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ABSTRACT
Given a graph G where each node is associated with a set of at-
tributes, and a parameterk specifying the number of output clusters,
k-attributed graph clustering (k-AGC) groups nodes in G into k dis-
joint clusters, such that nodes within the same cluster share similar
topological and attribute characteristics, while those in different
clusters are dissimilar. This problem is challenging on massive
graphs, e.g., with millions of nodes and billions of attribute values.
For such graphs, existing solutions either incur prohibitively high
costs, or produce clustering results with compromised quality.

In this paper, we propose ACMin , an efficient approach to k-
AGC that yields high-quality clusters with costs linear to the size of
the input graph G. The main contributions of ACMin are twofold:
(i) a novel formulation of the k-AGC problem based on an attributed
multi-hop conductance quality measure custom-made for this prob-
lem setting, which effectively captures cluster coherence in terms
of both topological proximities and attribute similarities, and (ii) a
linear-time optimization solver that obtains high quality clusters
iteratively, based on efficient matrix operations such as orthogonal
iterations, an alternative optimization approach, as well as an ini-
tialization technique that significantly speeds up the convergence
of ACMin in practice.

Extensive experiments, comparing 11 competitors on 6 real
datasets, demonstrate that ACMin consistently outperforms all
competitors in terms of result quality measured against ground
truth labels, while being up to orders of magnitude faster. In par-
ticular, on the Microsoft Academic Knowledge Graph dataset with
265.2 million edges and 1.1 billion attribute values, ACMin outputs
high-quality results for 5-AGC within 1.68 hours using a single
CPU core, while none of the 11 competitors finish within 3 days.
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• Mathematics of computing → Graph algorithms; • Infor-
mation systems→ Clustering.
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1 INTRODUCTION
Node clustering is a fundamental task in graph mining [28, 39,
44, 61], and finds important real-world applications, e.g., commu-
nity detection in social networks [12], functional cartography of
metabolic networks [15], and protein grouping in biological net-
works [49]. Traditionally, node clustering is done based on the
graph topology, i.e., by grouping together well-connected nodes.
This approach, however, is often insufficient to obtain high-quality
clusters [13, 22], especially when the graph comes with attributes
associated to nodes. In such attributed graphs, well-connected nodes
tend to share similar attributes; meanwhile, nodes with similar at-
tributes are also likely to be well-connected, as observed in [26, 27].
Therefore, to obtain high-quality node clustering, it is important to
consider both graph topology and node attributes. The resulting
attributed graph clustering has use cases such as gene clustering
in biological networks [18], group-oriented marketing in commu-
nication networks [54], service/app recommendation, and online
advertising in social networks [23, 30].

This paper focuses on k-attributed graph clustering (k-AGC),
which takes as input an attributed graph G and a parameter k , and
aims to partition G into k disjoint node clusters C1,C2, · · · ,Ck ,
such that the nodes within the same cluster Ci are not only well-
connected to each other, but also share similar attribute values,
whereas the nodes in different clusters are distant to each other
and share less attributes. It is highly challenging to devise a k-AGC
algorithm that yields high-quality clusters, especially on massive
graphs, e.g., with millions of nodes and billions of attribute values.
Most existing solutions (e.g., [2, 7, 10, 29, 33, 36, 37, 42, 45, 52–54, 62,
64, 67, 68]) fail to scale to such large graphs, since they either incur
prohibitive computational overhead, or produce clustering results
with compromised quality. For instance, a common methodology
[7, 10, 36, 67] relies onmaterializing the attribute similarity between
every pair of nodes in the input graph G, and, thus, requires O(n2)
space for n nodes, which is infeasible for a graph with numerous
nodes. Methods based on probabilistic models (e.g., [21, 40, 54, 62,
63]) generally require immense costs on large graphs to estimate
the likelihood parameters in their respective optimization programs.
Among the faster solutions, some (e.g., [7, 33, 37, 42, 45]) reduce
the problem to non-attributed graph clustering by re-weighting
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each edge (u,v) in G based on the attribute similarity between
nodesu andv . This approach, however, ignores attribute similarities
between nodes that are not directly connected, and, consequently,
suffers from severe result quality degradation. Finally, k-AGC could
be done by first applying attributed network embedding to the input
graph (e.g., [17, 31, 34, 55–57, 60, 66]) to obtain an embedding vector
for each node, and subsequently feeding the resulting embeddings
to a non-graph method such as k-Means clustering [19, 41]. This
two-stage pipeline leads to sub-optimal result quality, however,
since the node embedding methods do not specifically target for
graph clustering, as demonstrated in our experiments.

Facing the challenge of k-AGC on massive attributed graphs,
we propose ACMin (short for Attributed multi-hop Conductance
Minimization), a novel solution that seamlessly incorporates both
graph topology and node attributes to identify high-quality clus-
ters, while being highly scalable and efficient on massive graphs
with numerous nodes, edges and attributes. Specifically, ACMin
computes k-AGC by solving an optimization problem, in which
the main objective is formulated based on a novel concept called
average attributed multi-hop conductance, which is a non-trivial
extension to conductance [6, 61], a classic measure of node cluster
coherence. The main idea is to map both node relationships (i.e.,
connections via edges) and similarities (i.e., common attributes) to
motions of a random walker. Then, we show that the correspond-
ing concept of conductance in our setting, i.e., attributed multi-hop
conductance, is equivalent to the probability that a random walker
starting from a node in a cluster (say, C) terminates at any node
outside the clusterC . Accordingly, our goal is to identify a node par-
titioning scheme that minimizes the average attributed multi-hop
conductance among all k clusters in the result.

Finding the exact solution to the above optimization problem
turns out to be infeasible for large graphs, as we prove its NP-
hardness. Hence, ACMin tackles the problem via an approximate
solution with space and time costs linear to the size of the input
graph. In particular, there are three key techniques in the ACMin
algorithm. First, instead of actually sampling randomwalks, ACMin
converts the optimization objective into its equivalent matrix form,
and iteratively refines a solution via efficient matrix operations,
i.e., orthogonal iterations [43]. Second, the ACMin solver applies
an alternative optimization approach and randomized SVD [16] to
efficiently generate and refine clustering results. Third, ACMin in-
cludes an effective greedy initialization technique that significantly
speeds up the convergence of the iterative process in practice.

We formally analyze the asymptotic time and space complexities
of ACMin , and evaluate its performance thoroughly by comparing
against 11 existing solutions on 6 real datasets. The quality of a
clusteringmethod’s outputs is evaluated by both (i) comparing them
with ground truth labels, and (ii) measuring their attributed multi-
hop conductance, which turns out to agree with (i) on all datasets in
the experiments. The evaluation results demonstrate that ACMin
consistently outperforms its competitors in terms of clustering
quality, at a fraction of their costs. In particular, on the Flickr dataset,
the performance gap between ACMin and the best competitor is as
large as 28.6 percentage points, measured as accuracy with respect
to ground truth. On the Microsoft Academic Knowledge Graph
(MAG) dataset with 265.2 million edges and 1.1 billion attribute

values, ACMin terminates in 1.68 hours for a 5-AGC task, while
none of the 11 competitors finish within 3 days.

The rest of this paper is organized as follows. Section 2 presents
our formulation of the k-AGC problem, based on two novel con-
cepts: attributed random walks and attributed multi-hop conduc-
tance. Section 3 overviews the proposed solution ACMin and pro-
vides the intuitions of the algorithm. Section 4 describes the com-
plete ACMin algorithm and analyzes its asymptotic complexity.
Section 5 contains an extensive set of experimental evaluations.
Section 6 reviews related work, and Section 7 concludes the paper
with future directions.

2 PROBLEM FORMULATION
Section 2.1 provides necessary background and defines common
notations. Section 2.2 describes a random walk model that incorpo-
rates both topological proximity and attribute similarity informa-
tion. Section 2.3 defines the novel concept of attributed multi-hop
conductance, which forms the basis of the objective function in our
k-AGC problem formulation, presented in Section 2.4.

