
1

Network Embedding via Coupled Kernelized
Multi-dimensional Array Factorization
Linchuan Xu, Jiannong Cao, Fellow, IEEE, Xiaokai Wei, Philip S. Yu, Fellow, IEEE

Abstract—Network embedding has been widely employed in networked data mining applications as it can learn low-dimensional and
dense node representations from the high-dimensional and sparse network structure. While most existing network embedding methods
only model the proximity between two nodes regardless of the order of the proximity, this paper proposes to explicitly model multi-node
proximities which can be widely observed in practice, e.g., multiple researchers co-author a paper, and multiple genes co-express a
protein. Explicitly modeling multi-node proximities is important because some two-node interactions may not come into existence
without a third node. By proving that LINE(1st), a recent network embedding method, is equivalent to kernelized matrix factorization,
this paper proposes coupled kernelized multi-dimensional array factorization (Cetera) which jointly factorizes multiple multi-dimensional
arrays by enforcing a consensus representation for each node. In this way, node representations can be more comprehensive and
effective, which is demonstrated on three real-world networks through link prediction and multi-label classification.

Index Terms—Network embedding, kernelized array factorization, link prediction, multi-label classification

F

1 INTRODUCTION

N ETWORK is a natural and ubiquitous data structure in
various domains, such as social networks, gene co-

expression networks, and co-authorship networks, simply
because objects are related, and dependent on each other.
As a result, many data mining applications involve network
analysis, such link prediction [1], community detection [2],
and node classification [3]. However, the usually high-
dimensional and sparse structure of networks hampers the
capabilities of data mining and machine learning models.
More specifically, high dimensionality makes it inefficient to
train data mining models while sparsity makes it difficult to
generalize trained models on unseen data. Hence, network
embedding [4] [5] [6] has been employed to learn low-
dimensional and dense node representations that encode the
network structure, which is basically achieved by presenting
nodes close in the network representation to be close in a
particular Euclidean space of interest.

Many network embedding methods have been proposed
recently. Deepwalk [4] observes that sequences of nodes
obtained by truncated random walks on the network repre-
sentation can be regarded as sequences of natural language
words, and then encodes node relationships through estab-
lishing the probabilities between a node in the sequence
and other nodes (i.e., the context for generating the node of
interest), which is achieved by employing Skip-gram [7], a
word embedding model. node2vec [6] improves Deepwalk
by designing a biased random algorithm which can explore
diverse neighborhoods of a given node to obtain the node

• Linchuan Xu and Jiannong Cao are with the Department of Computing,
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong.
E-mail: {cslcxu, csjcao}@comp.polyu.edu.hk

• Xiaokai Wei is with Facebook Inc., 1 Hacker Way, Menlo Park, CA, USA.
E-mail: weixiaokai@gmail.com

• Philip S. Yu is with Department of Computer Science, University of
Illinois at Chicago, IL, 60601, USA.
E-mail: psyu@uic.edu

sequences. GraRep [8] proves that Skip-gram is equivalent
to factorize the transition matrices of various orders of the
network, and then proposes to separately factorize multi-
ple transition matrices using singular value decomposition.
LINE(1st) and LINE(2nd) [5] directly enforce nodes con-
nected by the first-order links and by the second-order links
to be close in the embedding space, respectively.

Almost all of them only explicitly model the proximity
between two nodes regardless of the order of the proximity.
Deepwalk [4] and node2vec [6] model the first-order and
higher order proximities where the order depends on how
close the two nodes are in a truncated random walk. GraRep
[8] models the first-order up to a pre-defined kth-order prox-
imity. LINE(1st) [5] and LINE(2nd) [5] model the first-order
proximity and the second-order proximity, respectively.

However, in some scenarios, there are many interactions
explicitly involving multiple nodes, e.g.,

• In gene co-expression networks [9] where interac-
tions are established among genes when they co-
express a protein, there exist certain proteins result-
ing from the co-expression of multiple genes,

• In academic social networks where interactions are
established among researchers when they co-author
a paper, there exist many papers which result from
the collaborations of multiple researchers,

• In social networks where interactions are established
among users participating in the same social circles,
there exist social circles consisting of multiple users.

In the network representation, a multi-node interaction
is reflected on all pairwise edges, e.g., each pair of all the
researchers that co-authored a paper has an interaction in
the co-authorship network. Therefore, a multi-node inter-
action can be regarded as a clique of a network since a
clique is defined as a group of nodes such that each pair of
nodes is connected. Moreover, a clique essentially represents
the strongest structural cohesion among a group of nodes

The following publication L. Xu, J. Cao, X. Wei and P. S. Yu, "Network Embedding via Coupled Kernelized Multi-Dimensional Array Factorization," in IEEE
Transactions on Knowledge and Data Engineering, vol. 32, no. 12, pp. 2414-2425, 1 Dec. 2020 is available at https://doi.org/10.1109/TKDE.2019.2931833.

This is the Pre-Published Version.

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

2

[10]. Hence, a clique can be a general form of multi-node
interaction. With the concept of a clique, we can also obtain
multi-node interactions even though the given network
does not explicitly define multi-node interactions, such as
Facebook and Twitter friendship networks.

Multi-node interactions can be split into multiple two-
nodes interactions, but presenting two nodes with interac-
tions which only exist with a third node to be close in the
embedding space without considering the third node is not
appropriate. Moreover, there are some properties of multi-
node interactions that can only be preserved when multi-
node interactions are explicitly modeled. These two points
are further explained as follows:

• Some two-node interactions may not even exist with-
out other nodes, e.g., a particular paper with three
authors may not be finished when one of the au-
thors is missing, a particular protein co-expressed by
multiple genes may not be produced without certain
genes, and friendships induced by transitivity, i.e.,
friends of my friends are my friends, may not exist
without the intermediate friends.

• The strengths of a two-node interaction with and
without other nodes are different, e.g., the strengths
of the friendship induced by transitivity may be
different when the intermediate friends are in the
presence and not in the presence, respectively.

• A two-node interaction may be shared by multiple
multi-node interactions as illustrated in Fig. 1. The
three three-node interactions may belong to different
categories, e.g., three papers in three different do-
mains, and three social circles with three different
commonalities, such as hometown, university and
interests. If solely looking at the two-node interac-
tions between node 1 and node 2, the diversity in
terms of categories or commonalities may be lost.

In this paper, we thus propose to explicitly model multi-
node interactions in the context of network embedding.
Assume that the example network in Fig. 1 defines a clique
as a multi-node interaction, i.e., there are seven two-node
interactions and three three-node interactions. To embed
the network, the seven two-node interactions should be
encoded into node representations as all existing methods
do. The three-node interactions are also encoded into node
representations as suggested above.

However, it is not trivial to extend from modeling two-
node proximities to modeling multi-node proximities. For
the popular Skip-gram based models like Deepwalk [4] and
node2vec [6], two-node interactions are modeled through
the input and output of a specially-designed neural net-
work. It is challenging to design a neural network to take
two nodes as inputs or assign two nodes to the same
output in order to model three-node interactions. For meth-
ods modeling transition probabilities between nodes like
GraRep [8], two-node interactions are modeled through the
probabilities of a transition from one node to another node.
It is challenging to extend to consider the transition path
while modeling multi-node interactions.

Fortunately, we prove that LINE(1st) [5] is equivalent to
kernelized matrix factorization where the matrix is the ad-
jacency matrix and the kernel function is sigmoid function.

1 2

3 4 5

1 2

3

1 2

4

1 2

5

Example

Network

Node

 Interactions

Fig. 1. An example network in which a two-node interaction between
node 1 and node 2 shared by three three-node interactions.

More details about the proof can be found in Section 3. Moti-
vated by the kernelized matrix factorization, we thus model
multi-node interactions using multi-dimensional adjacency
arrays, and then learn node representations via kernelized
array factorization.

