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Abstract—LoRa has emerged as a promising Low-Power Wide
Area Network (LP-WAN) technology to connect a huge number
of Internet-of-Things (IoT) devices. The dense deployment and
an increasing number of IoT devices lead to intense collisions due
to uncoordinated transmissions. However, the current MAC/PHY
design of LoRaWAN fails to recover collisions, resulting in
degraded performance as the system scales. This paper presents
FTrack, a novel communication paradigm that enables demod-
ulation of collided LoRa transmissions. FTrack resolves LoRa
collisions at the physical layer and thereby supports parallel
decoding for LoRa transmissions. We propose a novel technique
to separate collided transmissions by jointly considering both the
time domain and the frequency domain features. The proposed
technique is motivated from two key observations: (1) the symbol
edges of the same frame exhibit periodic patterns, while the
symbol edges of different frames are usually misaligned in
time; (2) the frequency of LoRa signal increases continuously
in between the edges of symbol, yet exhibits sudden changes at
the symbol edges. We detect the continuity of signal frequency
to remove interference and further exploit the time-domain
information of symbol edges to recover symbols of all collided
frames. We substantially optimize computation-intensive tasks
and meet the real-time requirements of parallel LoRa decoding.
We implement FTrack on a low-cost software defined radio. Our
testbed evaluations show that FTrack demodulates collided LoRa
frames with low symbol error rates in diverse SNR conditions.
It increases the throughput of LoRaWAN in real usage scenarios
by up to 3 times.

I. INTRODUCTION

Recently, LoRa has emerged as a promising technology for
Low-Power Wide Area Networks (LP-WANs). Among many
LPWAN technologies (e.g., SigFox [1], NB-IoT [2]), LoRa
technology [3] has attracted wide attention due to its low cost,
long communication range, and supports from IoT industry
as well as open-source and research community. LoRaWAN
is an open-standard networking layer governed by the LoRa
Alliance [3], which has about 400 member companies includ-
ing Tencent, IBM, Cisco, Semtech, etc. LoRa employs a
variant of Chirp Spread Spectrum (CSS) modulation to support
several kilometers of wireless transmissions at very low power
consumption. The CSS modulation of LoRa is robust against
interference, noise, multi-path and Doppler effects. Such
characteristics make LoRaWAN a promising communication
technology for IoT innovations such as smart city, health care,
environment monitoring, warehouse management, etc.

When a LoRa node receives a packet, it first detects the
preamble, then searches for chirp boundaries (i.e., symbol
edges) and locates the chirp signal of each symbol to decode.
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The standard demodulation scheme dechirps the incoming
signals by multiplying with a down chirp, then performs FFT
on the multiplication, which produces a single FFT peak
indicating the symbol. The PHY technique of LoRa (i.e., CSS)
is inherently robust to interference and noise in the ISM band
(e.g., WiFi, RFID, etc.).

Although LoRa uses several PHY techniques for parallel
transmissions of multiple LoRa nodes, a high-end LoRa gate-
way can only support up to 8 LoRa nodes to transmit at
the same time [4]. It fails to meet the need of many IoT
applications which require dense deployment of LoRa devices
in practice. Constrained by the hardware capability and power
supply, LoRa nodes typically adopt a simple aloha-based MAC
for collision avoidance. As a result, collisions may occur
among LoRa nodes with the same PHY configuration. One
may configure LoRa nodes with different radio parameters
(e.g., channel, spreading factor, etc.) to mitigate collision, but
it requires cooperation among different operators and service
providers. A more effective method is to enable parallel de-
coding for LoRa transmissions without any extension to COTS
LoRa nodes or any coordination among the users. Ideally, a
LoRa node should be able to join on-going communications
in parallel with other nodes without specific coordination.

To enable parallel decoding for LoRa transmissions, prior
work (e.g., Choir [5]) exploits the frequency offset introduced
by the imperfection and diversity of LoRa nodes to separate
collided frames. The key idea is to classify the collided frames
according to the distinct frequency offset of each LoRa node
(e.g., carrier frequency). However, due to interference and
noise, it is difficult to accurately extract the hardware-induced
offset of carrier frequencies in practice. Moreover, the carrier
frequencies of LoRa nodes inevitably resemble each other as
the number of LoRa nodes increases. Consequently, Choir
may incorrectly classify collided frames and result in decoding
errors.

In this paper, we present FTrack, a parallel decoding scheme
for LoRa that resolves collision by jointly considering both
time and frequency domain features. We exploit an observation
that, as the airtime of a low-rate LoRa packet is much longer
than the packets in other wireless technologies (e.g., WiFi
and RFID), LoRa packets are more likely to be misaligned
and separated in the time domain. Due to the periodicity of
LoRa symbols, the symbols from the same frame share the
same pattern of edge misalignment in time. We leverage such
time-domain information to separate collided LoRa symbols.
In addition, we also leverage the fact that the chirp of a LoRa
symbol starts from an initial frequency and then increases
continuously along a fixed ‘track’ to sweep through the whole
LoRa bandwidth. The different arrival time of colliding frames
would result in timing offset and a corresponding shift in
frequency between collided symbols. Thus, chirps of collided
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Fig. 1. Collision of two LoRa transmissions. Red/blue dashed lines indicate the symbol edges of two LoRa transmissions.

symbols are also likely to exhibit as different tracks in the
frequency domain. We separate the frequency tracks of indi-
vidual chirps to recover collisions of all frames transmitted in
parallel.

Intuitively, the decoding process consists of the following
key steps. FTrack first detects the edges of LoRa symbols in
the time domain and groups the symbols according to different
LoRa nodes. Then, it iteratively demodulates and decodes the
symbols of each individual LoRa node. FTrack is orthogonal to
existing parallel decoding techniques for LoRa transmissions.
As long as the transmissions are interleaved with misaligned
symbol edges, LoRa nodes should be able to transmit concur-
rently even with the same parameter configuration in the same
channel.

Turning the idea into reality, however, entails tremendous
challenges. First, it is non-trivial to detect the symbol edges of
each individual transmission from collided signals and group
the symbol edges according to each LoRa node. To address
this problem, we leverage the fact that the preamble of a
LoRa node is known in advance, which allows us to extract
the symbol edges from collided signals by correlating the
known preamble with the collided signals. The correlation
peaks indicate the symbol edges in the preamble. The extracted
symbol edges, however, are interleaved in the time domain
due to collisions. As a LoRa preamble consists of repeated
base chirps, the signal frequency would increase continuously
across boundaries of all chirps associated with the preamble,
resulting in a long track of continuous frequency. As such,
we filter out any interfering chirps not belonging to the long
frequency track to extract a pure collision-free preamble. We
detect symbol edges from the extracted preamble and use
that timing information to accurately pinpoint the symbol
edges in its payload. Between the symbol edges corresponding
to the same LoRa node, the frequency of a LoRa chirp
should continuously increase, while the frequencies of other
coexisting chirps may exhibit sudden changes. We leverage
such a fact to filter out coexisting chirps and resolve collisions.
We iterate the above process until all chirps are correctly
associated with their corresponding nodes.

Another practical challenge arises from the requirements of
decoding concurrent transmissions in real-time. Our measure-
ment results show that the computation overhead of FTrack
is dominated by frequency track extraction which requires
to perform FFT on per-sample basis with a sliding window.
To avoid the costly FFTs, we leverage the overlapping of
PHY samples between successive windows to compute the
FFT of a new window by updating the FFT of the previous
window. Besides, we optimize edge detection by avoiding the
computation-intensive correlation operations. We use the spe-

cific frequency-time relationship of chirps in LoRa preamble to
extract the timing of symbol edges directly from the frequency
track of preamble.