2.1 Preliminaries
Let G = (V ,EV ,R,ER ) be an attributed graph consisting of a node
setV with cardinalityn, a set of edges EV of sizem, each connecting
two nodes in V , a set of attributes1 R with cardinality d , and a set
of node-attribute associations ER , where each element is a tuple
(vi , r j ,wi, j ) signifying that node vi ∈ V is directly associated with
attribute r j ∈ R with a weight wi, j . Without loss of generality,
we assume that each edge (vi ,vj ) ∈ EV is directed; an undirected
edge (vi ,vj ) is simply converted to a pair of directed edges with
opposing directions (vi ,vj ) and (vj ,vi ). A high-level definition of
the k-AGC problem is as follows.

Definition 2.1 (k-Attributed Graph Clustering (k-AGC) [67]).
Given an attributed graph G and the number k of clusters, k-
AGC aims to partition the node set V of G into disjoint subsets:
C1,C2, · · · ,Ck , such that (i) nodes within the same cluster Ci are
close to each other, while nodes between any two clusters Ci ,Cj
are distant from each other; and (ii) nodes within the same cluster
Ci have homogeneous attribute values, while the nodes in different
clusters may have diverse attribute values.

Note that the above definition does not include a concrete opti-
mization objective that quantifies node proximity and attribute ho-
mogeneity. As explained in Sections 2.2-2.4, the design of effective
cluster quality measures is non-trivial, and is a main contribution
of this paper. The problem formulation is completed later in Section
2.4 with a novel objective function.

Regarding notations, we denote matrices in bold uppercase, e.g.,
M. We use M[i] to denote the i-th row vector of M, and M[:, j] to
denote the j-th column vector ofM. In addition, we useM[i, j] to
denote the element at the i-th row and j-th column of M. Given an
index set I, we let M[I] (resp. M[:,I]) be the matrix block of M
that contains the row (resp. column) vectors of the indices in I.

Let A be the adjacency matrix of the input graph G, i.e.,
A[vi ,vj ] = 1 if (vi ,vj ) ∈ EV , otherwise A[vi ,vj ] = 0. Let D be the
1Following common practice in the literature [54, 60], we assume that the attributes
have already been pre-processed, e.g., categorical attributes such as marital status are
one-hot encoded into binary ones.
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Table 1: Frequently used notations.
Notation Description
G=(V , EV , R, ER ) A graph G with node set V , edge set EV , attribute set R , and

node-attribute association set ER .
n, d The number of nodes (i.e., |V |) and the number of attributes (i.e.,

|R |) inG , respectively.
k The number of clusters.
A, D, R The adjacency, out-degree and attribute matrices ofG .
PV , PR The topological transition and attributed transition matrices of

G , respectively.
α, β Stopping and attributed branching probabilities.
S The attributed random walk probability matrix (see Eq. (2)).
F The top-k eigenvectors of S.
Y, Ψ(Y) A k ×n node-cluster indicator (i.e., NCI) and the average attrib-

uted multi-hop conductance (i.e., AAMC) of Y (see Eq. (8)).

diagonal out-degree matrix of G, i.e., D[vi ,vi ] =
∑
vj ∈V A[vi ,vj ].

We define the topological transition matrix of G as PV = D−1A.
Furthermore, we define an attribute matrix R ∈ Rn×d , such that
R[vi , r j ] = wi, j is the weight associated with the entry (vi , r j ,
wi j ) ∈ ER . We refer to R[vi ] as node vi ’s attribute vector. Also, let
dout (vi ) anddin (vi ) represent the out-degree and in-degree of node
vi in G, respectively. Table 1 lists the frequently used notations
throughout the paper.

2.2 Attributed RandomWalk Model
Random walk is an effective model for capturing multi-hop rela-
tionships between nodes in a graph [32]. Common definitions of
random walk, e.g., random walk with restart (RWR) [25, 47], con-
sider only graph topology but not node attributes. Hence, we devise
a new attributed random walk model that seamlessly integrates
topological proximity and attribute similarity between nodes in a
coherent framework, which plays a key role in our formulation of
the k-AGC problem, elaborated later.

Given an attributed graphG , we first define the attributed transi-
tion probability and topological transition probability between a pair
of nodes vi and vj in G. We say that vi and vj are connected via
attribute rx , iff.vi andvj have a common attribute rx . For example,
in Figure 1, nodesv1 andv4 are connected via three attributes r1−r3
(shown in blue dashed lines). The attributed transition probabil-
ity from vi to vj via rx is defined as R[vi ,rx ]·R[vj ,rx ]∑

vl ∈V
∑
ry ∈R R[vi ,ry ]·R[vl ,ry ] ,

which corresponds to the motion of the random walker that hops
from vi to vj through a “bridge” rx . Accordingly, we define the
attributed transition probability matrix PR of G as:

PR [vi ,vj ] = R[vi ]·R[vj ]⊤∑
vl ∈V R[vi ]·R[vl ]⊤ . (1)

Intuitively, PR [vi ,vj ] models the attributed transition probability
from vi to vj via any attribute in R.

Meanwhile, following conventional random walk definitions, for
any two nodesvi andvj that are directly connected by an edge inG ,
i.e., (vi ,vj ) ∈ EV , the topological transition probability PV [vi ,vj ]
fromvi tovj is 1

dout (vi ) , wheredout (vi ) is the out-degree of nodevi .
The topological transition matrix PV can then be obtained by PV =
D−1A, where D and A are the node degree and adjacency matrices
ofG , respectively. Based on the above concepts, we formally define
attributed random walk as follows.

v2v2
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v3v3

v4v4

v5v5

v6v6

v7v7

r1r1

r2r2

r3r3
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Figure 1: Example attributed graph and clustering schemes.
Definition 2.2 (Attributed Random Walk). Given an attributed

graphG , a stopping probability α ∈ (0, 1), and an attributed branch-
ing probability β ∈ (0, 1), an attributed random walk starting from
node vi in G performs one of the following actions at each step:
(1) with probability α , stop at the current node (denoted as vj ),
(2) with probability 1 − α , jump to another node vl as follows:
(a) (attributed transition) with probability β , jump to another

node vl via any attribute with probability PR [vj ,vl ],
(b) (topological transition) with probability 1 − β , jump to an

out-neighbor vl of vj with probability PV [vj ,vl ].
Based on Definition 2.2, the following lemma2 shows how to

directly compute the probability S[vi ,vj ] that an attributed random
walk starting from node vi stops at node vj .

Lemma 2.3. Given an attributed graphG, the probability that an
attributed random walk starting from node vi stops at node vj is

S[vi ,vj ] = α
∑∞

ℓ=0 (1 − α)ℓ · ((1 − β) · PV + β · PR )ℓ[vi ,vj ]. (2)

Note that computing S directly using Eq. (2) is inefficient, which
involves sampling numerous attributed random walks. Instead, the
proposed solution ACMin , presented later, computes the probabil-
ities in S based on an alternative matrix representation, without
simulating any attributed random walk.

2.3 Attributed Multi-Hop Conductance
Conductance is widely used to evaluate the quality of a node cluster
in a graph [6, 61]. A smaller conductance indicates a more coherent
cluster, and vice versa. Specifically, given a cluster C of graph G,
the conductance of C , denoted as Φ̂(C), is defined as follows.

Φ̂(C) = |cut(C) |
min{vol(C),vol(V \C)} , (3)

where vol(C) = ∑
vi ∈C dout (vi ), i.e., the sum of the out-degrees

of all nodes in C , and cut(C) = {(vi ,vj ) | vi ∈ C,vj ∈ V \C}, i.e.,
the set of outgoing edges with an endpoint in C and the other
in V \C . Intuitively, Φ̂(C) is smaller when C has fewer outgoing
edges linking to the nodes outside the cluster (i.e., lower inter-
cluster connectivity), and more edges with both endpoints within
C (higher intra-cluster connectivity).