For a particular network, there may exist multiple arrays
with different dimensions, which depends on the number
of nodes in interactions. We assign a representation for each
array, i.e., array-specific representation, to each node since
the characteristics that nodes expose in the interactions of
different number of nodes have different semantic mean-
ings as suggested in Fig. 1. Moreover, multiple arrays are
jointly factorized by enforcing a consensus representation
for each node on which all array-specific representations
agree. In this way, the consensus representation summarizes
all array-specific characteristics and can be used to improve
array-specific presentations in return. Hence, the proposed
model is named as coupled kernelized multi-dimensional
array factorization (Cetera).

Contributions of the paper are summarized as follows:

• To the best of our knowledge, this paper is the first
one to explicitly model multi-node proximities in the
context of network embedding.

• We prove that LINE(1st) is equivalent to kernelized
matrix factorization where sigmoid function is em-
ployed as the kernel function.

• We propose Cetera to jointly factorize multiple multi-
dimensional arrays via enforcing a consensus repre-
sentation for each node.

• We demonstrate the effectiveness of Cetera on three
real-world networks in applications including link
prediction and multi-label classification.

• We present a comprehensive review of network em-
bedding and propose a novel taxonomy for catego-
rizing existing network embedding methods.

The rest of the paper is organized as follows. Section
2 presents preliminaries. In Section 3, we give the proof
of the equivalence of LINE(1st) and kernelized matrix fac-
torization. In Section 4, we develop the proposed Cetera
model. Section 5 suggests the optimization algorithm. In
Section 6, we provide empirical evaluation of Cetera. Section
7 presents the related work. In Section 8, we conclude this
paper and introduce our future directions.

2 PRELIMINARIES

In this paper, the studied network is defined as follows:

3

Definition 1 G(V,E) is a network, V is a set of nodes, and E
is a set of directed or undirected, weighted or unweighted edges.

In practice, G(V,E) may have or not have explicit multi-
node interactions. In this paper, the type of networks with
explicit multi-node interactions is referred to as cooperation
networks whose nodes co-operate in an event, such as co-
authorship networks and gene co-expression networks. All
the other networks are categorized as the second type of
networks, such as friendship networks. Correspondingly,
we name the second type as non-cooperation networks.

The way to define multi-node interactions for the two
types of networks is different. For cooperation networks,
multi-node interactions are only established among those
with cooperations. Moreover, interactions of a larger num-
ber of nodes are propagated to interactions of smaller
numbers of nodes, e.g., one four-node interaction produces
four three-node and six two-node interactions, which is
reasonable because the existence of a four-node cooperation
must indicate the existence of a three-node cooperation.
For non-cooperation networks, multi-node interactions are
established among nodes forming cliques. The weight of
each multi-node interaction is chosen as the smallest weight
among all the two-node interactions.

In this paper, multi-node interactions are modeled by
multi-dimensional arrays. An n-dimensional adjacency ar-
ray for n-node interactions is defined as follows:

Definition 2 An n-dimensional adjacency array is denoted as
A(n) ∈ R|V |×|V |×|V |×···(the number of |V | is n). Ω(n) denotes the
index space. For each element A(n)

i1...in
={

weight if a interaction among node i1, ..., and in
0 otherwise,

(1)

where weight=1 for unweighted networks, i1, ..., in are indices of
nodes in each dimension, and i1 6= ... 6= in.

The two-dimensional array is also referred to as an
adjacency matrix, and arrays of larger dimensions can also
be referred to as tensors. For undirected networks, arrays
of all dimensions are symmetric. For directed networks, the
arrays are symmetric as well since for directed networks,
multiple nodes form a clique if and only if there are two
edges of different directions between each pair of nodes.

3 LINE(1ST) AS LIGHT KERNELIZED MATRIX
FACTORIZATION

In this section, we prove that LINE(1st) [5] is equivalent
to kernelized matrix factorization where the kernel is a
similarity function operating in a high-dimensional and
implicit feature space, and is popularly known in the filed of
support vector machine (SVM). Note this proof is different
from that of equivalence of LINE(1st) and matrix factoriza-
tion without a kernel [11] [12]. In particular, the previous
proof focused on finding a special matrix such that the dot
product of the node embeddings can directly approximate
the corresponding element of that matrix.

In LINE(1st), the proximity of two nodes is quantified as
follows:

p(v1,v2) =
1

1 + exp(−vT
1 v2)

, (2)

where v1 ∈ RD and v2 ∈ RD are representations of node
1 and 2, respectively, and D is the dimension of representa-
tions. p(v1,v2) is essentially a sigmoid kernel function, and
is replaced by σ(v1 · v2) in the rest of the section.

Since the sigmoid function estimates the probability of
linkage between two nodes, LINE(1st) presents each pair
of nodes connected by an edge through minimizing KL
divergence between the empirical probability distribution of
linkage and the estimated distribution. After simple trans-
formations, for unweighted networks, the loss function can
be quantified as follows:

LLINE(1st) = −
∑

(i,j)∈E

log σ(vi · vj) (3)

To avoid the trivial solution that ∀i and ∀d, v(d)
i = ∞,

i.e., the dth dimension of node i is equal to infinity, LINE(1st)
employs negative sampling to randomly sample multiple
negative edges, i.e., non-existing edges, and presents each
pair of nodes connected by a negative edge to be apart. As
a result, the final loss function after ignoring the sampling
process can be quantified as follows:

LLINE(1st) = −
∑

(i,j)∈E

log σ(vi,vj)−
∑

(h,k)/∈E

log σ(−vh · vk),

(4)
which essentially applies cross entropy loss on each edge.

Eq. (4) thus can be reformulated by unifying (i, j) ∈ E
and (h, k) /∈ E into (i, j) ∈ Ω(2) as follows:

LLINE(1st) =
∑

(i,j)∈Ω(2)

`(A
(2)
ij , σ(vi · vj)), (5)

which is kernelized matrix factorization by employing sig-
moid function as the kernel, and cross entropy loss as the
loss function. Note that LINE(1st) is a light method because
it employs negative sampling to reduce zero elements of the
matrix in order to reduce computation costs.

4 THE PROPOSED CETERA MODEL

Motivated by the equivalence of LINE(1st) and kernelized
matrix factorization, Cetera learns node representations by
performing kernelized array factorization by employing
sigmoid function as the kernel function.

Similar to GraRep [8] which treats different kth-order
proximities differently, i.e., learns a representation for each
node from each order of proximity, Cetera assigns a repre-
sentation for each node to preserve each multi-node prox-
imity. Since multi-node proximities are modeled by multi-
dimension arrays, each type of representation for each node
is referred to as an array-specific representation. The moti-
vation for learning array-specific representations is that dif-
ferent multi-node proximities involve a unique number of
nodes, and have different semantic meanings as illustrated
in Fig. 1.

But unlike GraRep learning order-specific representa-
tions separately, Cetera learns all array-specific represen-
tations simultaneously by enforcing consensus representa-
tions on which all array-specific representations agree. The
consensus representation is motivated by the consensus
principle utilized in multi-view learning [13] [14] because
we can regard different arrays as different views of the

4

network structure. In this way, the consensus representa-
tions can fuse information of all multi-node proximities. In
return, consensus representations can improve each type of
array-specific representations. The improved array-specific
representations can achieve better array-specific tasks, such
the link prediction between two nodes.

