.

First of all, it is not necessary to increase the size of the input in each
layer of the generated network since the size of the input, i.e., sketches, is
already the same as that of the raw data. Moreover, to increase the size of
original noises, the fractionally-strided convolution at each layer interpolates
zeros among the elements of its input. If the fractionally-strided convolution
is applied on the sketch, the basis features in the sketch may be contaminated
by the zero values. Therefore, to transform a sketch into a synthetic instance,
the generator should better only focus on editing the content of the sketch.

To this end, the new generator relies on the standard convolution method
[11] to support the editing operation on sketches, which is in line with that
of convolving a normal picture. Because the size of the sketch decreases after
the convolution, the padding function is needed to pad the margin of the
sketch with zero values for maintaining the size of the sketch as that of the
raw data. Moreover, to minimize the negative impact of padding on the
sketch, the number of both rows and columns to be padded to the margin
is limited to one, which can be realized by carefully designing kernel size,
stride and padding in the convolution. Note that for editing the sketch into
a synthetic instance, we also need more than one layer of convolution to be
consistent with the convention of deep learning. Here, the configuration of
the convolution of each layer is the same to keep invariance of the size of
input and output of each layer.
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DCGAN SEGAN

1 Using fractionally-strided convo-
lutions.

Using standard convolutions.

2 Using Tanh activation function in
the output.

Using Sigmoid activation func-
tion in the same layer.

3 The numbers of stride and
kernel size are not fixed within
each layer, because of interpola-
tion.

The numbers of stride and
kernel size are fixed within each
layer for keeping the invariance of
the shape and size of sketch.

Table 1: Comparison between DCGAN’s generator and SEGAN’s generator.

The ReLU activation function has been adopted in the new generator
because it is beneficial for not only capturing the non-linear concept but also
keeping the non-negativity of the generated data after each convolution layer.
Besides, the last layer for the traditional generator always adopts the Tanh
function [25] for covering the color space of the training dataset [1], while
the generator of SEGAN adopts the traditional Sigmoid function [16] due
to its non-negativity. Since the generator of DCGAN is widely adopted in
other GAN variants such as BEGAN[5], EBGAN [46], WGAN [3], LSGAN
[26] and DeLiGAN [14], it becomes the de facto standard for designing the
generator. In Table. 1, the generator of SEGAN is compared with that of
DCGAN in terms of the convolution operation, activation function and the
key parameters of the convolution.

4.4. The Algorithm

With the proposed sketches and the customized generator, the architec-
ture of SEGAN is shown in Fig. 2. We use RGB images as the illustration.
The architecture is the same as a typical GAN model except for how the
noise inputs are sampled. Note that we directly employ an existing design
of the discriminator, e.g., DCGAN’s discriminator, since the output of the
generator has not been changed. In this way, the formula of SEGAN is shown
as follows.

min
G

max
D

V (G,D) = Ex∼pr(x)[logD(x)]

+ EWz∼pWz(Wz)[log(1−D(G(Wz)))]
(4)
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where W is the basis matrix factorized by NMF and it represents the fea-
tures of raw data X. z comes from an easy-to-sample noise distribution,
e.g., pz(z) = U(0, 1). pWz(Wz) jointly forms a new sampling space through
multiplying W by z, and SEGAN transforms Wz from this new space into
the raw data space X . According to the Radon-Nikodym theorem (it is also
known as law of the unconscious statistician) [28] [15], we can derive the
following equation.

EWz∼pWz(Wz)[log(1−D(G(Wz)))] = Ex∼pG(x)[log(1−D(x))]

where such a transformation facilitates the deduction of the optimal discrim-
inator (i.e., D∗(x) = pr(x)

pr(x)+pG(x)
). More detailed deductions can be found

in the original GAN paper [13]. Since the basis matrix W usually follows
the Exponential distribution [6], such that Wz also follows the Exponential
distribution.

Theorem 1. Let W be a basis matrix and it is drawn from the original
data with NMF. Let the noise code z be a low-dimensional vector and it
comes from the uniform distribution with (0, 1). Then, the combination
of Wz jointly forms a new distribution, and this new distribution follows
Exponential distribution.