In our setting, the classic definition of conductance Φ̂(C) is inade-
quate, since it captures neither attribute information nor multi-hop
relationships between nodes. Figure 1 illustrates an example in
which Φ̂(C) leads to counter-intuitive cluster quality measurements.
The example contains nodes v1-v7 and attributes r1-r3. Suppose
that we aim to partitionG into two clusters. As shown in Figure 1b,
node v4 is mutually connected to nodes v2 and v3, and also shares
2All proofs appear in Appendix A
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many attributes (i.e., r1, r2, and r3) and neighbors (i.e., v2 and v3)
with node v1; in contrast, among nodes v5-v7, v4 is only mutually
connected to v6, and share no common attributes with them. Imag-
ine that this is in a social media setting where each node represents
a user, and each edge indicates a follow relationship; then, v4 is
clearly closer to nodesv1-v3 than to nodesv5-v7, due to its stronger
connections and shared attributes to the former group. However,
the conductance definition in Eq. (3) leads to the counter-intuitive
conclusion that favors the clustering scheme C1 = {v1,v2,v3} and
C2 = {v4,v5,v6,v7} in Figure 1a overC ′1 andC

′
2 in Figure 1b, since

the conductance Φ̂(C1) = Φ̂(C2) = 1
3 ≤ Φ̂(C ′1) = Φ̂(C ′2) = 2

5 .
To address the above issue, we propose a new measure of cluster

quality dubbed attributed multi-hop conductance, which can be
viewed as an adaptation of conductance to the problem setting
of k-AGC. Specifically, given a cluster C of an attributed graph G,
suppose that we perform nr attributed random walks from each
nodevi inC . Letw(vi ,vj ) be the number of walks fromvi stopping
at vj . Then, we can use the following quantity instead of Eq. (3) as
a measure of cluster coherence:

E

[∑
vi ∈C,vj ∈V \C w (vi ,r j )

nr · |C |

]
=

∑
vi ∈C,vj ∈V \C E[

w (vi ,vj )
nr

]
|C | .

Intuitively, the above value quantifies the expected portion of the at-
tributed random walks escaping fromC , i.e., stopping at any outside
node vj ∈ V \C . Hence, the smaller the number of escaped walks,
the higher the cluster coherence. Further, observe that E[w (vi ,vj )nr ]
corresponds to the probability that an attributed random walk start-
ing from vi terminates at vj , i.e., S[vi ,vj ] in Eq. (2). Accordingly,
we arrive at the following definition of attributed multi-hop con-
ductance Φ(C).

Definition 2.4 (Attributed Multi-Hop Conductance). Given a clus-
terC of an attributed graphG , the attributed multi-hop conductance
Φ(C) of the cluster C is defined as

Φ(C) = ∑
vi ∈C,vj ∈V \C

S[vi ,vj ]
|C | . (4)

2.4 Objective Function
Given an input attributed graphG , we aim to partition all nodes into
k disjoint clustersC1,C2, · · · ,Ck , such that their average attributed
multi-hop conductance (AAMC) ϕ of the k clusters is minimized, as
follows.

ϕ∗ = minC1,C2, · · · ,Ck
∑k
i=1 Φ(Ci )

k . (5)
The above objective, in combination with Definition 2.1, com-

pletes our formuation of the k-AGC problem. As an example, in
Figure 1, let α = 0.2, β = 0.5. Then, we have Φ(C1) = 0.121,Φ(C2) =
0.125 for the clustersC1,C2 in Figure 1a, andΦ(C ′1) = 0.025,Φ(C ′2) =
0.185 for the clustersC ′1,C

′
2 in Figure 1b. The AAMC values of these

two clustering results are Φ(C1)+Φ(C2)
2 = 0.123 > Φ(C ′1)+Φ(C ′2)

2 =

0.105, which indicate thatC ′1,C
′
2 are a better clustering ofG , which

agrees with our intuition explained in Section 2.3.

3 SOLUTION OVERVIEW
This section provides a high-level overview of the proposed solution
ACMin for k-AGC computation, and explains the intuitions behind
the algorithm design. The complete ACMin method is elaborated
later in Section 4.

First, we transform the optimization objective in Eq. (5) to an
equivalent form that is easier to analyze. For this purpose, we
introduce the following binary node-cluster indicator (NCI) Y ∈
⊮k×n to represent a clustering result:

Y[Ci ,vj ] =
{
1 vj ∈ Ci ,
0 vj ∈ V \Ci ,

(6)

whereCi is the i-th cluster and vj is the j-th node in the node setV
of the input graphG . Based on NCI Y, the following lemma presents
an equivalent form of the AAMC objective function in Eq. (5).

Lemma 3.1. Given a clustering result C1,C2, · · · ,Ck , represented
by NCI Y, the AAMC of C1,C2, · · · ,Ck can be obtained by:∑k

i=1 Φ(Ci )
k = 2

k · trace(((YY⊤)−
1
2 Y) · (I − S) · ((YY⊤)− 1

2 Y)⊤) (7)
Then, our optimization objective for k-AMC is transformed to:

ϕ∗ = min
Y∈⊮k×n

Ψ(Y) (8)

where Ψ(Y) = 2
k · trace(((YY⊤)−

1
2 Y) · (I − S) · ((YY⊤)− 1

2 Y)⊤)
Note that Eq. (8) is equivalent to Eq. (5), and yet the former

is more friendly to analysis. In particular, we have the following
negative result.

Lemma 3.2. The optimization problem of finding the optimal val-
ues of Y from the objective function in Eq. (8) is NP-hard. □

Accordingly, to devise a solution for k-AGC on massive graphs,
we focus on approximate techniques for optimizing our objective.
Observe that the NP-hardness of our objective function in Eq. (8)
is due to the requirement that elements of the NCI are binary, i.e.,
Y ∈ ⊮k×n . Thus, we apply a common trick that relaxes NCI el-
ements from binary to fractional, i.e., Y ∈ Rk×n . The following
lemma shows a sufficient condition to find the optimal values of
fractional NCI Y: when the row vectors of (YY⊤)− 1

2 Y are the top-k
eigenvectors of matrix S (defined in Lemma 2.3), i.e., the k eigen-
vectors corresponding to the k largest eigenvalues of S.

Lemma 3.3. Assume that we relax the requirement Y ∈ ⊮k×n to
Y ∈ Rk×n . Let F ∈ Rk×n denote the matrix consisting of the top-
k eigenvectors of S. Then, the optimal value of Y for the objective
minY∈Rk×n Ψ(Y) is obtained when (YY⊤)− 1

2 Y = F, which leads to
a value of Ψ(Y) no larger than the solution of the original optimal
objective ϕ∗ in Eq. (8). □

The optimal value of fractional Y, however, does not directly
correspond to a clustering solution, which requires the NCI to be
binary. The following lemma points to a way to obtain a good
approximation of the optimal binary Y ∈ ⊮k×n .

Lemma 3.4. Given the top-k eigenvectors F of S, if we obtain a
binary NCI Y that satisfies

min ∥XF − (YY⊤)− 1
2 Y∥2F s.t.Y ∈ ⊮k×n , X⊤X = I, (9)

then Ψ(Y) → ϕ∗ in Eq. (8). □

Based on Lemmata 3.3 and 3.4, to approximate the optimal binary
NCI Y, we can first compute the top-k eigenvectors F of S, and
then solve for the best NCI Y that optimizes Eq. (9). The proposed
algorithm ACMin follows this two-step approach.

There remain two major challenges in realizing the above idea:
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Algorithm 1: ACMin
Input: G, k, α, β .
Output: Y.

1 Compute R̂ by Eq. (10);
2 Y0 ← InitNCI(PV , R̂, R, α, β );
3 F0 ← (Y0Y⊤0 )−

1
2 Y0;

4 Y← Y0;
5 ϕ ← AppoxAAMC(PV , R̂, R, α, β, Y0);
6 for ℓ ← 1 to te do
7 Zℓ ← (1 − β ) · PV F⊤

ℓ−1 + β · R̂(R⊤F⊤ℓ−1);
8 Fℓ ← QR(Zℓ );
9 if Fℓ = Fℓ−1 then break ;

10 Yℓ ← GenNCI(Fℓ );
11 ϕℓ ← AppoxAAMC(PV , R̂, R, α, β, Yℓ );
12 if ϕℓ < ϕ then ϕ ← ϕℓ, Y← Yℓ ;
13 return Y;

• How to compute F for large graphs. Note that it is prohibitively ex-
pensive to compute F directly by performing eigen-deomposition
on a materialized matrix S (defined in Eq. (2)), which would con-
sume Ω(n2) space and Ω(n2k) time.
• Given F, how to efficiently compute Y ∈ ⊮k×n based on Eq. (9),
which in itself is a non-trivial optimization problem.