We implement FTrack using software defined radios
(SDRs). To reduce the deployment cost, we employ low-cost
SDRs to collect PHY samples and run the proposed parallel
decoding scheme. We build a testbed of 20 LoRa nodes to
evaluate FTrack with a variety of transmission configurations.
Results show that FTrack decodes collided frames with low
symbol error rates in diverse SNRs. Compared with the
state-of-the-art schemes, FTrack improves the throughput of
LoRaWAN networks in real usage scenarios by up to 3 times.

II. BACKGROUND AND MOTIVATION

LoRa adopts Chirp Spread Spectrum (CSS) as the PHY
modulation scheme. Symbols are modulated as up-chirp sig-
nals whose frequencies increase linearly with time over a
predefined bandwidth. LoRa varies the initial frequency of an
up-chirp to modulate different data. Such a procedure can be
represented as follows.

S(t, fsym) = ej2π( k
2 t+f0)t · ej2πfsymt = C(t) · ej2πfsymt, (1)

where fsym denotes the initial frequency of the up-chirp
(i.e., encoded symbol). C(t) = ej2π( k

2 t+f0)t represents the
raw chirp signal (termed base chirp); f0 and k denote the
starting frequency and frequency increasing rate of the chirp,
respectively.

A LoRa receiver can demodulate an incoming chirp as fol-
lows. It first multiplies the received signal with the conjugate
of the base chirp denoted as C−1(t), performs a Fast Fourier
Transform (FFT) on the multiplication, and searches for power
peak in the FFT bins to demodulate symbol. The procedure
can be represented as follows

S(t, fsym) · C−1(t) = ej2πfsymt (2)

The FFT of ej2πfsymt produces one peak in the FFT bins, that
indicates the frequency component of fsym.

When multiple LoRa nodes transmit concurrently, their
signals add up at the receiver. Figure 1 presents the signal
received with USRP N210 when two LoRa nodes transmit
simultaneously. In the figure, we observe multiple chirps
overlapping in time, each of which corresponds to the symbol
of one transmitter. As a standard LoRa demodulator (Eq.(2))
searches for the maximum in FFT results, it cannot reliably
decode the collided signals. We aim to support parallel trans-
missions of multiple LoRa nodes and resolve collisions.

A recent work, Choir [5], exploits the frequency offset
(i.e., offset of carrier frequency) introduced by the hardware
imperfection and diversities of LoRa nodes to separate collided
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(a) Correlation detection on the preamble of the first transmission
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(b) Correlation detection on the preamble of the second transmis-
sion

Fig. 2. Edge detection on (a) collision-free and (b) colliding preambles, i.e.,
the preambles of the first and second transmissions in Fig.1. The correlation
peaks indicate the boundaries of base chirps, i.e., symbol edges.

frames. However, it is difficult to extract the frequency offset
of LoRa hardware in the presence of low SNR and inter-
packet collisions. More importantly, as the number of LoRa
nodes increases, the carrier frequencies of nodes are likely
to resemble each other. Solely relying on hardware-induced
frequency offsets may fail to differentiate LoRa nodes in
practice.

In this paper, we leverage the fact that the concurrent
transmissions of LoRa packets are likely to be misaligned in
time. Figure 1 illustrates the time misalignment of two collided
LoRa transmissions. A receiver can increase the sampling rate
to better differentiate the misaligned chirps in the time domain.
Besides, as the frequencies of LoRa chirps vary linearly with
time, the time misalignment of chirps leads to the corre-
sponding frequency offsets between the chirps. Thus, we can
separate collided chirps in both time and frequency domains.
We configure COTS LoRa nodes to transmit with the default
parameters (i.e., Spreading Factor=8, bandwidth=250kHz) and
use a low-cost receive-only SDR (e.g., RTL-SDR dongle) to
sample at a high rate (e.g., 1MS/s). The receiver chain will
decimate the received LoRa packets and produce 256 PHY
samples for each symbol. As the data rate of LoRa node is
low, the high sampling rates of SDRs provide sufficient time
resolution to separate misaligned chirps.

III. DESIGN

A. Detecting Symbol Edges

A LoRa receiver must accurately locate the boundaries of
a chirp (i.e., symbol edges) to demodulate the chirp. For ex-
ample, Fig. 3(a) illustrates three base chirps that start with the
same initial frequency f0. If the chirp boundary t0 is correctly
located, the initial frequency can be correctly measured as
f0 and the base chirp can be demodulated. However, if the
boundaries are located mistakenly with an offset of ∆t, where
t1 = t0 + ∆t, the measured initial frequency would become
f1 = f0 +∆f , leading to demodulation errors. The increasing
rate of chirp frequency k

2 = ∆f/∆t depends on the spreading
factor of LoRa modulation which remains constant during the
transmission of a packet.
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Fig. 3. Illustration of (a) preamble chirps, and (b) the corresponding frequency
tracks, i.e., normalize instantaneous frequency into the meta initial frequency
of chirps.

Intuitively, we detect chirp boundaries and calibrate the
frequency offset introduced by timing misalignment by lever-
aging our prior knowledge of LoRa preamble which is a
standard method in LoRa demodulation. We calculate the
correlation of received signals with a base chirp to detect
symbol edges. When we apply the method on a non-collided
preamble (e.g., the first preamble in Fig. 1), symbol edges
can be well identified by the correlation peaks as shown in
Fig. 2(a). However, when collision happens (e.g., the second
preamble in Fig. 1), the concurrent LoRa transmissions may
introduce interference as shown in Fig. 2(b). As such, a key
problem arises: how shall we detect symbol edges in the
presence of collisions?

1) Extracting interference-free preambles: To solve the
problem of inter-packet interference, we extract pure pream-
ble from collisions and then detect symbol edges with the
extracted interference-free preamble. The method is inspired
by the following observation. The frequency of a LoRa chirp
will start from an initial value (named meta initial frequency)
and increase linearly with time. All chirps in the preamble
have the same meta initial frequency (i.e., f0 in Fig. 3(a)), yet
those from the payload of LoRa frame do not. We exploit this
fact to detect LoRa preamble.

Ideally, the meta initial frequency of a LoRa chirp (i.e.,
f0) should be measured at the arrival time of the chirp (i.e.,
chirp boundary t0). Without knowing the exact boundary of
the chirp, we may obtain different initial frequency (e.g.,
f1) when measuring at different locations (e.g., t1) of the
chirp, as illustrated in Fig. 3(a). Indeed, f1 corresponds to
the instantaneous frequency of the chirp at the measuring
point, but not the meta initial frequency (i.e., f0). To deduce
f0, we leverage the relationship between chirp frequency and
time to remove the frequency deviation (i.e., ∆f ) induced
by time offset ∆t, as illustrated in Fig. 3(b). Doing so, we
normalize the time-varying frequency of chirps (e.g., f1) into
horizontal frequency lines, termed as frequency tracks, that
indicate the meta initial frequency of chirps, i.e., f0. With
such a normalization process, we can measure the meta initial
frequency at any time of a chirp.