4.1 Array-specific Representation Learning
Because the learning of each array-specific representation
is similar, we thus only take the learning from three-node
proximities as an example. The loss function for factorizing
a three-dimensional array can be quantified by following
the kernelized matrix factorization, i.e., Eq. (5), as follows:

L(3) =
∑

(i,j,k)∈Ω(3)

`(A
(3)
ijk, k

(3)(v
(3)
i ,v

(3)
j ,v

(3)
k)), (6)

where k(3)(·) is a kernel function for quantifying three-node
proximities defined as follows:

k(v
(3)
i ,v

(3)
j ,v

(3)
k) =

1

1 + exp{−
∑D

d v
(3,d)
i v

(3,d)
j v

(3,d)
k }

, (7)

where v
(3)
i is representation for node i with respect to three-

node proximities, and v
(3,d)
i is the value of dimension d.

v
(3,d)
j and v(3,d)k are similarly defined. Eq. (7) is an extension

of Eq. (2) from two vectors to three vectors in terms of the
sum of element-wise multiplication. Although the kernel
function k(3)(·) is not formally defined in the literature, it
is well suitable for the purpose of this paper, i.e., to make
the three embeddings to agree with each other, because the
sum of element-wise multiplication can be reduced to the
dot product of each vector and the combination of the other
two vectors. Moreover, the experiments have demonstrated
the effectiveness.

Cross entropy loss function `(·) can only be applied to
unweighted networks. For weighted networks, we modify
it as follows: `(A(3)

ijk, k(v
(3)
i ,v

(3)
j ,v

(3)
k)) ={

−A(3)
ijklog k(v

(3)
i ,v

(3)
j ,v

(3)
j) A

(3)
ijk > 0

−log(1− k(v(3)
i ,v

(3)
j ,v

(3)
k)) A

(3)
ijk = 0

(8)

The modification is performed to reflect the edge weight
which may indicate relationship strength since relationships
with frequent interactions may be stronger than those with
only one interaction.

4.2 Consensus Representation Learning
As mentioned before, we employ the consensus principle
of multi-view learning [13] [14] to learn the consensus
representations. The specific form of the consensus principle
employed is centroid-based co-regularization [15], which is
achieved by regularizing array-specific representations and
the consensus representation to be similar to each other.
Formally, the co-regularization is formulated as follows:

min
Z,

∑
n V (n)

∑
n

||V (n) −Z||2F , (9)

where Z ∈ R|V |×D and V (n) ∈ R|V |×D consist of consensus
representations and node representations learned from n-
node proximities, respectively, and || · ||2F is Frobenius norm.

Algorithm 1 Alternating Optimization Algorithm
1: Input: G(V,E), D, λ, and r
2: Output: V (1), ..., V (n), ..., V (N), Z

3: Prepare multi-dimensional arrays
4: Pre-train V (1), ..., V (N)

5: repeat
6: Find the optimal Z
7: foreach V (n) do
8: Solve V (n) by gradient descent with all the other

variables fixed
9: until iteration = iterationmax or converge

10: end

Since this is the first work to consider multi-node interac-
tions, Eq. (9) assumes all the representations are in the same
Euclidean space. Different spaces and more sophisticated
ways for the consensus learning are left as future studies.

Minimizing Eq. (9) w.r.t. Z thus can learn the consensus
representations. In return, improving array-specific repre-
sentations by utilizing consensus representations can be
achieved by minimizing Eq. (9) w.r.t. array-specific repre-
sentations, i.e., minimizing the following loss function:

LV (n) = ||V (n) −Z||2F . (10)

4.3 Joint Learning
By jointly considering all multi-node proximities, the final
loss function for Cetera to embed the network structure can
be quantified by direct addition as follows:

L(V (1), ...,V (n), ...) =L(2) + L(3) + L(4)...+ λ
∑
n

||V (n)||2F

+
∑
n

||V (n) −Z||2F + λ||Z||2F ,

(11)
where L(3) is defined in Eq. (6) for preserving three-node
proximities, L(2) and L(4) are similarly defined, ||V (n)||2F
and ||Z||2F are regularization terms for avoiding trivial
solutions where the values of embeddings become very
large, and λ ∈ R is the regularization coefficient. The model
can include proximities involving any number of nodes.
In the experiments, the model only includes a pre-defined
set of proximities. The problem of determining the optimal
number of nodes in the interactions is left as a future study.

5 THE OPTIMIZATION

The loss function in Eq. (11) is not jointly convex over all the
variables, i.e., array-specific representations and consensus
representations. We thus replace it with a sequence of easier
sub-optimizations using an alternating algorithm [16] where
each sub-optimization only solves one variable.

5.1 The Optimization Algorithm
Pseudo-codes of the optimization algorithm are presented
in Algorithm 1. The input r ∈ R is negative ratio, which is
the ratio of the number of positive multi-node edges to that
of negative multi-node edges. The multi-dimensional array
preparation has been presented in Section 3.

5

Before jointly learning all the variables, Algorithm 1 pre-
trains each type of array-specific representations individu-
ally. Pre-training is an important part of an optimization
algorithm as it can initialize a model to a point in parameter
space that renders the learning process more efficient and
effective [17]. In our case, the objective function in Eq.
(11) is not convex, and all array-specific representations are
solved by gradient descent. Hence the initizalization largely
determines the learning performance. The pre-training of
each type of array-specific representations is performed
by factorizing the corresponding array, which can also be
solved by gradient descent, e.g., to pre-train V (3) by only
solving Eq. (6). For learning rate, we employ backtracking
line search [18] to determine an appropriate one which can
guarantee the descent in each iteration during the training
process. Note that the optimization w.r.t. Z is convex, and
the optimal solution can be obtained by straightforward
linear algebra.

5.2 Complexity Analysis

The computation of Algorithm 1 is mainly spent on the
multi-dimensional array preparation and the array factor-
ization. For the cooperation networks, the time is used
to propagate interactions of larger number of nodes into
interactions of smaller number of nodes, which is essentially
a combination problem. But in the experiments, we only
include up to seven-node interactions. For the co-authorship
network studied in this paper, the average number of au-
thors is about three [19]. And the number of interactions
starts to decrease when the number of nodes is 4 in Table
1. Hence, the time for array preparation for the first type of
networks may be safely omitted.

For non-cooperation networks, we need to find multi-
node interactions first. In particular, we obtain interac-
tions of larger number of nodes by adding nodes to
interactions of smaller number of nodes. Hence, the
complexity of preparing up to seven-node interactions
is O(|V |(nnz(A(2))/2! + nnz(A(3))/3! + nnz(A(4))/4! +
nnz(A(5))/5! + nnz(A(6))/6! + nnz(A(7))/7!)) because ar-
rays are symmetric, where nnz(A(2)) is the number of non-
zero elements of the two-dimensional array, and others are
similarly defined. Since networks are usually sparse, the
scalability to large-scale networks can be guaranteed.

With respect to array factorization, since we employ neg-
ative ratio to reduce the number of zero elements of the ar-
rays, the complexity for each array isO((r+1)Dnnz(A(n))),
where r is the negative ratio, D is the dimension of node
representations, and n is the dimension of the array.

5.3 Convergence

Algorithm 1 is essentially a block-wise coordinate descent
algorithm [20] with all the array-specific representations
and the consensus representations as block variables. So
convergence can be guaranteed based on the general proof
of convergence for block-wise coordinate descent. Moreover,
we observe Algorithm 1 converges very fast in terms of
the outer iterations in the experiments as presented in the
evaluation section.

TABLE 1
Network Statistics

Network DBLP Youtube Flickr
nodes 5091 8916 4700

2-node edges 17867 33802 224576
3-node edges 14956 45031 239147
4-node edges 7684 51270 373022
5-node edges 2931 41470 345385
6-node edges 859 21712 203930
7-node edges 172 6862 79847
8-node edges – 1235 20965
9-node edges – 128 3546
10-node edges – 8 331

labels 7 5 7
labels per node 2.46 2.03 5.41

Type undirected
weighted

undirected
unweighted

directed
unweighted

6 EMPIRICAL EVALUATION

6.1 Baselines
Cetera is evaluated against six recent network embedding
methods, which are Deepwalk [4], LINE [5], GraRep [8],
node2vec [6], NetMF [12], and PTE [21]. The first five
models are designed for homogeneous networks while PTE
is designed for heterogeneous networks. PTE is employed as
a baseline because Cetera utilizes information about multi-
node interactions from the first type of networks, such as
paper-author information, which can be used to construct
a paper-author bipartite network modeled in PTE [21]. But
because Cetera does not utilize further information, such as
label information, only the author-author bipartite network
and the author-paper bipartite network are fed to PTE.