To address the above challenges, the proposed method ACMin
contains three key techniques. First, to compute the top-k eigen-
vectors F of S, ACMin employs a scalable, iterative process based
on orthogonal iterations [43], which does not need to materialize S.
Second, to find the best NCI Y, ACMin applies an alternative opti-
mization approach and randomized SVD [16] to efficiently optimize
Eq. (9). Third, to acclerate the above iterative processes, ACMin
includes an effective greedy algorithm to compute a high-quality
initial value of Y, which significantly speeds up convergence in
practice. Overall, ACMin only requires space and time linear to the
size of the input graph G. The next section presents the detailed
ACMin algorithm and complexity analysis.

4 DETAILED ACMin ALGORITHM
This section presents the detailed ACMin algorithm, shown in Al-
gorithm 1. In the following, Sections 4.1-4.3 detail the three most
important components of ACMin : the computation of top-k eigen-
vectors F, binary NCI Y, and a greedy initialization of Y, respec-
tively. Section 4.4 summarizes the complete ACMin algorithm and
analyzes its complexity.

4.1 Computing Top-k Eigenvectors F
Recall from Section 3 that ACMin follows a two-step strategy that
first computes F, the top-k eigenvectors of S (Eq. (2)). Since materi-
alizing S is infeasible on large graphs, this subsection presents our
iterative procedure for computing F without materializing S, which
corresponds to Lines 6-9 of Algorithm 1.

First of all, the following lemma reduces the problem of comput-
ing F to computing the top-k eigenvectors of (1 − β) · PV + β · PR .

Lemma 4.1. Let F be the top-k eigenvectors of (1− β) · PV + β · PR .
Then, F is also the top-k eigenvectors of S. □

Computing the exact top-k eigenvectors of (1 − β) · PV + β · PR
is still rather challenging, however, since materializing PR also re-
quires Ω(n2) space. To tackle this issue, ACMin applies orthogonal
iterations [43], as follows. First, ACMin computes a normalized
attribute vector R̂[vi ] for each node vi in the graph using the fol-
lowing equation, leading to matrix R̂ (Line 1 in Algorithm 1).

R̂[vi ] = R[vi ]
R[vi ]·r⊤ ∀vi ∈ V ,where r = ∑

vj ∈V R[vj ]. (10)

Comparing above equation with Eq. (1), it follows that PR = R̂R⊤.
Hence, (1 − β) · PV + β · PR in Lemma 4.1 can be transformed to
(1 − β) · PV + β · R̂R⊤, eliminating the need to materialize PR .

Next, suppose that we are currently at the start of the ℓ-th it-
eration (Line 6 of Algorithm 1) with Fℓ−1 obtained in previous
iteration. Note that in the first iteration, F0 is computed from an
initial value Y0 of Y, elaborated in Section 4.3. ACMin computes
Zℓ = ((1−β) ·PV +β · R̂R⊤)F⊤ℓ−1 = (1−β) ·PV F⊤ℓ−1+β · R̂ · (R⊤F⊤ℓ−1)
(Line 7 of the algorithm), which can be done inO(k · (|EV | + |ER |))
time. Then, ACMin employs QR decomposition [9] (Line 8) to de-
compose Zℓ into two matrices: Fℓ and Λℓ , such that Zℓ = F⊤

ℓ
· Λℓ ,

where Λℓ is an upper-triangular matrix, and Fℓ is orthogonal (i.e.,
FℓF⊤ℓ = I). Clearly, the QR decomposition step can be done in
O(nk2) time, leading toO(k · (|EV | + |ER |)+nk2) total time for one
iteration in the computation of F.

Suppose that Fℓ converges in iteration ℓ = tc , i.e., Ftc is the same
as Ftc−1 (Line 9). Then, we have Zℓ = ((1 − β) · PV + β · PR )F⊤tc =
F⊤tc ·Λtc . Considering that Λℓ is an upper-triangular matrix, and Fℓ
is orthogonal (i.e., FℓF⊤ℓ = I), according to [43], we conclude that
Ftc is the top-k eigenvectors of (1−β) ·PV +β ·PR and the diagonal
elements of Λtc are the top-k eigenvalues. According to Lemma 4.1,
the row vectors of Ftc are also the top-k eigenvectors of S.

Note that throughout the process for computing F, there is no
materialization of either S or PR , which avoids the corresponding
quadratic space requirement. Meanwhile, with a constant k , each
iteration takes time linear to the size of the input graph G, which
is far more scalable than decomposing S directly. In practice, the
number of required iterations can be significantly reduced through
a good initialization, detailed later in Section 4.3.

4.2 Computing Binary NCI Y
As described in Section 3, after obtaining the top-k eigenvectors
F of S, ACMin proceeds to compute the binary NCI Y by solving
the optimization problem in Eq. (9). In Algorithm 1, this is done in
Lines 10-12. Note that inACMin , the computation ofY is performed
once in every iteration for computing F, rather than only once after
the final value of F is obtained. This is because our algorithm is
approximate, and, thus, the final value of F does not necessarily
lead to the best clustering quality, measured by AAMC (Section
2.4). Hence, ACMin computes Yℓ and the corresponding AAMC
ϕℓ for each iteration ℓ, and udpate the current best result Y and ϕ
whenever a better result is found (Lines 11-12 in Algorithm 1).

Next we clarify the GenNCI function, shown in in Algorithm 2,
which computes the binary NCI Yℓ ∈ ⊮k×n with Fℓ in the current
iteration ℓ. First, based on properties of matrix trace, we transform
the optimization objective in Eq. (9), as follows.

∥XF − (YY⊤)− 1
2 Y∥2F = 2k − 2 · trace((YY⊤)− 1

2 YF⊤X⊤). (11)
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Algorithm 2: GenNCI
Input: F.
Output: Y.

1 X′ ← I, X← I;
2 for ℓ ← 1 to tm do
3 for i ← 1 to k do Compute γi by Eq. (15) ;
4 for vj ∈ V do
5 Pick ci by Eq. (14);
6 Y[:, vj ] ← 0, Y[ci , vj ] ← 1;

7 U, Σ, V← SVD((YY⊤)− 1
2 YF⊤);

8 X′ ← X, X← U · V⊤;
9 if X = X′ then break;

10 return Y;

GenNCI applies an alternative optimization approach to minimize
Eq. (11). Specifically, the algorithm updates two variables, X and Y
in an alternating fashion, each time fixing one of them and updating
the other, according to the following rules.
Updating Y with X fixed. Given F, according to Eq. (11), with X
fixed, the function to optimize becomes:

max
Y∈⊮K×n

trace((YY⊤)− 1
2 YF⊤X⊤) (12)

LetM = F⊤X⊤. Eq. (12) is equivalent to

maxY∈⊮k×n
∑
vj ∈V

∑k
i=1

(
Y[ci ,vj ] · M[vj ,ci ]√∑

vl ∈V Y[ci ,vl ]

)
. (13)

Since Y ∈ ⊮k×n , for each column Y[:,vj ] (vj ∈ V ), we update the
entry at ci of Y[:,vj ] (i.e., Y[ci ,vj ]) to 1, and 0 everywhere else,
where ci is picked greedily as follows:

ci = arg max
1≤cl ≤k

[
(1−Y[cl ,vj ])·M[vj ,cl ]√

γ 2
l +1

+
Y[cl ,vj ]·M[vj ,cl ]

γl

]
, (14)

where γl =
√∑

vz ∈V Y[cl ,vz ], (15)

meaning that we always update each column Y[:,vj ] (vj ∈ V ) such
that the objective function in Eq. (12) is maximized. Since both
M = F⊤X⊤ and γl can be precomputed at the beginning of each
iteration, which takes O(nk2) time, it takes O(nk) time to update
the whole Y in each iteration.
Updating X with Y fixed. Given F, according to Eq. (11), with Y
fixed, the function to optimize becomes:

max
X⊤X=I

trace((YY⊤)− 1
2 YF⊤X⊤) (16)

The following lemma shows that the optimal X in Eq. (16) can
be obtained via singular value decomposition (SVD) of matrix
(YY⊤)− 1

2 YF⊤.

Lemma 4.2. The optimal solution to the objective function in
Eq. (16) is X = UV⊤, where U and V are the left and right singular
vectors of (YY⊤)− 1

2 YF⊤ respectively. □

To compute SVD of (YY⊤)− 1
2 YF⊤ ∈ Rk×k , GenNCI employs the

randomized SVD algorithm [16], which finishes in O(k3) time.
With the above update rules for X and Y respectively, GenNCI

(Algorithm 2) iteratively updates X and Y for a maximum of tm

Algorithm 3: InitNCI
Input: PV , α, β .
Output: Y0.