We employ a sliding window on the received signals shown
in Fig. 1 to extract the normalized initial frequency of chirps.
As shown in Fig. 4(a), the normalized initial frequency of
each LoRa chirp corresponds to a horizontal high-power line
(i.e., frequency track). The long frequency tracks correspond
to LoRa preamble. Since the base chirps in preamble have
identical meta initial frequency, their frequency tracks form a
single long track as illustrated in Fig. 4(a). We exploit such a
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(a) The normalized initial frequencies (i.e., frequency tracks) of collided LoRa chirps

(b) Filtering out the interfering chirps (c) Reconstructing preamble from offset #3441 (d) Reconstructing preamble from offset #3641

Fig. 4. Extraction of collision-free preambles: (a) normalize LoRa chirps into meta initial frequency and transform colliding symbols into different frequency
tracks, (b) remove interfering symbols, and (c-d) use inverse operations (i.e., the inverse of frequency normalization, followed by an inverse FFT) to reconstruct
the second preamble.
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Fig. 5. The work flow of edge detection: symbol edges are detected from the
interference-free preamble.

property to detect LoRa preambles.
From Fig. 4(a), we also observe that the preambles of

collided frames are separated into different frequency tracks.
The location of frequency track is determined by both the
meta initial frequency and the arrival time of a LoRa chirp (see
§III-C for detail). Therefore, although the chirps of two pream-
bles have the same meta initial frequency, collided preambles
will be separated into different tracks as long as their chirp
boundaries are interleaved in time. We exploit the property to
extract LoRa preamble from collisions. Specifically, we filter
out interference by setting the frequency tracks of interfering
chirps to zero while only keeping the long frequency track as
shown in Fig. 4(b). As the extracted frequency track indicates
the normalized initial frequency of base chirps in preamble, we
employ an inverse operation to reconstruct a pure, interference-
free preamble, as shown in Fig. 4(c). We can reconstruct the
same preamble using a segment of the frequency track starting
from different offsets, as shown in Fig. 4(c) and (d). We then
perform correlation detection on the reconstructed preamble
to detect symbol edges. In this way, we can eliminate the
impact of collision and detect the symbol edges of concurrent
transmissions.

Fig. 5 summarizes the key steps of edge detecting. Firstly,
we measure the instantaneous frequency of chirps at any time
offset in Step 1. Step 2 normalizes the measured frequency
to chirps’ meta initial frequency (i.e., frequency tracks). In
Step 3, we check the length of frequency tracks to detect
preamble. We identify the frequency bin and arrival time
of each preamble. Step 4 uses the information to filter the
frequency tracks of interfering chirps. We extract interference-

free preambles in the frequency domain and convert to time
domain for edge detecting in Steps 5, and detect edges using
correlation in Step 6. The computational overhead mainly
stems from FFT operation and correlation detection. The time
complexity is O(n2), where n denotes the number of samples
in a chirp.

2) Optimizing edge detection: In the edge detection process
(Step 4–6), the FFT operation and the correlation detection
dominate the computational overhead. In order to support real-
time parallel decoding of LoRa transmissions, we propose an
optimization to avoid the costly the FFT operation and the
correlation detection by leveraging our prior knowledge of
chirps in LoRa preamble.

Our optimized method of edge detection leverages the fact
that the instantaneous frequency of a chirp increases linearly
with time. Once the frequency track of a preamble has been
identified (i.e., freq. bin # in Step 3 of Fig. 5), we can employ
an inverse operation of frequency normalization to extract
the instantaneous frequency (say f1) of chirp at a particular
time offset t1. Then we determine symbol edge based on the
frequency-time relationship of LoRa chirp f1−f0 = k

2 (t1−t0),
as illustrated in Fig. 3(a), where t0 is the edge and f0 the initial
frequency of preamble chirp. As f1 and t1 have been obtained,
while f0 and k (i.e., frequency increasing rate) are known
based on our prior knowledge of preamble, we can directly
extract t0, i.e., the timing of symbol edge, from the frequency
track of preamble. This optimized edge detection method
avoids the computation-intensive correlation operation.

B. Demodulating Symbols

To demodulate symbols in the payload of a LoRa frame,
we need to first locate the chirp of each symbol. We leverage
the timing information of symbol edges detected from a
LoRa preamble to deduce symbol edges in the payload. We
refer to the signals located between two symbol edges as
a demodulation window. Ideally, when there is no collision,
there will be only one complete chirp (i.e., target symbol)
in a demodulation window, as illustrated in Fig. 6(a). We can
demodulate the chirp using the standard procedure presented in
§II, which will produce a single FFT peak as illustrated in Fig.
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Fig. 6. Symbol demodulation: (a) locate a target chirp within a demodulation
window, (b) a target chirp and an interfering chirp within the same demodula-
tion window due to collisions, (c) filter out the interfering chirp by detecting
frequency continuity.
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Fig. 7. Demodulation with interference: the target chirp can be demodulated
incorrectly due to interference.
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Fig. 8. Successive interfering chirps carry identical data. We filter interference
by leveraging timing information.

7(a). However, when collision happens, chirps of interfering
transmissions would also appear in the demodulation window,
as shown in Fig. 6(b). Directly applying the standard algorithm
to demodulate the collided chirps will produce multiple FFT
peaks, as shown in Fig. 7(b), where the highest peak may not
correspond to the target symbol. Therefore, how to correctly
demodulate the target symbol in the presence of collisions
becomes a key issue.

Our solution separates the target symbol from collisions
by jointly exploiting the frequency-domain and time-domain
features of concurrent LoRa transmissions. We find that the
frequency of the target chirp changes continuously in the
demodulation window, as there is only one chirp of the target
symbol in the window. Whereas for interfering symbols, as
their symbol edges are misaligned with the demodulation win-
dow of the target symbol, the window spans across two chirps.
Since the second chirp may change its initial frequency to
modulate a different symbol, it will result in a sudden change
of chirp frequency. Based on this observation, we examine the
continuity of frequency tracks to filter out interfering symbols
in each demodulation window. As illustrated in Fig. 6(c), the
normalized initial frequency of interfering symbols will switch
to a different track. In contrast, the target symbol produces
a single complete frequency track that spans over the whole
window. A complete frequency track within the demodulation
window indicates the initial frequency (i.e., encoded data) of
the target symbol.

In case that two successive chirps of an interfering node
carry the same data, the corresponding frequency tracks exhibit
no sudden changes within a demodulation window, as shown
in Fig. 8. To address this problem, we may look into a longer
window (e.g., two or more symbols). As illustrated in Fig. 8,
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Fig. 9. Frequency estimation with different PHY Wins (the FFT Win is
256). (a-c): Spectrogram of preamble chirps; (d-f): Width of the FFT peak of
original signal; (g-i): Width of the FFT peak of dechirped signal.

for the target symbol, the frequency track’s starting and ending
points are located at the target symbol edges. In contrast, the
starting and ending points of the interfering chirps are not
located at the symbol edges. We can filter out the interference
by checking the starting and ending points of frequency tracks
against the target symbol edges.

C. Frequency Track in Practice

Frequency track plays important roles in collision resolving:
Firstly, it separates colliding symbols into different tracks,
indicating different meta initial frequencies. We exploit this
property for collision recovery. Secondly, we can directly
demodulate symbols from frequency tracks because data are
encoded by the meta initial frequency of LoRa chirps (§II). In
this subsection, we describe how to extract frequency tracks
from received signals.