Proof. Let Sketch = Wz and we term Sketch as S, i.e., S = Wz. Then,
the corresponding function is F (S), so we get:

F (S) = P (S 6 s) = P (UW 6 s) = P (W 6
s

U
)

=

∫ 1

0

P (W 6
s

u
)fU(u)du

=

∫ 1

0

∫ s
u

0

λe−λwdwdu

=

∫ ∞
s

λe−λw
s

w
dw +

∫ s

0

λe−λwdw

= λe−λs

∫ ∞
s

1

w
e−wdw +

∫ s

0

λe−λwdw

= 1− e−λs

(5)

This shows that the proposed SEGAN still performs distribution transfor-
mation. Different from the vanilla GAN, it usually transforms the Gaussian
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or Uniform into original data distribution, SEGAN transforms the Exponen-
tial into original data distribution. Then, we explain how to address the
gradients vanishing problem durning training.

Study [2] has shown that if the dimension of the randomized space is
less than that of raw data space X , G(z) will be a measure 0 in X , which
causes pr and pG having a negligible overlapping area, resulting in gradients
vanishing. In SEGAN, the randomized space is formed by Wz where W is
factorized from raw data X. Thus, the dimension of Wz is no longer less
than that of X . In this way, pr and pG have a non-negligible overlapping
area, rendering that JS divergence works during training. We now state this
properly in the following Theorem.

Theorem 2. Let G: Wz → X be a function composed by affine trans-
formation, e.g., rectifiers or sigmoid. Then, the dimension of G(Wz) is no
longer less than that of X . Therefore, G(Wz) does not have a measure 0 in
X .

Proof. In SEGAN, pG is defined via sampling from pWz(Wz) in which
the raw data X (X ∈ Rp×n) is factorized into a basis matrix W (W ∈ Rp×r)
and an representation matrix H (h ∈ Rr×n). Moreover, we set sketch = Wz
where z (z ∈ Rr×1) is still from a simple, easy-to-sample distribution pz(z)
(i.e., Uniform distribution) which is independent of pr(x). Note that we
normalize the raw images into into the range of [0, 1] in the preprocess stage.
In this way, the range of elements within H falls into such a specific range.
When we repeatedly sample noise code z from the Uniform with [0, 1] and
perform Wz operation during training, the sketches at least approach a raw
data sample. Under such a scenario, the dimension of Wz is no less than
that of X. Moreover, the details of our designed G are made up with Conv
and Relu, and such a combination does not reduce the dimension of Wz.
Considering such a case, G(Wz) = DnAn...D1A1Wz where Ai indicates the
activation function (i.e., Relu) and Di indicates the Conv. Conv operation
extracts the linear information while Relu function extracts the non-linear
information. With that, these chunks (i.e., DiAi) focus on editing the sketch
rather than changing the dimension of Wz. Hence, G(Wz) keeps the same
dimension as X. Since the dimension of G(Wz) is no longer less than that of
X in the space, G(Wz) has a non-zero measure in X . Under this case, pr and
pG hold a non-negligible overlapping area, avoiding the gradients vanishing.

We present the pseudo-codes of the algorithm for training SEGAN in
Algorithm 1. In Algorithm 1, SEGAN still plays the minimax game in
a spirit to the vanilla GAN, and it has a global optimum on pG = pr. The
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Algorithm 1 Sketch-then-Edit GAN.

Input:
Raw dataset;
noise z, pz(z);
r for the basis matrix W in NMF.

Output:
Synthetic data.

Creating sketches by using NMF to factorize the real dataset to get the basis
matrix W and adopting Adam optimizer to update the parameters of the model.
for number of iterations do
• Sampling minibatch of m noise samples z1, ..., zm from Uniform distri-

bution with (0,1).

• Creating minibatch of m sketches s1, ..., sm using Eq.(3).

• Sampling minibatch of m original samples x1, ...xm from the real
dataset.

• Updating the discriminator’s parameters by ascending its stochastic
gradient.

• 5θD
1
m

∑m
1 {logD(x(i)) + log(1−D(G(s(i))))}.