6.2 Datasets
Three real-word networks are studied as follows :

• DBLP [22]: In the experiments, we select several pop-
ular conferences from seven research fields which are
SIGMOD, VLDB, ICDE, PODS, EDBT from Database,
KDD, ICDM, SDM, PAKDD from Data Mining,
AAAI, IJCAI, ICML, ECML from Machine Learn-
ing, and SIGIR, WWW, CIKM, WSDM, and ECIR
from Information Retrieval, CVPR, ICCV, ECCV,
ICIP, BMVC, WSCG, and ACCV from Computer
Vision, ACL, EMNLP, COLING, NAACL, EACL, and
CoNLL from Natural Language Processing, ICMR,
ICME, ACMMM, and SIGMM from Multimedia.
From these conferences, we select papers published
during the time span from 2000 to 2009 with more
than 2 authors, and select authors with at least two
publications of different fields.

• Youtube [23]: This dataset contains friendship rela-
tionships. We select users that hold the group mem-
bership of any one of five major groups, which are
23, 30, 81, 82 and 367 indicated in the the dataset. We
make the directed network undirected to increase the
number of multi-node edges.

• Flickr [23]: This dataset contains friendship relation-
ships among the users of Flickr. We select users that
hold the group membership of any five of seven
major groups, which are 135, 156, 172, 228, 295, 471
and 1098 indicated in the dataset.

6

TABLE 2
AUC (standard deviation) scores for DBLP future co-authorship prediction, where all the scores have been multiplied by 100% here and in the rest

of the paper.

Method Deepwalk LINE(1st) LINE(2nd) PTE GraRep node2vec NetMF (T=1) NetMF (T=10) Cetera
AUC 73.77(1.01) 60.65(0.89) 65.92(1.00) 70.12(1.12) 73.31(0.23) 72.22(1.15) 56.84(0.16) 68.24(0.21) 76.16(0.97)

TABLE 3
AUC(standard deviation) scores for DBLP multi-node co-authorship prediction, where W. A. is the abbreviation of “weighted average” and the

weight is the number of test co-authorships.

AUC Deepwalk LINE(1st) LINE(2nd) PTE GraRep node2vec NetMF (T=1) NetMF (T=10) Cetera
Three-node 52.85(1.32) 46.83(1.08) 57.18(1.12) 60.31(1.24) 27.70(0.93) 51.69(1.21) 47.77(0.96) 36.18(1.10) 74.51(0.98)
Four-node 79.74(1.51) 61.86(1.89) 71.94(1.43) 66.22(1.53) 86.99(1.18) 75.24(1.65) 69.55(0.16) 77.62(1.01) 65.03(1.29)
Five-node 52.72(1.19) 52.70(1.38) 48.17(1.28) 53.15(1.26) 13.47(1.16) 53.51(1.09) 46.74(1.16) 35.03(1.42) 63.09(1.27)
Six-node 76.45(1.31) 59.44(1.73) 62.98(1.32) 66.62(1.10) 88.03(1.08) 62.84(1.25) 57.26(1.36) 64.40(1.32) 68.30(1.22)

Seven-node 55.19(1.23) 53.63(1.28) 27.45(1.35) 48.12(1.25) 8.57(1.28) 58.21(1.18) 50.35(1.51) 44.18(1.61) 71.84(1.18)
W. A. 67.01 56.14 62.69 65.32 57.83 65.03 55.29 57.69 73.33

DBLP co-authorship network is the cooperation network
while the Youtube and Flickr friendship networks belong
to the non-cooperation network defined in Section 3. The
number of two-node edges up to seven-node edges of the
DBLP co-authorship network and two-node edges up to ten-
node edges of the Youtube and Flickr friendship networks
are summarized in Table 1. The research fields are used as
the labels for DBLP, and the groups are used as labels for
Youtube and Flickr.

6.3 Experiment settings

For the implementation, the dimension of node representa-
tions is set as the commonly used 128, the negative ratio
is set as 5 as used in LINE, two-node proximities up to
seven-node proximities are employed in the representation
learning to make fair comparison with GraRep as GraRep
models first-order proximities up to sixth-order proximities
in its paper, regularization coefficient is set as 1.0, and 8
outer iterations are used as the maximum iterations. Our
codes are written in Java and run on an Intel Genuine
Intel(R) CPU @2.60GHZ 2.60GHZ server with 64 GB RAM.

We evaluate the methods in two applications, link pre-
diction and multi-label classification. The dimension of the
final node representations of GraRep is 6×128 since GraRep
concatenates all order-specific representations. For Cetera,
only the representations corresponding to 2-dimensional
array are used for link prediction because link prediction
is performed between two nodes instead of multiple nodes.
In multi-label classification, we concatenate all array-specific
representations and consensus representations.

6.4 Link Prediction

Link prediction is to infer new interactions among network
nodes, and is typically performed by measuring pair-wise
similarities because interactions are more likely to occur
between similar nodes [1]. In the experiments, the similar-
ities are firstly computed by the dot product of two node
representations and then normalized by sigmoid function.
The commonly used AUC (area under the curve) scores are
employed as the performance metric. For DBLP, we perform
future co-authorship prediction where co-authorships aris-
ing during the time span from 2010 to 2013 are employed

as the positive test links, and the same number of negative
test links are randomly sampled for the evaluation purpose.
This process of learning and prediction is repeated 10 times.
The results of average performance are presented in Table 2.

Table 2 shows the proposed Cetera achieves the best
performance. The superior performance of other baselines to
LINE and NetMF(T=1) may suggest the advantage of con-
sidering proximities of higher orders. PTE underperforms
other baselines because the link prediction is to predict the
first-order links which are not preserved in PTE.

One may have a concern that we explicitly model multi-
node interactions but only employ the node presentations
mainly learned from two-node interactions to perform the
link prediction. The explanation is that the links to be
predicted are essentially two-node interactions. But we can
utilize characteristics of multi-node interactions to refine the
node representations learned from two-node interactions
because only looking at two-node interactions without con-
sidering other nodes is not inappropriate as explained in
the introduction, e.g., the cooperation between two authors
may not happen without a third author. To make a fair com-
parison with GraRep, the performance obtained by node
representations corresponding to the first-order transition
matrix factorized by GraRep is 63.19.

Besides the traditional link prediction, i.e., the predic-
tion of co-authorships between two authors, we also study
the prediction of co-authorships among multiple authors,
which widely exist in practice. Similarly, the prediction is
performed by measuring the multi-node similarities. We
report the AUC scores of 10 times of experiments in Table 3.
It shows that Cetera outperforms baselines in most times.
Although some baselines have superior performance in
other times, they have extremely unstable performance on
different tasks, e.g., GraRep scores 88.03 on the six-node link
prediction while scoring 8.57 on the seven-node link pre-
diction. Hence, we present weighted average performance
of each method where the weight is the number of test
links (12708 two-node links, 8140 three-node links, 3912
four-node links, 1704 five-node links, 690 six-node links, 220
seven-node links). The result shows that Cetera consistently
outperforms all the baselines.

For the Youtube and Flickr networks, we perform miss-
ing link prediction where partial links are used as train-

7

TABLE 4
AUC scores on link prediction when different ratios of links are used in the training phase.