1) Considerations of method design: The signal of a LoRa
chirp is represented by S(t, fsym) in Eq. (1). Based on Eq.
(1), we can formally represent the frequency track of chirp
S(t, fsym) as follows

Ftrack(fsym) = ej2πfsymt, (3)

where fsym is the meta initial frequency of the chirp. To
extract frequency track from the received signal of a LoRa
chirp, one approach is to measure the instantaneous frequency
of the chirp and subtract a frequency deviation ∆f from the
instantaneous frequency, as illustrated in Fig. 3(b). In order
to measure the instantaneous frequency, we can use the short-
time Fourier transform (STFT) to analyze the changing spectra
of signal over time (i.e., spectrogram of signal). However, such
a method only provides a coarse-grained estimate of chirp
frequency, which cannot precisely identify the frequency track
(i.e., meta initial frequency) of LoRa chirp.

As STFT takes PHY samples from received signal with a
PHY Win to analyze the frequency components, the size of
PHY Win affects the resolution of frequency estimation. Fig.
9(a-c) present the resulting spectrograms of the same signal
with different configurations of PHY Win. Comparing Fig. 9(b)
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Fig. 10. Illustration of chirp signals in a PHY Win.

and (c), we see that the measured frequency of chirps become
narrower with a smaller PHY Win of 32, because a smaller
PHY Win would contain PHY samples with less time-varying
frequencies. Yet, the chirps do not become thinner as PHY Win
further decreases from 32 to 8 (see Fig. 9(a) and (b)). The
reason is that, when PHY Win is too short, STFT must pad
a number of zeros to the PHY samples before FFT analysis,
which will produce a wide main-lobe and many sinc side-
lobes between two main chirps, as shown in Fig. 9(a). As
displayed in Fig. 9(d-f), even with the finest configuration for
spectrogram (i.e., PHY Win=32), the width of obtained chirp
frequency would still span tens of FFT bins, which does not
provide sufficient resolution to precisely locate the frequency
track of the chirp.

We aim to extract narrow frequency tracks that can precisely
indicate the meta initial frequencies of LoRa chirps. As we
mentioned, due to the CSS modulation scheme of LoRa,
signals in a period of ∆t would sweep a frequency width
of ∆f (see Fig. 3(a)). The time-varying frequencies of chirp
within PHY Win prevent spectrogram from producing narrow
frequency tracks. To solve the problem, we dechirp the signal
in PHY Win by multiplying with a down chirp (i.e., C−1(t),
see Eq. (2)). Fig.s 9(g-i) present the FFT of the signal samples
in PHY Win after being dechirped. The resulting FFT peaks
become narrower and can precisely pinpoint the frequency
of corresponding chirps shown in Fig. 9(d-f). Besides, the
width of FFT peak becomes thinner as PHY Win increases,
because the window includes more PHY samples with the same
meta initial frequency. In particular, when PHY Win=256, i.e.,
containing the samples of a whole chirp, the resulting peak
width can reach the resolution of one FFT bin, as shown in
Fig. 9(i).

2) Extracting frequency tracks: Our approach of frequency
track extraction involves three key steps: Firstly, we dechirp
the signal samples in PHY Win and perform FFT on dechriped
signals to measure the instantaneous frequency of chirps at a
given time offset. Secondly, we normalize the instantaneous
frequency measured at different offsets by subtracting the
corresponding frequency deviation. Finally, we move PHY Win
to the next PHY sample of received signals and repeat the
above two steps. We describe the approach in details in the
following.

Suppose that n LoRa nodes transmit simultaneously. Let
X(t) denote the signal received by a LoRa device and xi(t)
denote the signal from node i, i.e., X(t) =

∑n
i=1 xi(t). We

focus on the signal of one transmitter (i.e., xi(t) of node i) in
the following. In particular, we configure the length of PHY
Win to T , i.e., the duration of a LoRa chirp. Let tw denote
the offset position of PHY Win in X(t). A PHY Win generally
spans two LoRa symbols as illustrated in Fig. 10, where the
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Fig. 11. Steps of extracting frequency tracks: (a) spectrogram of received
signals (the preamble part), (b-c) dechirp the signal in PHY Win (FFT of
dechirped signals at #660 and #760), (d) slide PHY Win across all samples
(the frequency of dechirped signal vs. offsets of PHY Win), (e) remove the
frequency deviation induced by tw (i.e., the time offset of PHY Win) to
produce the normalized frequency of LoRa chirps, i.e., frequency tracks.

starting edges of the two symbols are represented by t1 and
t1 +T , respectively. We denote the offset between t1 and PHY
Win by ∆t, i.e., ∆t = tw− t1. Specifically, 0 ≤ ∆t < T (note
that when ∆t = 0, only the first symbol is included in PHY
Win, which is a special case). Let t denote the relative time of
chirp signals within PHY Win, i.e., 0 ≤ t < T . As illustrated
in Fig. 10, signals in PHY Win are composed of two segments
from the first and the second symbols, respectively. Based on
Eq. (1), we can denote the first segment of signal in PHY Win
as

xi(t) = hi · S(t + ∆t, f1), t ∈ [0, T −∆t) (4)

where f1 represents the initial frequency of the first chirp. hi
is a complex value representing amplitude and phase changes
on the wireless channel between the LoRa transmitter and the
receiver.

According to the CSS modulation, a time shift of ∆t in chirp
signals would result in a frequency offset of ∆f = k

2 ∆t as
illustrated in Fig. 3(a). Therefore, Eq. (4) can be transformed
as follows

xi(t) = hi · S(t, f1 +
k

2
∆t), t ∈ [0, T −∆t) (5)

Similarly, the second segment of signal in PHY Win can be
represented by

xi(t) = hi · S(t− (T −∆t), f2)
⇔ xi(t) = hi · S(t, f2 − k

2 (T −∆t)), t ∈ [T −∆t, T )
(6)

where f2 represents the initial frequency of the second symbol
chirp. For conciseness, we focus on the first segment in the
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following. Similar results can be obtained for the second
segment.

We dechirp xi(t) in Eq. (5) by multiplying a standard down
chirp (i.e., C−1(t)) as follows

xi(t) · C−1(t) = hi · ej2π( k
2 ∆t)t︸ ︷︷ ︸

Offset of PHY Win

· ej2πf1t︸ ︷︷ ︸
Initial freq.

, t ∈ [0, T −∆t)

(7)
The FFT of Eq. (7) produces a peak at f1 + k

2 ∆t, which
corresponds to the frequency of the first chirp with time shift
∆t, i.e., instantaneous frequency of the chirp in PHY Win.
Fig. 11(d) presents the FFT of dechirped signals when PHY
Win slides across the PHY samples of chirps shown in Fig.
11(a). It produces thin bright lines that precisely indicate the
instantaneous frequency of chirps.

Lastly, we normalize the instantaneous frequency of chirps
to extract frequency tracks. We need to subtract ∆f = k

2 ∆t
from the resulting frequency of the dechirped signal in Eq.
(7), i.e., f1 + k

2 ∆t. Note that ∆t = tw − t1, where t1 denotes
the starting edge of symbol chirp f1. As t1 is not known, we
cannot directly remove ∆t from Eq. (7). Instead, we subtract
tw, i.e., the offset of PHY Win, from the second term of Eq.
(7) as follows

Fnorm(f1, t1) = hi · ej2π(− k
2 t1)t · ej2πf1t

= hi · Fedge(t1) · Ftrack(f1)
(8)

where Fnorm(f1, t1) represents the normalized frequency of
the first chirp in PHY Win, f1 and t1 are the meta initial fre-
quency and arrival time of the chirp, respectively. Ftrack(f1)
denotes the ideal frequency track of the chirp, as defined in
Eq. (3). Fedge(t1) denotes the frequency shift induced by t1,
i.e., the arrival time (symbol edge) of the first chirp. Since
t1 is invariant as PHY Win slides across the signal samples,
Fedge(t1) is a constant.