• Sampling minibatch of m noise samples z1, ..., zm and creating mini-
batch of m sketches s1, ..., sm.

• Updating the generator’s parameters by descending its stochastic gra-
dient.

• 5θD
1
m

∑m
1 {log(1−D(G(s(i)))}.

end for

optimal discriminator D is:

D∗G(x) =
pr(x)

pr(x) + pG(x)
(6)

We substitute Eq.(6) into Eq.(4) to deduce the optimal G, and we get:
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C(G) = max
D

V (G,D) = −2log2 + 2JSD(pr(x)||pG(x)) (7)

We refer the proofs for optimal D and G to Eq.(6) and Eq.(7) in study
[13]. In this way, the global optimality for D and G is achieved if and only
if pG = pr, and the optimality of D is 1

2
and that of G is -2log2 respectively.

5. Empirical Evaluation

5.1. Experiment settings

Four recent GAN variants are employed as baselines, which are DCGAN
[1], WGAN [3], LSGAN [26] and DeLiGAN [14]. To make a fair com-
parison, the standard Uniform distribution is employed as the original noise
distribution for all the models except that a Mixture of Gaussian distribu-
tions are for DeliGAN as required. For training all the GAN models, the
batch size of is set as 20. For SEGAN, we set r, the number of basis features
in NMF, as the number of categories of the studied datasets according to the
literature of NMF [48] if no other values are specified. Note that all models
are achieved by PYTORCH framework.

Four commonly used public image datasets, the MNIST, CIFAR-10, SVHN
and Celeba, are studied. The MNIST dataset contains 50000 gray-scale im-
ages with size 28 × 28. CIFAR-10, SVHN and Celeba datasets contain RGB
images. The number of images in the CIFAR-10 and SVHN is 50000 and
the size is 3 × 32 × 32. The number of images in the Celeba is 202599
and the size is 3 × 178 × 218. The MNIST, CIFAR-10 and SVHN datasets
belong to labeled datasets and each of them consists of 10 categories. The
Celeba dataset is a face dataset, and it has no explicit categories because of
containing the face images only. Nevertheless, the Celeba dataset has been
labeled with the specific characters (e.g., wearing hat or not, wavy hair or
bangs). One thus can group Celeba images depending on their preferences.
Here, we also assume that there are 10 categories.

5.2. Generation Performance Comparison

In the experiments, the training has been set to the same number of
epochs for all models (e.g., Epoch = 10 for the MNIST dataset and Epoch =
30 for the CIFAR10, SVHN and Celeba datasets) and the dimension of a
noise input z for these GAN variants is set to 100. For SEGAN, we use the
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Adam gradient method [18] and BCE [19] to update the parameters of both
components. We set the parameter of LeakyRelu [40] as 0.02 and that of
Dropout [32] as 0.5. The activation of last layer for the generator and the
discriminator is Sigmoid [16]. The generated images are shown in Fig. 3. In
Fig. 3, the generated images on the top (sub-figures (a) - (e)) are based on
the MNIST dataset, the images on the second row (sub-figures (f)-(j)) are
based on the CIFAR10 dataset, and the third row (sub-figures (k)-(o)) are
based on SVHN dataset, the bottom images (sub-figures (p)-(t)) are based
on the Celeba dataset. For each dataset, the first four images (sub-figures (a)
- (d), (f) - (i), (k) - (n) and (p)-(s)) are from the baselines, and the last one
(sub-figures (e), (j), (o) and (t)) is generated by SEGAN. Furthermore, the
MNIST Scores and the SVHN Scores [17], similar to the Inceptions Score [4]
(the higher the better), obtained by our proposed SEGAN and baselines are
shown in Table.2. By comparison, we can see that SEGAN shows obviously
better performance than baselines.