Network Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

Youtube

Deepwalk 62.55 66.23 69.56 72.66 75.18 77.86 79.01 80.23 80.89
LINE(1st) 69.20 73.32 76.38 80.69 83.34 85.21 86.67 87.68 88.12
LINE(2nd) 68.01 71.80 75.12 79.27 81.64 84.01 85.61 86.66 86.95

GraRep 60.22 65.40 68.79 70.17 73.14 75.61 77.12 78.63 79.35
node2vec 69.32 73.12 74.79 79.17 80.84 83.44 84.81 85.28 86.05

NetMF(T=1) 65.12 68.55 71.13 73.66 76.75 78.22 79.36 80.16 80.82
NetMF(T=10) 60.15 63.63 66.36 68.76 70.38 72.36 74.11 75.13 75.89

Cetera 75.32 82.68 85.60 87.19 88.56 89.96 90.90 91.34 91.55

Flickr

Deepwalk 62.12 66.86 69.85 71.55 73.01 74.00 74.51 74.82 75.14
LINE(1st) 57.66 60.36 63.12 67.96 69.12 70.57 72.97 74.72 74.82
LINE(2nd) 55.26 57.69 61.02 63.01 62.90 62.96 62.70 62.72 62.82

GraRep 56.19 60.11 62.36 66.55 68.95 70.23 71.31 72.58 72.82
node2vec 56.90 61.22 64.95 67.76 69.03 70.67 71.35 72.82 73.36

NetMF(T=1) 55.66 58.26 61.63 64.11 66.32 68.87 70.37 71.32 72.02
NetMF(T=10) 58.62 62.16 65.15 67.95 69.41 71.60 72.31 73.02 73.52

Cetera 70.32 75.37 78.51 80.02 82.73 83.73 85.15 87.09 88.69

TABLE 5
Micro-F1 and Macro-F1 scores obtained by different methods for multi-label classification.

Macro-F1 Deepwalk LINE(1st) LINE(2nd) PTE GraRep node2vec NetMF(T=1) NetMF(T=10) Cetera
DBLP 76.8 74.7 67.2 73.6 81.0 78.2 72.6 80.1 81.3

Youtube 66.3 65.3 61.9 – 84.3 63.6 55.6 59.6 86.6
Flickr 33.8 35.5 33.7 – 34.8 34.3 33.7 34.6 38.9

Micro-F1 Deepwalk LINE(1st) LINE(2nd) PTE GraRep node2vec NetMF(T=1) NetMF(T=10) Cetera
DBLP 80.5 79.6 74.8 76.6 83.3 81.2 79.4 82.7 83.5

Youtube 69.0 68.8 63.4 – 85.2 65.5 70.0 72.1 87.8
Flickr 71.7 72.5 71.7 – 69.6 72.1 71.6 72.1 72.6

TABLE 6
Micro-F1 and Macro-F1 scores obtained by array-specific node representations learned by Cetera for multi-label classification.

Micro-F1 two-dimensional three-dimensional four-dimensional five-dimensional six-dimensional seven-dimensional
DBLP 79.0 81.5 76.9 77.3 77.4 78.1

Youtube 86.5 86.6 86.7 86.9 86.8 86.5
Flickr 71.3 71.6 70.5 71.4 71.5 71.5

Macro-F1 two-dimensional three-dimensional four-dimensional five-dimensional six-dimensional seven-dimensional
DBLP 70.8 77.3 67.5 67.5 67.8 69.0

Youtube 85.0 85.2 85.2 85.5 85.4 85.1
Flickr 33.3 33.6 31.7 33.4 33.5 33.5

ing data and the remaining ones are used as test links.
Specifically, we perform nine runs of experiments where the
training links range from 10% to 90% of the whole links. The
results are reported in Table 4, which shows similar patterns
to the results for the DBLP co-authorship prediction. We
can see there exist many cliques as shown in Table 1, e.g.,
the number of 3-node cliques is even larger than that of
two-node edges. The cliques provide extra information for
learning representations from two-node edges, and hence
Cetera obtains the best performance.

6.5 Multi-label Classification

For DBLP, each researcher may publish papers in more than
one research field, and for Youtube and Flickr, each user
may belong to more than one group. Hence, in multi-label
classification, more than one label are assigned to each data
point. We employ binary-relevance SVM with polynomial
kernel implemented in Meka [24] as the classifier, use 5-fold
cross validation as the evaluation method, and report Micro-
F1 and Macro-F1 scores in Table 5.

It shows that Cetera obtains the best performance on all
the datasets. The advantage of Cetera over baselines can be
explained mainly by two reasons. Firstly, two-node proxim-
ities are essentially partial information of multi-node prox-
imities because two-node interactions are split from multi-
node interactions for the cooperation networks, or build up
multi-node interactions for those non-cooperation networks.
Hence, Cetera can actually capture more information than
all the baselines. One may note that the improvement on
the DBLP dataset over baselines is not as remarkable as
on the Youtube and the Flickr datasets. Note that for the
DBLP dataset, the number of multi-node interactions is less
than that of two-node interactions as presented in Table
1. Therefore, the benefits brought by modeling multi-node
interactions may be limited.

To demonstrate the effectiveness of multi-node interac-
tions, we present the performance obtained by array-specific
node representations in Table 6. It is interesting to note that
node representations learned from two-node interactions
never obtain the best performance, which can be explained
by the second reason presented below.

8

0 5 10 15

Iterations

70

72

74

76

78

80

M
ic

ro
-F

1
 S

c
o

re

0

0.5

1

1.5

2

2.5

L
o
s
s
 F

u
n
c
ti
o
n

10
6DBLP

0 5 10 15

Iterations

78

80

82

84

86

88

M
ic

ro
-F

1
 S

c
o

re

7.4

7.45

7.5

7.55

L
o
s
s
 F

u
n
c
ti
o
n

10
5Youtube

Fig. 2. The performance of multi-label classification with respect to the
number of iterations.

2 4 6 8 10

(a) Dimension of array

60

65

70

75

80

85

90

M
ic

ro
-F

1
 S

co
re

100 200 300 400 500

(b) Dimension of node representation

60

65

70

75

80

85

90
M

ic
ro

-F
1

 S
co

re

Fig. 3. The performance of multi-label classification with respect to the
dimension of arrays (a) and the dimension of representations (b).

Secondly, each data point usually has more than one
label, e.g., the average number of labels per node is more
than 2 as indicated in Table 1. The diversity of label in-
formation can be preserved more effectively by explicitly
modeled multi-node interactions as illustrated in Fig. 1, i.e.,
a two-node interaction may be shared by multiple three-
node interactions in different domains (i.e., labels).

It is worth noting that the advantage of Cetera and
GraRep over other baselines is not brought by dimension
advantage. Actually, a larger dimension usually does not
bring better performance as studied in this paper and in
baseline themselves, such as in LINE and GraRep.

6.6 Convergence Analysis
In this section, we study the convergence of Algorithm 1.
Specifically, we study the performance of the algorithm on
applications with respect to the number of outer iterations
where each iteration takes about 719 seconds and 1158
seconds on average for the DBLP and Youtube network,
respectively. We only present the experiments on multi-
label classification for the DBLP and Youtube network in
Fig. 2 because other experiments show similar results. Fig.
2 shows that the algorithm converges fast and can usually
converge to stable performance after about 5 iterations.

6.7 Parameter Sensitivity
This section evaluates how Algorithm 1 is sensitive to the
dimension of arrays and the dimension of representations.
In the experiments, we set the largest dimension of arrays
from 2 to 10, and dimensions of representations from the
choices of {32, 64, 128, 256, 512}. The performance on the
multi-label classification measured by Micro-F1 scores for
the Youtube network is presented in Fig. 3. Fig. 3 (a) shows
Algorithm 1 can achieve stable performance after including
4-node edges. Fig. 3 (b) shows Algorithm 1 is not much
sensitive to the dimension of node representations if the
dimension is not too small (e.g., 32) or too large (e.g., 512).

Input
Information

Network
Property

Technique

Homogeneous
Network

Heterogeneous
Network

Relational
Data

Attributed
Network

Transitivity

Community

Structural
Balance

Neural Network

Matrix Factorization

Edge
Reconstruction

Generative
Model

Clique

Fig. 4. Three-dimensional network embedding taxonomy space.

7 RELATED WORK

In this section, we first present a comprehensive review of
existing network embedding methods, and then present the
relevance of the proposed Cetera to existing methods.