Fig. 11(e) presents the normalized frequency of the
dechirped signals shown in Fig. 11(d). Note that, with Eq. (8),
we actually normalize the instantaneous frequency of chirp
signals into a different frequency track (i.e., Fnorm(f1, t1))
that shifts from the ideal frequency track (i.e., Ftrack(f1))
with a specific offset Fedge(t1). Since Fedge(t1), i.e., the fre-
quency offset between Ftrack(f1) and Fnorm(f1, t1), remains
constant across all symbols in the received signal, we can
employ Fnorm(f1, t1) to separate collided symbols in practice.
Moreover, as Fnorm(f1, t1) is determined by both the meta
initial frequency (f1) and arrival time (t1) of LoRa chirps,
collided symbols would be separated into different frequency
tracks as long as their edges (i.e., t1) are interleaved in time.

3) Optimizing for real-time processing: The basic method
of frequency track extraction needs to slide PHY Win across
all samples and perform FFT on a per-sample basis. Let Ns

denote the number of PHY samples and nfft the FFT window
size. The computational complexity is O(Nsnfft log(nfft)).
Notice that as we slide PHY Win on a per-sample basis, the
signal samples of a PHY Win overlap with that of the former
window. We leverage the similarity between the signal samples
of two PHY windows to optimize the computation efficiency
of sliding FFT.

Without loss of generality, we denote the signal samples of
PHY Win at time tw and tw+1 by Xw and Xw+1, respectively.

LoRa 
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LoRa 
Decoder
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Dechirp

Frequency 
Normalize

Preamble 
Extract

Edge 
Detect

1. Frequency track extraction
2. Frame 
identification

3. Iterative frame demodulation

Track 
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Symbol 
Demodulate

PHY signals long 
tracks
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frm #1: s1, s2, s3, …
frm #2: s1, s2, s3, …...

frame 
info.

FTrack

PHY symbols
DATA

user #1: ‘SenSys’
user #2: ‘LoRa’...

Fig. 12. The workflow of FTrack system. Long track and short track represent
the frequency tracks of LoRa preamble and payload symbol, respectively.

Xw = {x0, x1, · · · , xn−1} and Xw+1 = {x1, x2, · · · , xn}.
Xw overlaps with Xw+1 on samples x1, x2, · · · , xn−1. Sup-
pose that the FFT of Xw has been computed. We slide PHY
Win from Xw to Xw+1 and aim to obtain the FFT of samples
at the new window. Rather than performing another costly FFT
at Xw+1, we can exploit the data similarity between Xw+1 and
Xw, and directly derive the FFT of Xw+1 from the obtained
FFT results of Xw as below [6]:

FFTi(Xw+1) = (FFTi(Xw) + xn − x0)ej2πi/n, (9)

where FFTi(·) represents the i’th element of the FFT results,
i = 0, 1, · · · , n − 1. In Eq. (9), we can obtain the FFT of a
new window by updating the FFT of the previous window.

In the context of frequency track extraction, we dechirp and
normalize the chirp signals in PHY Win before performing
FFTs. We combine the dechirping and normalizing operations
(i.e., Eqs. (7) and (8)) into one step as below.

Fwnorm = Xw · C−1(t) · ej2π(− k
2 tw). (10)

Our goal is to get the FFT of Fw+1
norm from the FFT results of

Fwnorm. In order to apply the optimized method of sliding FFT
(i.e., Eq. (9)), we need to ensure that the elements of Fw+1

norm

overlap with those of Fwnorm.
Denote the n elements of C−1(t) as [c0, c1, · · · , cn−1]T .

Note that C−1(t) ·e−j2π k
2 (tw+1) = C−1(t+1) ·e−j2π k

2 tw . We
have C−1(t) · e−j2π k

2 (tw+1) = [c1, c2, · · · , cn−1, cn]T , where
cn = cn−1e

−j2π k
2 . Therefore, we can get the following.

Fw+1
norm = Xw+1 · C−1(t) · e−j2π k

2 (tw+1)

= Xw+1 · C−1(t + 1) · ej2π(− k
2 tw)

= [x1c1, x2c2, · · · , xn−1cn−1, xncn]T ej2π(− k
2 tw).

Recall that Fwnorm = [x0c0, x1c1, · · · , xn−1cn−1]T ej2π(− k
2 tw).

Fw+1
norm overlaps with Fwnorm on elements x1c1, x2c2, · · · ,

xn−1cn−1. Therefore, by applying Eq. (9), we obtain

FFTi(F
w+1
norm) = [FFTi(F

w
norm) + xncne

j2π(− k
2 tw)

−x0c0e
j2π(− k

2 tw)] · ej2πi/n.
(11)

This allows us to compute the FFT of Fw+1
norm from the obtained

FFT results of Fwnorm.We employ Eq. (11) to optimize the
computation of sliding FFT. It reduces the time complexity of
frequency track extraction to O(Nsnfft).

D. FTrack: Put It Together

Fig. 12 illustrates the general workflow of FTrack. Specifi-
cally, it involves the following key operations:

Frequency track extraction. FTrack first dechirps the
received signal with a sliding window. The collided symbols
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Fig. 13. Separating the collided signals of Fig. 1 into two LoRa frames: the frame structure and demodulated symbols of (a) the first and (b) second
transmission.

Fig. 14. Experiment equipment.

in each window are normalized into the initial frequency of
corresponding LoRa chirps (i.e., frequency track). The collided
signals are thus converted into a sequence of frequency tracks
for further processing.

Frame identification. FTrack extracts long frequency tracks
to separate preamble from collisions. It detects symbol edges
from the preamble and searches for sync words to identify
LoRa packets. The edges of payload symbols can then be
deduced from the symbol edges of preamble based on the
frame structure of LoRa packets.

Symbol demodulation. FTrack employs the detected sym-
bol edges of a specific preamble to locate the demodulation
window of each payload symbol associating with the pream-
ble. FTrack checks the continuity of frequency tracks, as well
as the timing information, in each window to filter interference
and demodulate symbol from the resulting frequency track of
target based on Eq. (8).

Iteration to decode parallel transmissions. FTrack iterates
to detect more preambles and demodulate concurrent LoRa
transmissions. As collided transmissions may have misaligned
symbol edges, they would have different sequences of payload
symbol. For example, when we apply FTrack to demodulate
the collided LoRa signals shown in Fig. 1, we can detect
two LoRa preambles (exhibiting as long frequency tracks),
as shown in Fig. 13. Thereafter, we separate the collided sym-
bols into two concurrent transmissions (i.e., frequency track
classifying) and demodulate symbols of each transmission.
FTrack removes a frequency track after demodulating symbol
corresponding to the frequency track, and outputs a sequence
of demodulated symbols for each LoRa transmission, as shown
in Fig. 13. A conventional LoRa decoder can be applied to
decode data from such symbols.
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Fig. 15. Demodulation with two-node collisions.