1 Y0 ← 0, Vτ ← ∅;
2 V ′τ ← {vτ1, vτ2, · · · , vτ5k } where vτi is the node in V with i-th

largest in-degree;
3 Π0 ← I[:, V ′τ ], t ← 1

α ;
4 for ℓ ← 1 to t do Πℓ ← (1 − α ) · PVΠℓ−1 + Π0 ;
5 Πt ← α · Πt ;
6 for vτ ∈ V ′τ do compute

∑
vj ∈V Πt [vj , vτ ];

7 Select the top-k nodes vτ ∈ V ′τ with the largest
∑
vj ∈V Πt [vj , vτ ]

into Vτ as the k center nodes;
8 for vj ∈ V do select vτi ∈ Vτ with the largest Πt [vj , vτi ], and

set Y0[i, vj ] ← 1;
9 return Y0;

iterations (Lines 2-9). In our experiments, we found that setting
tm to 50 usually leads to satisfactory performance. Note that the
iterations may converge earlier than tm iterations (Line 9). Since up-
dating Y and X takes O(nk2) and O(k3) time respectively, GenNCI
terminates within O(tm · (nk2 + k3)) time.

4.3 Effective NCI Initialization
Next we clarify the computation of the initial value Y0 of the NCI
(Line 2 of Algorithm 1). If we simply assign random values to
elements of Y0, the iterative process in ACMin from Lines 6 to
12 would converge slowly. To address this issue, we propose an
effective greedy initialization technique InitNCI, which usually
leads to fast convergence of ACMin in practice, as demonstrated in
our experiments in Section 5.4.

Given a clusterC , recall that its attributedmulti-hop conductance
Φ(C) (Eq. (4)) is defined based on the intuition that Φ(C) is lower
when an attributed random walk from any nodes inC is more likely
to stop at a node within C . Further, we observe that in practice, a
high-quality cluster C tends to have high intra-cluster connectivity
via certain center nodes within C , and such a center node usually
has high in-degree (i.e., many in-neighbors). In other words, the
nodes belonging to the same cluster tend to have many paths to
the center node of the cluster, and consequently, a random walk
with restart (RWR) [25, 47] within a cluster is more likely to stop
at the center node [46]. Based on these intuitions, we propose to
leverage graph topology (i.e., V and EV of the input attributed
graph G) as well as RWR to quickly identify k possible cluster
center nodes, Vτ = {vτ1 ,vτ2 , · · · ,vτk } ⊂ V , and greedily initialize
NCI Y0 by grouping the nodes in V to a center node according to
their topological relationships to the center node.

Algorithm 3 presents the pseudo-code of InitNCI. After initializ-
ing Y0 to a k × n zero matrix and Vτ to an empty set at Line 1, the
method first selects from V a candidate set V ′τ of size 5k (Line 2),
which consists of the top-(5k) nodes with the largest in-degrees.
The nodes inV ′τ serve as the candidate nodes for the k center nodes
to be detected. Then we compute the t-hop RWR value Πt [vj ,vτ ]
from every node vj ∈ V to every node vτ ∈ V ′τ from Lines 3 to 5
according to the following equation [59].

Πt =
∑t

ℓ=0 α(1 − α)ℓPℓV · I[:,V ′τ ] (17)
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Algorithm 4: AppoxAAMC

Input: PV , R̂, R, α, β, Y.
Output: ϕ .

1 H0 ← (YY⊤)−
1
2 Y, t ← 1

α ;
2 for ℓ = 1 to t do
3 Hℓ ← (1 − α ) · ((1 − β ) · PVH⊤

ℓ−1 + β · R̂(R⊤H⊤ℓ−1)) + H0;

4 ϕ ← 2
k ·

∑k
i=1 H0[i] · (H⊤0 [i] − α · Ht [:, i]);

5 return ϕ ;

In particular, we set t = 1
α at Line 3, which is the expected length

of an RWR, and is usually sufficient for our purpose. If Πt [vj ,vτ ]
is large, it means that the random walks starting from vj are more
likely to stop at vτ , which matches our aforementioned intuition
of possible cluster center nodes.

Then, at Line 6, for each candidate center node vτ ∈ V ′τ , we
compute the sum of Πt [vj ,vτ ] from all nodes vj ∈ V to vτ . If
vτ has larger

∑
vj ∈V Πt [vj ,vτ ], it indicates that the random walks

starting from any nodes inV are more likely to stop atvτ . Therefore,
at Line 7, we select the top-k nodes vτ ∈ V ′τ with the largest∑
vj ∈V Πt [vj ,vτi ] as the k possible center nodes in Vτ . At Line 8,

for each node vj ∈ V , we select the center node vτi ∈ Vτ with the
largest Πt [vj ,vτi ] and greedily group vj and vτi into the same i-th
cluster by setting Y0[i,vj ] to 1, completing the computation of Y0.

Note that Line 2 in Algorithm 3 takes O(n + k log(n)) time, and
the computation ofΠt requiresO( kα · |EV |) time. Therefore, InitNCI
runs in O( kα · |EV |) time.

4.4 Complete ACMin Algorithm and Analysis
Algorithm 1 summarizes the pseudo-code of ACMin , which takes
as input an attributed graph G, the number of clusters k , random
walk stopping probability α , and attributed branching probability
β (defined in Definition 2.2). Initially (Line 1), ACMin computes
matrix R̂, explained in Section 4.1. Then (Line 2), ACMin computes
an initial value Y0 for Y via InitNCI (Algorithm 3), and derives the
corresponding value F0 for F according to Lemma 3.3 in Line 3.

Next (Line 5), we invoke AppoxAAMC (Algorithm 4) that uses Y
to compute ϕ, the best AAMC obtained so far. Note that the exact
AAMC ϕ = Ψ(Y) in Eq. (8) is hard to evaluate since S in Eq. (2) is the
sum of an infinite series. Instead, ApproxAAMC performs a finite
number t = 1

α of iterations in Eq. (2) to obtain an approximate
AAMC, since the expected length of an attributed random walk is
1
α . Specifically, given PV , R̂,R,α , β and Y as inputs, AppoxAAMC

first initializesH0 as (YY⊤)−
1
2 Y and the number of iterations t to 1

α
(Line 1 of Algorithm 4). Then, it computes the intermediate result
Ht by t iterations in Lines 2-3. Lastly AppoxAAMC computes ϕ
with Ht and H0 at Line 4. Algorithm 4 takes O( kα · (|EV | + |ER |))
time with the precomputed R̂.

Utilizing algorithms GenNCI and AppoxAAMC, ACMin obtains
the binary NCI Yℓ and its corresponding quality measure ϕℓ for
each iteration ℓ, after obtaining Fℓ . ACMin may terminate upon
convergence, or reaching a preset maximum number of iterations
te . In our experiments, we found that te = 200 is usually sufficiently
large for convergence.