Learning low-dimensional data representations by em-
bedding the network structure has been studied since early
2000s, and was referred to as graph embedding [25], [26],
[27], [28], [29] then. But graph embedding is actually de-
signed for data points which are initially independent, i.e.,
no relationships or interactions among them. Hence, before
performing the embedding, previous methods need to es-
tablish links between data points where links are usually
based on neighbor relationships, e.g., k-nearest neighbors
or neighbors within a pre-defined radius of distance. In the
rest of this section, graph embedding is also referred to as
early network embedding.

Instead, recent network embedding is designed for data
points with natural linkage relationships. Not needing to
make artificial links, recent network embedding methods
can utilize additional information, explore various network
properties, and have diverse techniques. In this paper, we
thus categorize existing network embedding methods ac-
cording to three criteria, i.e., the input information, the
explored network property, and the developed technique.

We present the summary of the taxonomies in a three-
dimensional space corresponding to the aforementioned
three criteria as illustrated in Fig. 4. On each dimension,
we only list the main-stream elements. For instance, on
the dimension of input information, almost all the em-
bedding methods are designed for one of the four inputs,
i.e., relational data, homogeneous networks, heterogeneous
networks, and attributed networks. With respect to the
comparison with existing taxonomies, our taxonomies apply
the classification criteria parallelly instead of a tree structure
[30] in which different classification criteria are adopted
and applied sequentially. We prefer a parallel classification
because the three criteria are at the same levels. Moreover,
our taxonomies have different classification criteria from
and one more criterion than the taxonomies in [31].

7.1 Classification by Input Information
A network is a homogeneous network when it only has one
type of nodes and one type of edges while a heterogeneous
network has more than one type of nodes or more than one

9

type of edges. A network is an attributed network when
its nodes or edges have attributes, e.g., a co-authorship
network can be an attributed network when the authors
have paper keywords as attributes.

7.1.1 Relational Data as Input
Almost all methods for relational data belong to early net-
work embedding. Network embedding can be applied to
relational data because it is assumed that real-world data
presented in high-dimensional spaces are expected to con-
centrate in the vicinity of a manifold of much lower dimen-
sionality [33]. Hence, network embedding is essentially to
model the structure of the data-supporting manifold, which
explains why early network embedding is also referred to
as manifold learning [33].

Most early network embedding methods employ edge
reconstruction to learn node representations, i.e., minimiz-
ing the distance of nearby data points in the manifold [34]
or maximizing the probability of generating existing edges
using node representations [29]. The methods based on
minimzing distance include [25], [26], [27], [28], [35] while
the methods based on maximizing probabilities include [29].

7.1.2 Homogeneous Networks as Input
The recent network embedding for homogeneous networks
starts with Deepwalk [4] which is based on Skip-gram
[7]. Another popular model is node2vec [6] which extends
Deepwalk to consider communities or roles that nodes
belong to because nodes belonging to the same community
and roles should be close in the embedding space.

There are also many other embedding methods that are
not based on Skip-gram, such as LINE [5], GraRep [8],
HOPE [36], and M-NMF [37]. Most of them except for
LINE(1st) [5] preserve network properties while embedding
the network structure, and hence are introduced in more
details in Section 7.3, i.e., the section of classification by
network property.

7.1.3 Heterogeneous Networks as Input
With the success of Skip-gram based models on homo-
geneous networks, there are also many Skip-gram based
heterogeneous network embedding models, such as meta-
path2vec [38], HIN2Vec [39], and HINE [40]. The common-
ality of these methods is to design random walk algorithms
for walking on heterogeneous networks, which generates
sequences of heterogeneous nodes, or meta-paths.

Besides, PTE [21] embeds three bipartite networks where
the three networks share a set of nodes, e.g., word-word
network, word-document network, and word-label network
studied in its paper. PTE employs LINE(2nd) [5] to embed
each bipartite network. HNE [41] embeds heterogeneous
information networks with two types of nodes and three
types of edges. More specifically, the two types of nodes are
image and text, and the three types of edges are image-
image edges, image-text edges, and text-text edges. The
edges are established when nodes have similar semantic
meanings or have citation relationships. MVE [42] regards
each type of edges as one view of the given heterogeneous
network. MVE adopts a method similar to LINE [5] to
embed each view of the network, and then jointly embeds
multiple views via an attention mechanism.

7.1.4 Attributed Networks as Input
Attributes provide additional information about nodes and
can make node representations more comprehensive.

TADW [43], shorted for Text-associated Deepwalk, em-
beds both the network structure and node attributes ex-
tracted from text-based content through matrix factoriza-
tion. AANE [44] learns node representations by not only
minimizing the difference of pairs of nodes that are con-
nected but also minimizing the difference between the sim-
ilarity computed by node representations and the similarity
computed by node attributes.

Node label can also be viewed as node attributes. Hence,
we classify semi-supervised network embedding methods
into this category. Both MMDP [45] and DDRW [46] jointly
learn node representations in the way of Deepwalk and
train a SVM classifier on the learned node representations.
Similarly, [47] also jointly learns node representations and
trains a classifier. Moreover, [47] proposes an inductive
learning method which estimates a parametric function for
nodes not seen during the training phase

7.2 Classification by Technique
Neural network for network embedding is usually feed-
forward artificial neural networks which are specially de-
signed for network embedding. Matrix factorization is the
commonly used method for decomposing a matrix into
product of matrices which usually consist of node represen-
tations in the context of network embedding. Edge recon-
struction is more like a principle that the distance of a pair
of nodes that are connected should be considerably small
in the embedding space of interest. Generative models for
network embedding emphasize that the observed edges of a
particular node are generated by the underlying conditional
distribution, and learn node representations by maximizing
the likelihood of edges in the network.

7.2.1 Neural Network
Skip-gram based models, such as Deepwalk [4], node2vec
[6], struc2vec [48], and even metapath2vec [38], employ neu-
ral network models for network embedding, because Skip-
gram [7] is essentially specially-designed neural network
model. Different from traditional neural network models,
the input to the input layer is a vector of one-hot repre-
sentation of nodes, the weights of the input layer to the
first hidden layer is essentially node representations, and
the output estimates the probabilities of interactions of the
input node to all the other nodes.

There are also other kinds of neural network models
used in network embedding. HNE [41] employs deep neural
network models to capture the interactions between hetero-
geneous components, i.e., CNN for image nodes and FC
layers for text nodes. ProjE [49] designs a special neural
network with a combination layer and a projection layer.
Moreover, it defines a point-wise loss (similar to multi-class
classification) and a list-wise loss (i.e., softmax regression
loss) for knowledge graph embedding.

7.2.2 Matrix Factorization
As mentioned in Section 7.1.4, TADW [43] is essentially a
matrix factorization model, i.e., decomposing a transition

10

matrix into product of matrices. Similarly, GraRep [8] factor-
izes transition matrices with different transition steps using
singular value decomposition (SVD). A recent study [12]
proposes a unified matrix factorization model and proves
that Deepwalk, node2vec, LINE and PTE can all be put
under the unified model.

7.2.3 Edge Reconstruction
Almost all early network embedding models are based on
edge reconstruction, i.e., minimizing the distance of pairs
of nodes connected by edges or maximizing the probability
of generating existing edges using node representations as
mentioned in Section 7.1.1. There are also recent network
embedding models based on minimizing distance, such as
AANE [44] and HNE [41], and maximizing probabilities,
such as LINE(1st) [5].

7.2.4 Generative Model
Network embedding methods based on generative models
emphasize that the observed edges of a particular node are
generated by the underlying conditional distribution, and
these models then learn node representations by maximiz-
ing the likelihood of edges in the network. In this sense,
Deepwalk and node2vec mentioned above can also be re-
garded as generative models because they use random walk
algorithms to sample “context” nodes for each node, and
attempt to maximize the likelihood of observing “context”
nodes for the given node.