IV. EVALUATIONS

We implement and evaluate the system using software radio
base stations and commodity LoRa devices. For performance
evaluation, we use both high-end software defined radio (i.e.,
USRP N210) and low-cost receive-only software defined radio
(i.e., RTL-SDR dongle) as shown in Fig. 14(a). We develop
our own LoRa demodulator based on the GNU Radio library,
and implement FTrack in MATLAB to process PHY samples.
If not otherwise specified, we employ RTL-SDR dongles to
receive PHY samples at the 900 MHz bands. The USRP N210
is only used for performance evaluations.

The LoRa nodes are composed of Dragino LoRa shields [7],
which consist of HopeRF’s RFM96W transceiver module em-
bedded with the Semtech SX1276 chip, as shown in Fig. 14(b).
We connect the LoRa shield to Arduino Uno motherboard
to control SX1276 chip in packet transmission and reception.
The SX1276 chip operates at 915MHz with the bandwidth of
250kHz or 125kHz, depending on the configuration of LoRa
parameters. We note that radio broadcasting, RFID and P-
GSM-900 may also work in the 900MHz frequency band. The
measured noise floor is around -90dBm in our experiments.
By default, we set the spreading factor (SF), coding rate (CR)
and bandwidth (BW) of LoRa communication as 8, 4/5 and
250kHz, respectively. The sampling rate of RTL-SDR dongle
is 1 MS/s.

A. Parallel Demodulation

1) Basic performance: In the following experiment, we use
an RTL-SDR dongle as a receiver and three LoRa nodes as
transmitters in an indoor environment. To experiment with
varied colliding time, we configure one transmitter to send
beacons every 2 seconds. Upon receiving such beacons, the
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Fig. 16. In-depth study of FTrack performance: (a) CDF of the Symbol Error Rates (SERs); (b-d) Relationships between SERs and the normalized edge
offsets of colliding symbols: FTrack produces high SERs when colliding symbols are closely-aligned in time (i.e., with short edge offsets).
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Fig. 17. Relationship between the demodulation performance of FTrack and edge offsets of colliding symbols: (a) CDF of edge offsets in the collected
frames, (b-d) Demodulation performance when edge offsets are small (<10%), medium (10%–20%) and large (>20%), respectively.

other two LoRa nodes reply a 30-Byte data frame, which
consists of 61 payload symbols and lasts for about 80ms when
SF=8, BW=250kHz. Specifically, we configure the two LoRa
nodes to delay for a random period of time before transmission
with a maximum delay of 20ms (i.e., the air time of 20
symbols). The experiment setting can result in collisions at
different parts of packets (e.g., preambles, sync words and
payloads) as reported in [8]. We vary the transmission power
of LoRa nodes to evaluate demodulation performance across
three SNR regimes: low (<5dB), medium (5-20 dB) and
high (>20 dB). For each SNR regime, we collect 500 col-
liding frames and repeat the experiment 5 times. We compare
FTrack against GR LoRa (i.e., a standard LoRa demodulation
scheme) and Choir [5] which represents the state-of-the-art on
LoRa collision recovery.

Fig. 15 compares the average SERs of the three demodu-
lation schemes when two LoRa nodes transmit concurrently.
According to the experiment results, FTrack performs the
best and GR LoRa is the worst (SER > 80%) because
GR LoRa is not capable of recovering any collisions. Our
experimental study reveals that the hardware frequency offset
(i.e., the fractional part of chirp frequency) extracted by Choir
is not reliable to classify colliding symbols in practice. The
main reason is that along with the hardware imperfection,
various influencing factors (e.g., phase jitters, noise) may
cause variations in the measurement of fractional part of
carrier frequency. We also notice that the time offset between
a detection window and a symbol edge also influences the
measurement of fractional part of carrier frequency. As a
result, Choir suffers high symbol error rates (70%∼80%) in
our experiments. In contrast, FTrack can leverage the timing

misalignment to separate colliding symbols. It yields <10%
symbol error rates across all SNR regimes. The low symbol
error rates of FTrack can be corrected by standard error
correction schemes (e.g., Hamming code) adopted by current
LoRa nodes.

We present the CDF of SERs of FTrack in Fig. 16(a). As we
can see, FTrack achieves better performance in the high SNR
condition than in the low SNR condition. More importantly,
the performance of FTrack does not degrade dramatically even
in the low SNR condition. That is because FTrack can still
leverage the long transmission time of a LoRa packet to boost
the signal strength. In particular, 80% of the symbol error rates
are below 10% when SNR is high. Even in the medium and
low SNR conditions, nearly 70% of the collided frames are
demodulated with <10% SERs.

2) Impact of time offsets and SNR: We analyze the major
factors that may influence the performance of FTrack. Figures
16(b-d) examine the relationships between SERs and the
timing offsets of collided symbols. In each SNR regime, we
divide the demodulation results into three groups for analysis:
low SER (<0.1), medium SER (0.1∼0.2) and high SER
(>0.2). We observe that in the high-SNR condition, 100% of
high SERs and 50% of medium SERs appear when the edges
of colliding symbols are closer than 10% of a chirp duration,
as shown in Fig. 16(b). Similar results are observed in the
medium and low SNR cases, as shown in Fig.s 16(c,d). That
is because once the symbols are not separated in time with
sufficient margin, FTrack may not be able to separate such
edges, leading to incorrect symbol grouping and demodulating
results.

In practice, LoRa nodes may transmit packets in random
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Fig. 18. Impact of the Spreading Factor (SF) of LoRa PHY modulation,
BW=250kHz: (a) SERs under different SFs, (b) Demodulation results when
edge offsets are small (<10%).

time slots. Fig. 17(a) shows the edge offsets of collided sym-
bols in our collected traces, where edge offsets are normalized
in percentages of a chirp duration. As LoRa nodes transmit at
random time, the edge offsets of colliding symbols distribute
uniformly across the whole range of one chirp duration (i.e.,
length of a LoRa symbol). As we mentioned, FTrack may
fail to demodulate concurrent transmissions when the edge
offsets are short (e.g., <10% chirp duration), while FTrack
can successfully recover collisions in most other cases.

We examine the symbol error rates of demodulation when
the edge offsets of colliding symbols are small (<10%),
medium (10%∼20%) and large (>20%), respectively. By
comparing Fig.s 17(b-d), we see that FTrack achieves lower
SERs as the edge offsets of interfering symbols increases. For
instance, as shown in Fig. 17(b), when the edge offsets are
shorter than 10% chirp duration, nearly 40% of the results of
high-SNR (60% of medium-SNR and 80% of low-SNR) have
high or medium symbol error rates (i.e., SER>0.1, collisions
may not be recovered). This number decreases to lower than
5% when the edge offsets increases to 20%, as shown in Fig.
17(d). In this case, 80% of the results have SERs<0.05.

In addition, by increasing the SNR of received signals,
FTrack can produce better demodulation results. For example,
as shown in Fig.s 16(b) and (d), when the SNR is low, 82% of
low SERs are produced in the case that symbol edges are apart
farther than 20% of the symbol length; whereas the results
of low SER appear uniformly in all edge offset occasions
when SNR becomes high. Therefore, as the SNR increases,
FTrack may demodulate with low SERs even when the edges
of colliding symbols are closely located. This implies that we
can increase the transmission power of LoRa nodes for better
collision recovery performance.