Next we analyze the total time and space complexities of ACMin
. The computation of R̂ at Line 1 in Algorithm 1 takes O(|ER |)

Table 2: Datasets. (K=103, M=106, B=109)

Name |V | |EV | |R | |ER | |C |
Cora [29, 52, 53, 60, 64] 2.7K 5.4K 1.4K 49.2K 7
Citeseer [29, 52, 53, 60, 64] 3.3K 4.7K 3.7K 105.2K 6
Pubmed [52, 60, 64, 66] 19.7K 44.3K 0.5K 988K 3
Flickr [24, 29, 34, 58, 60] 7.6K 479.5K 12.1K 182.5K 9
TWeibo [60] 2.3M 50.7M 1.7K 16.8M 8
MAG-Scholar-C [3] 10.5M 265.2M 2.78M 1.1B 8

time. Algorithm 4 requires O(nk + k
α · (|EV | + |ER |)) time. In each

iteration (Lines 6-12), Line 7 takesO(k · (|EV | + |ER |)) time and the
QR decomposition over Zℓ takesO(nk2) time. According to Section
4.2 and Section 4.3, GenNCI and InitNCI run in O(tm · (nk2 + k3))
and O( kα · |EV |) time, respectively. Thus, the total time complexity
of ACMin is O

(
k( 1α + te ) · (|EV | + |ER |) + nk2te tm + kte

α · |EV |)
)

when k ≪ n, which equals O(|EV | + |ER |) when te , tm and k are
regarded as constants. The space overhead incurred by ACMin
is determined by the storage of PV , R̂,R,Zℓ , Fℓ and Hℓ , which is
bounded by O(|EV | + |ER | + nk).
5 EXPERIMENTS
We experimentally evaluate ACMin against 11 competitors in terms
of both clustering quality and efficiency on 6 real-world datasets.
All experiments are conducted on a Linux machine powered by an
Intel Xeon(R) Gold 6240@2.60GHz CPU and 377GB RAM. Source
codes of all competitors are obtained from the respective authors.

5.1 Experimental Setup
Datasets. Table 2 shows the statistics of the 6 real-world directed
attributed graphs used in our experiments. |V | and |EV | denote the
number of nodes and edges, while |R | and |ER | represent the number
of attributes and node-attribute associations, respectively. |C | is the
number of ground-truth clusters inG . In particular, Cora3, Citeseer3
Pubmed3 and MAG-Scholar-C4 are citation graphs, in which each
node represents a paper and each edge denotes a citation relation-
ship. Flickr5 and TWeibo 6 are social networks, in which each node
represents a user, and each directed edge represents a following
relationship. Further, notice that all 6 datasets have ground-truth
cluster labels, and the number of ground-truth clusters |C | is also
included in Table 2.
Competitors.We compare ACMin with 11 competitors, including
7k-AGC algorithms (CSM [36], SA-Cluster [67],BAGC [54],MGAE
[53], CDE [29], AGCC [64], USC [50]), and 4 recent attributed net-
work embedding algorithms (TADW [55], PANE [60], LQANR [56],
PRRE [66]). The network embedding competitors are used together
with k-Means to produce clustering results. In addition, we also
compare with the classic unnormalized spectral clustering method
USC [50], which directly works on S to extract clusters by materi-
alizing S, computing the top-k eigenvectors of S, and then applying
k-Means on the eigenvectors.
Parameter settings. We adopt the default parameter settings
of all competitors as suggested in their corresponding papers.
3http://linqs.soe.ucsc.edu/data (accessed October, 2020)
4https://figshare.com/articles/dataset/mag_scholar/12696653 (accessed October, 2020)
5https://github.com/xhuang31/LANE (accessed October, 2020)
6https://www.kaggle.com/c/kddcup2012-track1 (accessed October, 2020)
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Figure 2: Running time with varying k (best viewed in color).

Table 3: CA, NMI and AAMC with ground-truth (Large CA, NMI, and small AAMC indicate high clustering quality).

Solution Cora Citeseer Pubmed Flickr TWeibo MAG-Scholar-C
CA NMI AAMC CA NMI AAMC CA NMI AAMC CA NMI AAMC CA NMI AAMC CA NMI AAMC

Ground-truth 1.0 1.0 0.546 1.0 1.0 0.531 1.0 1.0 0.505 1.0 1.0 0.691 1.0 1.0 0.719 1.0 1.0 0.63
TADW 0.554 0.402 0.593 0.539 0.333 0.569 0.483 0.096 0.55 0.16 0.062 0.733 - - - - - -
LQANR 0.64 0.492 0.559 0.587 0.374 0.549 0.403 0.022 0.612 0.127 0.002 0.739 - - - - - -
PRRE 0.547 0.396 0.604 0.576 0.322 0.592 0.62 0.269 0.518 0.454 0.321 0.713 - - - - - -
PANE 0.601 0.462 0.577 0.677 0.421 0.537 0.618 0.252 0.512 0.402 0.265 0.708 0.215 0.004 0.752 - - -
CSM 0.308 0.149 0.612 0.247 0.11 0.615 0.393 0.022 0.565 - - - - - - - - -

SA-Cluster 0.001 0.01 - - - - - - - - - - - - - - - -
BAGC 0.001 0.134 - 0.183 0 - - - - - - - - - - - - -
MGAE 0.633 0.456 0.571 0.661 0.408 0.545 0.419 0.076 0.556 0.266 0.109 0.729 - - - - - -
CDE 0.473 0.332 0.581 0.535 0.318 0.571 0.663 0.259 0.547 0.254 0.11 0.714 - - - - - -
AGCC 0.642 0.496 0.553 0.668 0.409 0.526 0.668 0.272 0.492 0.471 0.369 0.706 0.406 0.007 0.723 - - -
USC 0.635 0.455 0.706 0.495 0.326 0.682 0.548 0.212 0.614 - - - - - - - - -

ACMin 0.656 0.498 0.544 0.68 0.422 0.525 0.691 0.308 0.487 0.757 0.608 0.698 0.408 0.01 0.686 0.659 0.497 0.57

PRRE [66]). The network embedding competitors are used together
with k-Means to produce clustering results. In addition, we also
compare with the classic unnormalized spectral clustering method
USC [50], which directly works on S to extract clusters by materi-
alizing S, computing the top-k eigenvectors of S, and then applying
k-Means on the eigenvectors.
Parameter settings. We adopt the default parameter settings of
all competitors as suggested in their corresponding papers. Specif-
ically, for attributed network embedding competitors, we set the
embedding dimensionality to 128. ForACMin, we set te = 200, tm =
50,α = 0.2, and β = 0.35. Competitor USC shares the same param-
eter settings of α , β , and te with ACMin.
Evaluation criteria. For efficiency evaluation, we vary the num-
ber of clusters k in {5, 10, 20, 50, 100}, and report the running time
(seconds) of each method on each dataset in Section 5.2. The re-
ported running time does not include the time for loading datasets.
We terminate a method if it fails to return results within 3 days. In
terms of clustering quality, we report the proposed AAMC measure
(i.e., average attributed multi-hop conductance), modularity [38],
CA (clustering accuracy with respect to ground truth labels) and
NMI (normalized mutual information) [1] to measure the cluster-
ing quality in Section 5.3. Note that AAMC considers both graph
topology and node attributes to measure clustering quality, while
modularity only considers graph topology. Also, note that CA and
NMI rely on ground-truth clusters, while AAMC and modularity
do not. Therefore, when evaluating by CA and NMI, we set k to be
|C | as in Table 2 for each dataset; when evaluating by modularity
and AAMC, we vary k in {5, 10, 20, 50, 100}.
5.2 Efficiency Evaluation
Figure 2 presents the running time of all methods on all datasets
when varying the number of clusters k in {5, 10, 20, 50, 100}. The

y-axis is the running time (seconds) in log-scale. As shown in Figure
2, ACMin is consistently faster than all competitors on all datasets,
often by up to orders of magnitude. ACMin is highly efficient on
large attributed graphs, e.g.,TWeibo and MAG-Scholar-C in Figures
2e and 2f, while most of the 11 competitors fail to return results
within three days. For instance, in Figure 2e, when k = 5, ACMin
needs 630 seconds to finish, which is 7.4× faster than AGCC (4634
seconds) and 71× faster than PANE (44658 seconds), respectively.
Further, ACMin is the only method able to finish onMAG-Scholar-C
dataset that has 265.2 million edges and 1.1 billion attribute val-
ues. Specifically, ACMin only needs 1.68 hours when k = 5. The
high efficiency of ACMin on massive real datasets is due to the
its high scalable algorithmic components, whose total cost is lin-
ear to the size of the input graph as analyzed in Section 4.4. On
small/moderate-sized attributed graphs in Figures 2a-2d, ACMin
is also significantly faster than the competitors, especially when k
is small. For instance, when k = 10, on Flickr in Figure 2d, ACMin
takes 4 seconds, while the fastest competitor PANE needs 381 sec-
onds. Note that the total running time of ACMin increases linearly
with k , which is consistent with our time complexity analysis in
Section 4.4 when the number of edges |EV | + |ER | far exceeds the
number of nodes n. The running time results for the 4 attributed
network embedding competitors (i.e., TADW, LQANR, PRRE, and
PANE) are not sensitive to k , since their cost is dominated by the
node embedding computation rather than k-Means. Even on set-
tings with a large k , ACMin is still faster than all these competitors.