Recently, the game-theoretical min-max framework pro-
posed in generative adversarial nets (GAN) [50] to estimate
generative models has been widely adopted in various
domains including network embedding [51] [52]. The ba-
sic idea of GAN is to jointly estimate two models, i.e., a
generative model G that captures the data distribution, and
a discriminative model D that estimates the probability that
a sample comes from the training data rather than G.

7.3 Classification by Network Property
Transitivity means that links are transitive from nodes to
nodes, e.g., friends of my friends are my friends. By con-
sidering transitivity, potential links and high-order links
can be incorporated in node representations. Community
is a group of nodes which have more intra-group links
than inter-group links, which widely exist in real-world
networks. Structural balance [53] [54] considers the possible
ways in which triangles on three individuals can be signed,
and posits that triangles with three positive signs and those
with one positive sign are more plausible than triangles with
two positive signs or none. Hence, structural balance is only
studied in signed network embedding. A clique is a group
of nodes such that each pair of nodes are connected.

7.3.1 Transitivity
There are many methods [5], [8], [36], [55] exploring the
transitivity property, which essentially extends the first-
order neighbor relationships to higher-order relationships.

LINE(2nd) [5] explores the principle that the degree
of overlap of two people’s friendship networks correlates
with the strength of ties between them [56]. Essentially,
LINE(2nd) preserves second-order links.

As mentioned in Section 7.2.2, GraRep [8] learns node
representations by factorizing transition matrices. Actually,
GraRep factorizes first-order up to a pre-defined k-th or-
der transition matrices because links are transitive. Based
on the success of utilizing high-order proximities among
nodes, NEU [57] summarizes that high-order proximities
are beneficial to learn node representations, and proposes
a general method to incorporate high-order proximities into
existing methods, e.g., Deepwalk, node2vec and GraRep.

All the methods above assume the transition property is
symmetric, but HOPE [36] observes that the transitivity is
asymmetric in directed networks, and proposes an embed-
ding method especially for directed networks.

7.3.2 Community

Two nodes in the same community usually have more
commonalities than two nodes in different communities.
Then it is meaningful to encode community information into
node representations.

To achieve this purpose, both M-NMF [37] and ComE
[58] jointly perform network embedding and community
detection. More specifically, on the one hand, they learn
node representations by embedding the network structure.
On the other hand, they learn the community membership
of each node. The joint learning is achieved by approximat-
ing community structures using the multiplication of node
representations and community representations.

7.3.3 Structural Balance

All the network embedding methods mentioned above are
designed for networks with only positive edges. But in
practice, there are negative relationships in some scenarios,
such as dis-like and dis-trust relationships. Hence, some
networks may be signed networks with both positive and
negative edges, such as Slashdot and Epinion [54]. Methods
mentioned above are not suitable for embedding signed
networks since negative links have different semantic mean-
ings from positive links. Moreover, it is less optimal to
separately embed the positive sub-network and the negative
sub-network. Hence, some methods explore the structural
balance theory, such as SiNE [59] and SNEA [60]

7.4 The Relevance of Cetera to Existing Methods

According to the three-dimensional taxonomy space in Fig.
4, the proposed Cetera takes homogeneous networks as
input, uses matrix factorization technique, and preserves the
strongest structural cohesion, i.e., clique, for those networks
which do not explicitly define multi-node interactions.

The major difference from existing methods in terms
of the dimension of input information is that Cetera ex-
plicitly models multi-node interactions as mentioned in the
introduction. The major difference in terms of technique is
that Cetera performs kernelized array factorization in stead
of matrix factorization without a kernel. Moreover, Cetera
assigns a consensus representation to each node in order
to jointly factorize multiple arrays. The major difference
in terms of network property is that Cetera explores the
strongest structural cohesion for the first time.

11

8 CONCLUSION AND FUTURE WORK

This paper proposes Cetera to explicitly model multi-node
proximities using multi-dimensional adjacency arrays in
network embedding for the first time. The proposed Cetera
learns node representations by factorizing these arrays by
employing sigmoid function as the kernel function. More-
over, motivated by the consensus principle of multi-view
learning, Cetera enforces consensus learning by fusing all
array-specific representations into consensus representa-
tions, which are expected to improve each type of array-
specific representations in return. Through the evaluation
on three real-world networks in link prediction and multi-
label classification, we demonstrate the advantage of Cetera
over six recent models. In the future, we plan to study how
to determine the optimal n in n-node proximities.

ACKNOWLEDGMENTS

The work described in this paper was partially supported
by National Key R&D Program of China, Project No:
2018YFB1004801, Hong Kong RGC Collaborative Research
Fund (CRF), Project No. C5026-18G, Hong Kong RGC Col-
laborative Research Fund (CRF), Project No. C6030-18G,
NSF through grants III-1526499, III-1763325, III-1909323,
SaTC1930941, and CNS-1626432.

REFERENCES

[1] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem
for social networks,” journal of the Association for Information Science
and Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[2] S. Fortunato, “Community detection in graphs,” Physics reports,
vol. 486, no. 3, pp. 75–174, 2010.

[3] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classifica-
tion in social networks,” in Social network data analytics. Springer,
2011, pp. 115–148.

[4] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[5] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the
24th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2015, pp. 1067–
1077.

[6] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016, pp.
855–864.

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[8] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in Proceedings of the 24th ACM
International on Conference on Information and Knowledge Manage-
ment. ACM, 2015, pp. 891–900.

[9] J. M. Stuart, E. Segal, D. Koller, and S. K. Kim, “A gene-
coexpression network for global discovery of conserved genetic
modules,” science, vol. 302, no. 5643, pp. 249–255, 2003.

[10] J. Moody and D. R. White, “Structural cohesion and embedded-
ness: A hierarchical concept of social groups,” American Sociological
Review, pp. 103–127, 2003.

[11] Q. Wang, Z. Wang, and X. Ye, “Equivalence between line and
matrix factorization,” arXiv preprint arXiv:1707.05926, 2017.

[12] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network
embedding as matrix factorization: Unifyingdeepwalk, line, pte,
and node2vec,” arXiv preprint arXiv:1710.02971, 2017.

[13] C. Xu, D. Tao, and C. Xu, “A survey on multi-view learning,” arXiv
preprint arXiv:1304.5634, 2013.

[14] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning overview:
Recent progress and new challenges,” Information Fusion, vol. 38,
pp. 43–54, 2017.

[15] A. Kumar, P. Rai, and H. Daume, “Co-regularized multi-view
spectral clustering,” in Advances in neural information processing
systems, 2011, pp. 1413–1421.

[16] J. C. Bezdek and R. J. Hathaway, “Some notes on alternating
optimization,” in AFSS International Conference on Fuzzy Systems.
Springer, 2002, pp. 288–300.

[17] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy
layer-wise training of deep networks,” Advances in neural informa-
tion processing systems, vol. 19, p. 153, 2007.

[18] L. Armijo, “Minimization of functions having lipschitz continuous
first partial derivatives,” Pacific Journal of mathematics, vol. 16, no. 1,
pp. 1–3, 1966.

[19] M. E. Newman, “The structure of scientific collaboration net-
works,” Proceedings of the National Academy of Sciences, vol. 98,
no. 2, pp. 404–409, 2001.

[20] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,” Journal of optimization theory and
applications, vol. 109, no. 3, 2001.

[21] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding
through large-scale heterogeneous text networks,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2015, pp. 1165–1174.

[22] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in Proceedings
of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2008.

[23] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee, “Measurement and analysis of online social networks,”
in Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement. ACM, 2007, pp. 29–42.

[24] J. Read, P. Reutemann, B. Pfahringer, and G. Holmes, “Meka: a
multi-label/multi-target extension to weka,” Journal of Machine
Learning Research, vol. 17, no. 21, pp. 1–5, 2016.

[25] J. B. Kruskal, “Multidimensional scaling by optimizing goodness
of fit to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp.
1–27, 1964.