3) Impact of LoRa packet configuration: The demodulation
performance of FTrack can be influenced by the symbol
duration of LoRa packets. Some parameters configure the
symbol duration of LoRa (e.g., Spreading Factor (SF) and
Bandwidth (BW)). In the following, we investigate the impact
of SF and BW on collision recovery performance. Unless
otherwise specified, we adopt the same experimental settings
as in §IV-A1. We only present the evaluation results of high-
SNR. The experiment results exhibit similar trends in both
medium-SNR and low-SNR regimes (not presented).

We set the Bandwidth of LoRa to 250kHz and study the
impact of Spreading Factor on demodulation performance. Fig.
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Fig. 19. Impact of LoRa Bandwidth (BW), SF=8: (a) SERs under different
BW settings, (b) Demodulation results when edge offsets are small (<10%).

18(a) presents the overall symbol error rates of FTrack with
varied SFs (e.g., SF=6, 8, and 10). We see that FTrack achieves
lower SERs with a larger SF. The average SER decreases
from 0.17 to 0.05 as SF increases from 6 to 10. In particular,
a larger SF facilitates collision recovery especially when the
edge offsets of interfering symbols are small, as shown in Fig.
18(b). When SF=6, only 20% of the collisions with small edge
offset can be correctly recovered (i.e., SER<0.1). This number
increases to 40% for SF=8 and around 70% for SF=10. That is
because when SF increases, a symbol takes a longer air time
[4], which helps FTrack separate collisions in time.

Next, Fig. 19 evaluates the demodulation performance of
FTrack with varied BWs. The Spreading Factor is fixed to 8.
The results show that FTrack performs better with a larger
BW. The average SER decreases from 0.21 to 0.07 as the
LoRa bandwidth increases from 62.5kHz to 500kHz. That is
because when the LoRa bandwidth increases, the frequency
gap between the symbols coexisting within a demodulation
window also increases, which helps the differentiation of
symbols in the frequency domain. As shown in Fig. 19(b),
when the edge offsets of colliding symbols are small, even
though it is hard to separate symbols in time, FTrack recovers
more collisions with larger BWs. For instance, less than 20%
collisions can be correctly recovered (i.e., SER<0.1) when
BW=62.5kHz. The number increases to about 45% when
BW=500kHz. However, we note that a larger BW comes at
the cost of an increased number of PHY samples and higher
computational overhead to process the PHY samples.

B. FTrack Capability

We examine the capability of FTrack on collision recovery
with an increasing number of colliding nodes. In this experi-
ment, we use the same configuration as in §IV-A1 and increase
the number of concurrent transmissions from 1 node to 10
nodes. We measure the PHY-layer symbol error rate (SER)
and the ratio of packets being correctly decoded (i.e., packet
reception ratio, PRR). As shown in Fig. 20, the demodulation
errors of FTrack increase as more nodes transmit in parallel.
For instance, the average SER is 7% when two nodes collide.
Yet it increases to 14% in the case of 10-node collisions. When
two nodes transmit concurrently, nearly 80% of the packets can
be successfully recovered. The packet reception ratio, however,
decreases as more nodes collide. When 10 nodes transmit in
parallel, although we cannot recover all packets, 58% of the
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Fig. 20. Performance of FTrack on decoding a varied number of parallel
transmissions.
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Fig. 21. Computational time of collision resolving with various number of
concurrent transmissions: (a) The overall time costs (in milliseconds), (b)
Anatomy of the time costs of FTrack: T1—time of frequency track extraction,
T2—frame identification (preamble & symbol edge detecting) and T0—others
(including symbol classifying & iterative frame demodulation).

packets can still be correctly decoded leading to a considerable
throughput gain.

C. Real Time Performance

In this experiment, we evaluate the time costs of collision
recovery. We record the computation time of Choir and FTrack
when running on a PC with the Intel Core i5 CPU processor.
Fig. 21(a) compares the overall computation time of collision
resolving under different number of concurrent transmissions.
Generally, the computational time of FTrack is shorter than
that of Choir. The decoding time increases proportionally with
the number of collided packets. As the data rates of LoRa
are much lower than other wireless technologies (e.g., WiFi,
RFID, cellular, etc.), it leaves sufficient time for LoRa base
stations to decode collisions.

Fig. 21(b) examines the effectiveness of proposed optimiza-
tions for FTrack, i.e., optimized edge detecting (§III-A) and
frequency track extraction (§III-C). We anatomize the time
costs of FTrack into three main parts: frequency track extrac-
tion (T1), edge detecting (T2) and others (T0). As we can see,
frequency track extraction dominates the computation time of
FTrack before optimizing. The optimized method significantly
reduces the time costs of frequency track extraction by one
order of magnitude, from hundreds of milliseconds to a few
tens of milliseconds. The time costs of edge detecting decrease
from milliseconds to micro-seconds (i.e., reduced by 1,000×).
The overall computation time is reduced by 50%∼60% with
the optimized designs of FTrack algorithm. In practice, we can
adopt more efficient hardware (e.g., multi-processor, FPGA,
ASIC) to further accelerate FTrack so as to meet the real-time
processing requirement.
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Fig. 22. Layout of a LoRaWAN testbed.
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Fig. 23. Performance of decoding concurrent transmissions in real-world
LoRaWAN network (SF=8, BW=250kHz).

D. Performance in Real Network

In the following, we evaluate how FTrack performs in
practice. We deploy the testbed LoRaWAN network within
our office building, as illustrated in Fig. 22. Each node senses
the environments (e.g., light, temperature, humidity, etc.) and
randomly selects a 200ms-slot to transmit data to a base
station. The payload is 30 Bytes, corresponding to about 80
PHY symbols (payloads + headers) and 80ms air time when
SF=8, BW=250kHz. The duty cycle of LoRa nodes are set to
10% for evaluation purpose. To reduce power consumption,
LoRa node can adopt a much lower duty cycle (e.g., <2%)
in real usage scenarios that results in lower traffic rates and
thus less severe collisions. In particular, the ordinary LoRa
nodes in our testbed can transmit in 8 uplink slots during
each data collection cycle (the rest two slots are reserved by
the LoRaWAN testbed to send control messages). We increase
the number of nodes from 1 to 20 to compare the scalability
of different approaches. We compare FTrack with GR LoRa
[9] and Choir [5]. We also compare the performance against
an Oracle scheme that is assumed to optimally schedule the
LoRa nodes such that no collision could happen.

Fig. 23(a) shows the network throughput of four approaches.
We see that the throughput of all approaches increase as
more nodes join the network, when the network size is small
(e.g., # of nodes≤4). However, the throughput of GR LoRa
and Choir saturate (around 80 symbols/sec) rapidly when
the network size increases to 4 nodes. That is because as
more nodes transmit concurrently, GR LoRa and Choir cannot
recover collisions among the nodes. Benefiting from a perfect
transmission schedule, Oracle yields the highest throughput
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that increases linearly with network size as the number of
nodes increases from 1 to 8. However, the Oracle reaches its
capacity limit (200 symbols/sec) when network size is 8. In
contrast, the throughput of FTrack further increases to 250
symbols/second as network size increases to 20 nodes, which
is about 3 times the throughput of Choir and GR LoRa. The
performance gain stems from FTrack’s capability of decoding
concurrent LoRa transmissions.