5.3 Quality Evaluation
CA, NMI andAAMCwith ground-truth. Table 3 reports the CA,
NMI, and AAMC scores of all methods, comparing to the ground-
truth clusters of each dataset in Table 2. We also report the AAMC
values of the ground-truth labels, which are the lower than the

Figure 2: Running time with varying k (best viewed in color).

Table 3: CA, NMI and AAMC with ground-truth (Large CA, NMI, and small AAMC indicate high clustering quality).

Solution Cora Citeseer Pubmed Flickr TWeibo MAG-Scholar-C
CA NMI AAMC CA NMI AAMC CA NMI AAMC CA NMI AAMC CA NMI AAMC CA NMI AAMC

Ground-truth 1.0 1.0 0.546 1.0 1.0 0.531 1.0 1.0 0.505 1.0 1.0 0.691 1.0 1.0 0.719 1.0 1.0 0.63
TADW 0.554 0.402 0.593 0.539 0.333 0.569 0.483 0.096 0.55 0.16 0.062 0.733 - - - - - -
LQANR 0.64 0.492 0.559 0.587 0.374 0.549 0.403 0.022 0.612 0.127 0.002 0.739 - - - - - -
PRRE 0.547 0.396 0.604 0.576 0.322 0.592 0.62 0.269 0.518 0.454 0.321 0.713 - - - - - -
PANE 0.601 0.462 0.577 0.677 0.421 0.537 0.618 0.252 0.512 0.402 0.265 0.708 0.215 0.004 0.752 - - -
CSM 0.308 0.149 0.612 0.247 0.11 0.615 0.393 0.022 0.565 - - - - - - - - -

SA-Cluster 0.001 0.01 - - - - - - - - - - - - - - - -
BAGC 0.001 0.134 - 0.183 0 - - - - - - - - - - - - -
MGAE 0.633 0.456 0.571 0.661 0.408 0.545 0.419 0.076 0.556 0.266 0.109 0.729 - - - - - -
CDE 0.473 0.332 0.581 0.535 0.318 0.571 0.663 0.259 0.547 0.254 0.11 0.714 - - - - - -
AGCC 0.642 0.496 0.553 0.668 0.409 0.526 0.668 0.272 0.492 0.471 0.369 0.706 0.406 0.007 0.723 - - -
USC 0.635 0.455 0.706 0.495 0.326 0.682 0.548 0.212 0.614 - - - - - - - - -

ACMin 0.656 0.498 0.544 0.68 0.422 0.525 0.691 0.308 0.487 0.757 0.608 0.698 0.408 0.01 0.686 0.659 0.497 0.57

Specifically, for attributed network embedding competitors, we
set the embedding dimensionality to 128. For ACMin , we set
te = 200, tm = 50,α = 0.2, and β = 0.35. Competitor USC shares
the same parameter settings of α , β , and te with ACMin .
Evaluation criteria. For efficiency evaluation, we vary the num-
ber of clusters k in {5, 10, 20, 50, 100}, and report the running time
(seconds) of each method on each dataset in Section 5.2. The re-
ported running time does not include the time for loading datasets.
We terminate a method if it fails to return results within 3 days. In
terms of clustering quality, we report the proposed AAMC measure
(i.e., average attributed multi-hop conductance), modularity [38],
CA (clustering accuracy with respect to ground truth labels) and
NMI (normalized mutual information) [1] to measure the cluster-
ing quality in Section 5.3. Note that AAMC considers both graph
topology and node attributes to measure clustering quality, while
modularity only considers graph topology. Also, note that CA and
NMI rely on ground-truth clusters, while AAMC and modularity
do not. Therefore, when evaluating by CA and NMI, we set k to be
|C | as in Table 2 for each dataset; when evaluating by modularity
and AAMC, we vary k in {5, 10, 20, 50, 100}.

5.2 Efficiency Evaluation
Figure 2 presents the running time of all methods on all datasets
when varying the number of clusters k in {5, 10, 20, 50, 100}. The
y-axis is the running time (seconds) in log-scale. As shown in Figure
2, ACMin is consistently faster than all competitors on all datasets,
often by up to orders of magnitude. ACMin is highly efficient on
large attributed graphs, e.g., TWeibo and MAG-Scholar-C in Figures
2e and 2f, while most of the 11 competitors fail to return results
within three days. For instance, in Figure 2e, when k = 5, ACMin

needs 630 seconds to finish, which is 7.4× faster than AGCC (4634
seconds) and 71× faster than PANE (44658 seconds), respectively.
Further, ACMin is the only method able to finish onMAG-Scholar-C
dataset that has 265.2 million edges and 1.1 billion attribute val-
ues. Specifically, ACMin only needs 1.68 hours when k = 5. The
high efficiency of ACMin on massive real datasets is due to the
its high scalable algorithmic components, whose total cost is lin-
ear to the size of the input graph as analyzed in Section 4.4. On
small/moderate-sized attributed graphs in Figures 2a-2d, ACMin
is also significantly faster than the competitors, especially when k
is small. For instance, when k = 10, on Flickr in Figure 2d, ACMin
takes 4 seconds, while the fastest competitor PANE needs 381 sec-
onds. Note that the total running time of ACMin increases linearly
with k , which is consistent with our time complexity analysis in
Section 4.4 when the number of edges |EV | + |ER | far exceeds the
number of nodes n. The running time results for the 4 attributed
network embedding competitors (i.e., TADW, LQANR,PRRE, and
PANE) are not sensitive to k , since their cost is dominated by the
node embedding computation rather than k-Means . Even on set-
tings with a large k , ACMin is still faster than all these competitors.

5.3 Quality Evaluation
CA, NMI andAAMCwith ground-truth. Table 3 reports the CA,
NMI, and AAMC scores of all methods, comparing to the ground-
truth clusters of each dataset in Table 2. We also report the AAMC
values of the ground-truth labels, which are the lower than the
AAMC obtained by all methods except for ACMin , which explicitly
aims to minimize AAMC. Meanwhile, we observe that relative per-
formance of all methods measured by AAMC generally agrees with
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CA. These results demonstrate that AAMC effectively measures
effectively reflects clustering quality.