[26] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction
by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–
2326, 2000.

[27] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduction,”
science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[28] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral
techniques for embedding and clustering,” in Advances in neural
information processing systems, 2002, pp. 585–591.

[29] G. E. Hinton and S. T. Roweis, “Stochastic neighbor embedding,”
in Advances in neural information processing systems, 2003, pp. 857–
864.

[30] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” arXiv preprint arXiv:1711.08752, 2017.

[31] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive sur-
vey of graph embedding: Problems, techniques and applications,”
arXiv preprint arXiv:1709.07604, 2017.

[32] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: A general framework for dimension-
ality reduction,” IEEE transactions on pattern analysis and machine
intelligence, vol. 29, no. 1, pp. 40–51, 2007.

[33] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE transactions on pattern
analysis and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[34] A. Talwalkar, S. Kumar, and H. Rowley, “Large-scale manifold
learning,” in Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[35] T. F. Cox and M. A. Cox, Multidimensional scaling. CRC press,
2000.

[36] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transi-
tivity preserving graph embedding.” in KDD, 2016, pp. 1105–1114.

[37] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding.” in AAAI, 2017, pp. 203–209.

[38] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017.

12

[39] T.-y. Fu, W.-C. Lee, and Z. Lei, “Hin2vec: Explore meta-paths in
heterogeneous information networks for representation learning,”
in Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management. ACM, 2017, pp. 1797–1806.

[40] Z. Huang and N. Mamoulis, “Heterogeneous information net-
work embedding for meta path based proximity,” arXiv preprint
arXiv:1701.05291, 2017.

[41] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S.
Huang, “Heterogeneous network embedding via deep architec-
tures,” in Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. ACM, 2015, pp.
119–128.

[42] M. Qu, J. Tang, J. Shang, X. Ren, M. Zhang, and J. Han, “An
attention-based collaboration framework for multi-view network
representation learning,” in Proceedings of the 2017 ACM on Confer-
ence on Information and Knowledge Management. ACM, 2017, pp.
1767–1776.

[43] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information,” in Proceedings
of the 24th International Joint Conference on Artificial Intelligence,
Buenos Aires, Argentina, 2015, pp. 2111–2117.

[44] X. Huang, J. Li, and X. Hu, “Accelerated attributed network em-
bedding,” in Proceedings of the 2017 SIAM International Conference
on Data Mining. SIAM, 2017, pp. 633–641.

[45] C. Tu, W. Zhang, Z. Liu, and M. Sun, “Max-margin deepwalk:
Discriminative learning of network representation.” in IJCAI, 2016,
pp. 3889–3895.

[46] J. Li, J. Zhu, and B. Zhang, “Discriminative deep random walk for
network classification.” in ACL (1), 2016.

[47] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” arXiv preprint
arXiv:1603.08861, 2016.

[48] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec:
Learning node representations from structural identity,” in Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. ACM, 2017, pp. 385–394.

[49] B. Shi and T. Weninger, “Proje: Embedding projection for knowl-
edge graph completion.” in AAAI, 2017, pp. 1236–1242.

[50] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Advances in neural information processing systems, 2014, pp.
2672–2680.

[51] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, “Graphgan: Graph representation learning with
generative adversarial nets,” arXiv preprint arXiv:1711.08267, 2017.

[52] Q. Dai, Q. Li, J. Tang, and D. Wang, “Adversarial network embed-
ding,” arXiv preprint arXiv:1711.07838, 2017.

[53] F. Heider, “Attitudes and cognitive organization,” The Journal of
psychology, vol. 21, no. 1, pp. 107–112, 1946.

[54] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks
in social media,” in Proceedings of the SIGCHI conference on human
factors in computing systems. ACM, 2010, pp. 1361–1370.

[55] C. Yang, M. Sun, Z. Liu, and C. Tu, “Fast network embedding
enhancement via high order proximity approximation.”

[56] M. Granovetter, “The strength of weak ties.-american journal of
sociology. vol. 78, is. 6. p. 1360-1380,” 1973.

[57] C. Yang, M. Sun, Z. Liu, and C. Tu, “Fast network embedding
enhancement via high order proximity approximation,” in Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI, 2017, pp. 19–25.

[58] S. Cavallari, V. W. Zheng, H. Cai, K. C.-C. Chang, and E. Cambria,
“Learning community embedding with community detection and
node embedding on graphs,” in Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management. ACM, 2017,
pp. 377–386.

[59] S. Wang, J. Tang, C. Aggarwal, Y. Chang, and H. Liu, “Signed
network embedding in social media,” in Proceedings of the 2017
SIAM International Conference on Data Mining. SIAM, 2017, pp.
327–335.

[60] S. Wang, C. Aggarwal, J. Tang, and H. Liu, “Attributed signed
network embedding,” in Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management. ACM, 2017, pp. 137–
146.

Linchuan Xu received the B.E. degree in in-
formation engineering from Beijing University
of Posts and Telecommunications in 2013, and
Ph.D. degree from Department of Computing of
the Hong Kong Polytechnic University, in 2018.
He is currently a post-doctoral researcher of De-
partment of Mathematical Informatics, Graduate
School of Information Science and Technology
at the University of Tokyo. His current research
interests include data mining and big data with
emphasis on network data analytics and medical

data analytics.

Jiannong Cao received the B.Sc. degree
in computer science from Nanjing University,
China, in 1982, and the M.Sc. and Ph.D. degrees
in computer science from Washington State Uni-
versity, USA, in 1986 and 1990 respectively. He
is currently a Chair Professor of Department
of Computing at The Hong Kong Polytechnic
University, Hong Kong. His research interests
include parallel and distributed computing, wire-
less networks and mobile computing, big data
and cloud computing, pervasive computing, and

fault tolerant computing. He has co-authored 5 books in Mobile Com-
puting and Wireless Sensor Networks, co-edited 9 books, and published
over 500 papers in major international journals and conference proceed-
ings. He is a fellow of IEEE, a distinguished member of ACM, a senior
member of China Computer Federation (CCF).

Xiaokai Wei received the B.S. degree from Bei-
jing University of Posts and Telecommunications
and Ph.D. degree from University of Illinois at
Chicago, both in computer science. He joined
Facebook Inc. as a research scientist in 2016.
His main research areas are data mining and
machine learning, especially feature selection
and social network mining. He has published
more than 20 papers in refereed journals and
conferences, such as WWW, WSDM, AAAI, AIS-
TATS, ICDM, SDM, ECML/PKDD.

Philip S. Yu received the B.S. Degree in E.E.
from National Taiwan University, the M.S. and
Ph.D. degrees in E.E. from Stanford University,
and the M.B.A. degree from New York University.
He is a Distinguished Professor in Computer
Science at the University of Illinois at Chicago
and also holds the Wexler Chair in Information
Technology. Before joining UIC, Dr. Yu was with
IBM, where he was manager of the Software
Tools and Techniques department at the Watson
Research Center. His research interest is on big

data, including data mining, data stream, database and privacy. He has
published more than 1,000 papers in refereed journals and conferences.
He holds or has applied for more than 300 US patents. Dr. Yu is a Fellow
of the ACM and the IEEE. Dr. Yu is the recipient of ACM SIGKDD 2016
Innovation Award for his influential research and scientific contributions
on mining, fusion and anonymization of big data, the IEEE Computer
Society?s 2013 Technical Achievement Award for “pioneering and fun-
damentally innovative contributions to the scalable indexing, querying,
searching, mining and anonymization of big data”, and the Research
Contributions Award from IEEE Intl. Conference on Data Mining (ICDM)
in 2003 for his pioneering contributions to thefield of data mining. He
also received the ICDM 2013 10-year Highest-Impact Paper Award, and
the EDBT Test of Time Award (2014). He was the Editor-in-Chiefs of
ACM Transactions on Knowledge Discovery from Data (2011-2017) and
IEEE Transactions on Knowledge and Data Engineering (2001-2004).