Fig. 23(b) presents the number of concurrent transmissions
with a varied number of LoRa nodes working in the low-duty
cycle mode. We see that when the network size exceeds 4,
nodes collide more frequently even if they work in the low-
duty cycle mode. As such, the performance of GR LoRa and
Choir starts to degrade when the number of nodes exceeds 4,
as shown in Fig. 23(a). As the network size further increases,
we observe more collisions: A median of 2 and a maximum of
5 nodes transmit concurrently at a slot when the network size
exceeds 16. In this case, FTrack achieves the highest network
throughput as it is able to recover collisions.

V. RELATED WORK

A variety of LP-WAN technologies [10], [11] have been
proposed to enable the fast-growing IoT applications. SigFox
[1] uses Ultra Narrow Band (UNB) technology combined
with DBPSK and GFSK modulation to support low-power
long-range communication in the ISM band. NB-IoT [2] and
LTE-M [12] are introduced by 3GPP. They use a subset of
the LTE standard, operate at licensed spectrum yet limit the
bandwidth to a single narrow-band of 200kHz. LoRa [3],
[11], like SigFox, works at license-free frequency band. It
employs Chirp Spread Spectrum (CSS) modulation to transmit
data, which is resilient to interference, multi-path fading and
Doppler effects. Such characteristics make LoRa a competitive
candidate for long-range low-cost IoT networks [13], [14]. We
focus on LoRa in this paper and refer the readers to [15]–[17]
for detailed comparisons of existing LP-WAN technologies.

There are some pioneer researches on LoRa and LoRaWAN
[18]. Early efforts have been devoted to the measurement study
[4], [19], [20] and performance analysis, such as transmission
air time [21], [22], power consumption [4], [23], [24], cover-
age [25], [26], etc. Based on these studies, some improvement
schemes [27]–[29] are introduced for better performance.
Although the LoRa PHY is proprietary, authors of [9] and
[30] employ reverse engineering to study the encoding and
decoding schemes of LoRa.

With respect to the limited capability of hardware, Lo-
RaWAN [3] adopts a simple ALOHA-based MAC for access
control. The limits of LoRaWAN MAC have been analytically
concluded in [31], [32]. [33] studies LoRa collisions via
simulation. [34] employs commodity devices to empirically
study the characteristic of LoRa collisions. More recently, [8]
presents an in-depth investigation of LoRa collisions within
actual running networks. To avoid collisions, some researchers
[35], [36] proposed new MAC designs that incorporate ad-
vanced scheduling schemes on top of LoRa. However, these
schemes would add higher complexity yet produce lower
efficiency in terms of network capacity and throughput.

The work most related to ours is Choir [5], which exploits
the frequency offsets introduced by LoRa hardware to separate
collisions. However, in practice, the extracted frequency offset
is not reliable to classify colliding symbols due to various
influencing factors (e.g., phase jitters, time offset).

Our work is inspired by the previous works of collision re-
covery and parallel decoding in various wireless systems (e.g.,
WiFi, RFID). ZigZag [37] decodes collisions by exploiting the
fact that the time offset of collided transmissions produces
some interference-free chunks. It extracts the interference-
free chunks and subtracts from collisions to separate each
individual transmission. BiGroup [38] examines the collision
states of concurrent transmissions of RFID tags, and iteratively
detects the state transitions of collided signals to decode tag
transmissions. LF-Backscatter [39] employs powerful RFID
readers to detect the interleaving signal edges with high
sampling rates and separate collided tag signals. More recently,
FlipTracer [40] and Hubble [41] support parallel decoding of
backscatter communications by leveraging both PHY and time
domain information. NetScatter [42] proposes a new coding
scheme that combines On-Off Keying and CSS to support
concurrent transmissions.

In addition to the collision recovery approach, some works
aim to avoid collisions, including MIMO [43]–[45], TDMA
[46], [47], collision-recovery methods [48], [49], and con-
structive interference [50], [51]. LoRa also supports orthogonal
communications by transmitting with different channels, band-
widths and spreading factors. However, even with orthogonal
parameter settings, transmission collisions may still happen as
the number of devices further increases, e.g., in scenarios like
urban and warehouse [8], [34]. Our work is complementary to
such collision avoidance schemes.

VI. DISCUSSIONS

Demodulating capacity and the gain. The demodulation
capacity of FTrack is not unbounded as the number of col-
liding nodes increases. If the edges of collided symbols are
aligned or closely-located, FTrack may not be able to separate
them in time. Besides, the configurations of LoRa transmis-
sion, such as spreading factor (SF) and bandwidth (BW),
also affect the demodulation performance. In fact, current
LoRaWAN supports concurrent transmission of packets using
orthogonal spreading factors which require careful configura-
tion and coordinations of LoRa nodes. However, due to lack of
coordination, some nodes may still collide if they choose the
same parameter settings especially in densely-populated LoRa
networks (e.g., an urban or warehouse scenario). As such, the
proposed collision recovery strategy can be complementary to
current LoRa network.

Accounting for SNR variations and the near-far prob-
lem. In practice, FTrack may fail to detect the frequency power
of weak transmitter (i.e., false negative error) or mistakenly
detect the power leaking from the main frequency of strong
transmitter as frequency track (i.e., false positive error). We
solve the problem by selecting thresholds for frequency track
detection dynamically based on the SNR conditions. More-
over, to handle the case that strong receptions of a nearby
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transmitter overwhelm the weak signals of far-away transmit-
ters (i.e., the near-far problem [52]), we can employ a method
similar to ZigZag [37] and successive interference cancellation
[53] to extract signals of comparable power strength. We apply
FTrack on the signals with similar power strength to detect
frequency tracks.

Combating the absence of LoRa configurations. Gen-
erally, the BW and SF configurations are chosen by LoRa
transmitter. A receiver may not know the configurations of
received frames. With FTrack, we can detect BW and SF from
a short segment of the received signals (e.g., ≤ 5 chirps).
We exploit the fact that chirps are transformed into horizontal
frequency tracks only if down-chirp C−1(t) is produced with
the correct BW and SF. One approach is to detect the existence
of frequency tracks by trying all BW-SF combinations. To
accelerate the process, we can process the PHY samples in
parallel with multiple threads, each of which is configured by
a particular pair of BW and SF.

Limitations. In practice, some LoRaWAN MAC protocols
schedule LoRa transmissions with CSMA or random slotting
mechanisms, which can lead to collisions in synchronized time
slots. As a result, the symbol edges of collided frames can be
aligned, which affects the capability of FTrack on collision
recovery. To address this problem, we can modify the MAC
protocols in practice to intentionally mis-align collided trans-
missions. Moreover, we can properly select the parameters
of LoRa communication (e.g., spreading factor, bandwidth,
transmission power, etc.) to maximize the capability of FTrack
in supporting more parallel transmissions.

VII. CONCLUSION

This paper presents FTrack, a practical strategy that resolves
LoRa collisions in both time and frequency domains. FTrack
jointly exploits the distinct frequency tracks and misaligned
edges of LoRa symbols to separate collisions. It enables a
novel communication paradigm that allows LoRa node to
join on-going communications in parallel without specific
coordination. We optimize FTrack for real-time decoding and
implement it on a low-cost SDR platform. We deploy an
indoor testbed to evaluate the performance of FTrack in
a variety of network settings. Results show that FTrack
recovers collided LoRa frames with low symbol error rates in
diverse SNR conditions. It can boost the throughput of real-
world LoRaWAN by up to 3 times. The parallel decoding
capability of FTrack can benefit the deployment of large-scale
LoRaWAN in densely-populated IoT scenarios.
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