Figure 3: Generated images by baselines and SEGAN.
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Models MNIST Scores Inception Scores SVHN Scores

DCGAN 4.94 3.04 1.76
WGAN 4.87 2.50 1.79
LSGAN 5.10 1.92 1.80
DeLiGAN 5.12 1.64 1.84
SEGAN 5.54 3.23 1.90

Table 2: MNIST scores, Inception scores and SVHN scores obtained from baselines and
SEGAN on MNIST, CIFAR10 and SVHN generated images shown in Fig.3

5.3. Addressing the Vanishing Gradient Problem

Now we empirically illustrate how well SEGAN tackles the vanishing
gradient problem. We have known that the vanishing gradient problem is
the consequence of a negligible overlapping area between pr and pG and a
constant JS divergence for measuring the difference between the two distri-
butions. Instead of replacing the difference measure, SEGAN innovatively
creates the new noise input (i.e., sketch) which lies in the raw data space
to guarantee a non-negligible overlapping area between pr and pG. For val-
idating this point, we plot the distributions of the raw data and the gener-
ated data to observe the overlapping area on the MNIST dataset (two other
datasets display a similar result and are thus omit). The overlapping area at
different epochs is shown in Fig. 4. Sub-figure (a) shows that the generating
distribution of SEGAN has a non-negligible overlapping area with the raw
data distribution at Epoch = 1 while the other two have a negligible over-
lapping area with the raw data distribution (we omit WGAN for the sake
of clearance because the generating distribution of WGAN has no essential
difference from that of DCGAN). At Epoch = 10, sub-figure (b) shows that
the generating distribution of SEGAN has the largest overlapping area with
the raw data distribution. Hence, the claim that a non-negligible overlapping
area can be guaranteed by transforming noises from a randomized space into
the raw data space has been validated.

Moreover, we directly examine the gradients during the training, and
present the values of gradients at different iterations in Fig. 4(c). It shows
that the gradients of SEGAN are sufficient larger than zero even at the
initial iterations while these of baselines are close to zero. For baselines, the
gradients vanish because the generating distribution does not overlap the raw
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data distribution in the initial stage and the discriminator can easily reach
the optimal state [2].

(a) (b) (c)

Figure 4: Sub-figures (a) and (b) indicate the overlapping area between pr and pG at
Epoch = 1 and Epoch = 10 respectively. The blue line indicates the raw data distribution,
and other lines indicate the generated data distributions. Sub-figure (c) indicates the
gradients produced by the SEGAN and baselines.

5.4. The Influence of r on SEGAN

Note that the value r for the basis matrix in NMF has been set to 10
in previous experiments. And we have discussed in Section 4 the influence
of different values of r on SEGAN. Here, we empirically study the influence
by setting different values of r and examining the generated images on the
MINST dataset (other two datasets show similar patterns). Six different
values, which are 1, 2, 5, 10, 30, and 50, are selected and studied, and the
corresponding generated images are presented in Fig. 5.

We see that the diversity of the generated images is poor when r takes
small values (e.g., 1, 2). This is because when the number of basis features
is small, the sketches which are the combinations of basis features tend to
be similar. When r takes large values (e.g., 30 and 50), the quality of the
generated images is poor. This is because the basis features may be too
fine-grained and contain individual pixels of the raw data, which means that
the sketches may be essentially not different from the original noises. Fig.6
shows the influence of different r on the generated data quality. In addition,
we also present the basis features when r takes 5, 10 and 50 in Fig. 7 to
visually demonstrate our hypothesis. We can see that each basis feature
in Fig. 7 (a) and (b) corresponds to a salient feature of a digit, which is
the expected result. But each basis feature in Fig. 7 (c) looks like trivial
information. Moreover, it seems that there are many identical basis features
(e.g., the first three rows). Therefore, many generated images may also be
identical as shown in Fig. 5 (f). According to the study, we also recommend
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that r should take a value around the number of categories of the given data
as in the NMF literature. If the value of r is far away from the number of
categories, the quality of generated data is not good as shown in Fig. 5 (a)
(e) and (f).

(a) r=1 (c) r=5

(d) r=10 (e) r=30 (f) r=50 

(b) r=2

Figure 5: The value of r in basis matrix has been set as 1, 2, 5, 10, 30 and 50, respectively.
The six sub-figures are the corresponding results produced by SEGAN.

Figure 6: Different values of r have an influence on the generated data quality.
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Figure 7: Visualization of basis features when r = 5, r = 10 and r = 50, respectively,
where each grid contains a feature.

5.5. Efficiency Analysis

As discussed in Section 4.4, SEGAN needs more convolution operations
in generating a synthetic instance due to the increased size of an input. As
the same time, since an input, i.e., a sketch, already has salient features of
raw data, SEGAN needs less number of training epochs to reach the Nash
equilibrium. Note that it is not easy to quantitatively compare the added
computation costs and the reduced computation costs. This section thus
empirically studies the efficiency of SEGAN.

In particular, we examine the quality of generated images at different
epochs and compare the respective running time needed by SEGAN and
DCGAN (other baselines have similar efficiency with DCGAN since they
have the same generating mechanism). We study the MNIST and the Celeba
dataset, and present the generated images at different epochs in Fig. 8 and
Fig. 9, respectively. Through examining the quality of generated images,
we have two major observations. First, the quality of images at the initial
epoch of SEGAN is significantly better than DCGAN. We can see that the
images at Epoch=1 are just noises by DCGAN while the images by SEGAN
have meaningful outlines. Second, DCGAN needs several more epochs to
generate images of similar quality with SEGAN. For example, the quality of
the Celaba image at Epoch=10 by DCGAN is about similar to that of image
at Epoch=2 by SEGAN.

According to the observations above, it is unfair to compare the running
time of SEGAN with DCGAN if we assign the same number of epochs for the
training. Instead, we need to compare the running time with which SEGAN
and DCGAN generate images of similar quality. For example, we may com-
pare the running time of SEGAN after 2 epochs with that of DCGAN after
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10 epochs. For the MNIST dataset, the running time of SEGAN is about
0.32h and that of DCGAN is about 0.65h. For the Celaba dataset, the run-
ning time of SEGAN is 3.82h and that of DCGAN is 3.17h. In this sense,
the efficiency of SEGAN is comparable to that of DCGAN. For a complete
comparison, we still present the running time of SEGAN and DCGAN after
the same number of epochs. The number of epochs for the MINST dataset
and the Celeba dataset are set as 10 and 30, respectively, as studied in Fig. 3.
For the MNIST dataset, the running time of DCGAN approximates to 0.65h
while that of SEGAN nearly takes 1.59h. As for the Celeba dataset, the run-
ning time of DCGAN is about 3.17h while that of SEGAN approximates to
19.04h. Hence, we can see that the running time needed by SEGAN is only
several times larger than that needed by DCGAN. Note that all experiments
of this study are conducted on a Geforce 1080TI GPU.

DCGAN

Epoch=1 Epoch=2 Epoch=10

SEGAN

Epoch=1 Epoch=2 Epoch=10

Figure 8: The two sets of results show the quality of generated MINST images on different
training epochs by DCGAN and SEGAN, respectively. Apparently, SEGAN generates
images with higher quality than DCGAN at each epoch.

6. Conclusion

In this paper, to deal with the vanishing gradient problem from the per-
spective of the negligible overlapping area between the generating distribu-
tion and the raw data distribution, we propose the sketch-then-edit GAN
(SEGAN). The major novelty of SEGAN is the input into the generator
which is sketches instead of the original noises. In particular, each sketch is
a multiplication of two factors, the basis features W , which is drawn from
the raw data using the NMF method, and z, which is sampled from the
Uniform distribution with (0, 1). In this way, the sketch holds a similar dis-
tribution of the raw data such that a non-negligible overlapping area could
be guaranteed. In addition, for editing the sketch, we modify the generator
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Epoch=1 Epoch=2 Epoch=10

Epoch=1 Epoch=2 Epoch=10

DCGAN

SEGAN

Epoch=30

Epoch=30

Figure 9: The two sets of results show the quality of generated Celeba images on different
training epochs by DCGAN and SEGAN, respectively. Apparently, SEGAN generates
images with higher quality than DCGAN at each epoch.

by replacing the fractionally-strided convolutions with the standard convolu-
tions. We conducted extensive experiments with the MNIST, the CIFAR10,
the SVHN and the Celeba datasets to validate our proposed model. These
results show that our approach is effective.
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