ACMin clearly and consistently achieves the best CA, NMI, and
AAMC on all datasets. Specifically, on small attributed graphs, i.e.,
Cora, Citeseer and Pubmed, compared with the best competitors
(underlined in Table 3) ACMin improves CA by 1.4%, 0.3%, and
2.3%, and NMI by 0.2%, 0.1%, and 3.6%, respectively. The CA and
NMI of ACMin are also significantly better than the competitors
on moderate-sized/large attributed graphs (i.e., Flickr, TWeibo, and
MAG-Scholar-C). For instance, on Flickr, ACMin has CA 75.7%,
which is 28.6% higher than that of the best competitorAGCC, which
is only 47.1%. On TWeibo, ACMin is slightly better than AGCC;
note that on this dataset, ACMin is orders of magnitude faster than
AGCC as shown in Figure 2e. Hence, ACMin is overall preferable
than AGCC in these settings. Finally, ACMin is the only k-AGC
method capable of handlingMAG-Scholar-C, and achieves CA 65.9%
and NMI 49.7%. The superior clustering quality achieved by ACMin
demonstrates the effectiveness of the proposed AAMC optimization
objective in Section 2, as well as our approximate solution for this
optimization program described in Section 4.
AAMC with varying k . Figure 3 reports the AAMC achieved by
ACMin against all competitors on all datasets when varying the
number k of clusters in {5, 10, 20, 50, 100}. Observe that ACMin
consistently produces the smallest AAMC under all k settings on
all datasets (smaller AAMC indicates better results), which confirms
that the proposed ACMin algorithm (Algorithm 1) effectively mini-
mizes the proposed AAMC objective function defined in Section
2.4. In particular, as shown in Figure 3, when k = 10, ACMin has
AAMC better than the best competitor by a margin of 0.84%, 0.36%,
0.71%, 0.84% and 2.6% on Cora, Citeseer, Pubmed, Flickr and TWeibo
respectively. Figure 3f reports the AAMC achieved by ACMin on
MAG-Scholar-C, which is the only method able to return results.
Further, considering the relative performance of all methods mea-
sured by CA and NMI generally agree with that measured by AAMC
as shown in the results in Table 3, and the fact that ACMin is far
more efficient and scalable compared to its competitors as shown
in Section 5.2, we conclude that ACMin is the method of choice for
k-AGC on massive graphs in practice.
Modularity with varying k . Figure 4 reports themodularity of all
methods on all datasets when varying k in {5, 10, 20, 50, 100}. Again,
observe that, for all settings of k and all datasets (except TWeibo),
ACMin has the highest modularity. In particular, ACMin obtains
a substantial imporvement of up to 5%, 4.7%, 3.8%, and 4.1% on
Cora, Citeseer, Pubmed and Flickr, compared to the best competitor,
respectively. Note that modularity only considers graph topology
and ignores node attributes, indicating that modularity may not be
able to fully evaluate clustering quality of attributed graphs. This
may explain why on TWeibo the modularity of ACMin is slightly
lower than some competitors. Even so, ACMin still achieves high
modularity under most cases, meaning that the proposed attributed
random walk model can still preserve graph topological features
for clustering, in addition to node attributes.

5.4 Convergence Analysis of ACMin
In this section, we evaluate the convergence properties of ACMin ,
focusing on the effects of the greedy initialization technique InitNCI

described in Section 4.3 on convergence speed. In particular, we
compare ACMin with an ablated version ACMin-RI that replaces
InitNCI at Line 2 of Algorithm 1 with random initialization of Y0.
The number k of clusters to be detected is set to be |C | as in Table
2 for each dataset. Figure 5 reports the AAMC (i.e., Ψ(Y) in Eq. (8))
produced by ACMin and ACMin-RI per iterations (Lines 6-12 in Al-
gorithm 1), when te is set to 200. Observe that the AAMC produced
by ACMin decreases significantly faster than that of ACMin-RI
in the early iterations, and also converges faster than ACMin-RI.
For instance, in Figure 5b, on Citeseer, ACMin requires about 80
iterations to reach a plateaued AAMC, while ACMin-RI needs 140
iterations. Moreover, GenNCI is able to help ACMin to achieve
lower AAMC at convergence as shown in Figure 5. This experimen-
tal evaluation demonstrates the efficiency and effectiveness of the
proposed greedy initialization technique in Section 4.3.

6 RELATEDWORK
Attributed graph clustering has been extensively studied in liter-
ature, as surveyed in [4, 5, 11]. In the following, we review the
existing methods that are most relevant to this work.
Edge-weight-based clustering. A classic methodology is to con-
vert the input attributed graph to a weighted graph by assigning
each edge a weight based on the attribute and topological similarity
between the two nodes of the edge; then, traditional weighted graph
clustering algorithms are directly applied [7, 33, 37, 42, 45]. For in-
stance, Neville et al. [37] assign a weight to each edge (u,v) of the
input attributed graph G based on the number of attribute values
that u and v have in common, and construct a weighted graphG ′.
Then they apply the classic spectral clustering [50] over G ′ to pro-
duce clusters. However, these methods only consider the attributes
of two directly connected nodes and use hand-crafted weights to
represent attributes, and thus, result in inferior clustering quality.
Distance-based clustering. Existing distance-based clustering so-
lutions construct a distance matrix M by combining the topolog-
ical and attribute similarity between nodes, and then apply clas-
sic distance-based clustering methods, such as k-Means [19] and
k-Medoids [41], onM to generate clusters. For instance, SA-Cluster
[67] extends the original input attributed graph G to an attribute-
augmented graph G ′ by treating each attribute as a node, and then
samples random walks overG ′ to compute the distance between
nodes in G ′, in order to construct M, which is then fed into a k-
Centroids method to generate clusters. Further, DCom [7] applies
hierarchical agglomerative clustering on a constructed distance ma-
trix. CSM [36] computes the distance matrixM based on a shortest
path strategy that considers both structural and attribute relevance
among nodes, and applies k-Medoids overM to generate clusters.
ANCA [10] applies k-Means for the sum of eigenvectors of the dis-
tance and similarity matrices to generate clusters. Distance-based
clustering methods suffer from severe efficiency issues since they
require to compute the distance of every node pair, resulting in
O(n2) time and space overhead, which is prohibitive in practice. For
instance, as shown in our experiments, both SA-Cluster and CSM
suffer from costly running time and poor clustering quality.
Probabilistic-model-based clustering. Based on the assumption
that the structure, attributes, and clusters of attributed graphs are
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Figure 3: AAMC with varying k (best viewed in color).
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Figure 4: Modularity with varying k (best viewed in color).
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Figure 5: AAMC with varying te (best viewed in color).

AAMC obtained by all methods except for ACMin, which explicitly
aims to minimize AAMC. Meanwhile, we observe that relative per-
formance of all methods measured by AAMC generally agrees with
CA. These results demonstrate that AAMC effectively measures
effectively reflects clustering quality.

ACMin clearly and consistently achieves the best CA, NMI, and
AAMC on all datasets. Specifically, on small attributed graphs,
i.e.,Cora, Citeseer and Pubmed, compared with the best competi-
tors (underlined in Table 3) ACMin improves CA by 1.4%, 0.3%,
and 2.3%, and NMI by 0.2%, 0.1%, and 3.6%, respectively. The CA
and NMI of ACMin are also significantly better than the competi-
tors on moderate-sized/large attributed graphs (i.e., Flickr, TWeibo,
and MAG-Scholar-C). For instance, on Flickr, ACMin has CA 75.7%,
which is 28.6% higher than that of the best competitorAGCC, which
is only 47.1%. On TWeibo, ACMin is slightly better than AGCC;
note that on this dataset, ACMin is orders of magnitude faster than
AGCC as shown in Figure 2e. Hence, ACMin is overall preferable
than AGCC in these settings. Finally, ACMin is the only k-AGC
method capable of handlingMAG-Scholar-C, and achieves CA 65.9%
and NMI 49.7%. The superior clustering quality achieved by ACMin
demonstrates the effectiveness of the proposed AAMC optimization
objective in Section 2, as well as our approximate solution for this
optimization program described in Section 4.
AAMC with varying k . Figure 3 reports the AAMC achieved by
ACMin against all competitors on all datasets when varying the
number k of clusters in {5, 10, 20, 50, 100}. Observe that ACMin
consistently produces the smallest AAMC under all k settings on

all datasets (smaller AAMC indicates better results), which confirms
that the proposed ACMin algorithm (Algorithm 1) effectively mini-
mizes the proposed AAMC objective function defined in Section
2.4. In particular, as shown in Figure 3, when k = 10, ACMin has
AAMC better than the best competitor by a margin of 0.84%, 0.36%,
0.71%, 0.84% and 2.6% on Cora, Citeseer, Pubmed, Flickr and TWeibo
respectively. Figure 3f reports the AAMC achieved by ACMin on
MAG-Scholar-C, which is the only method able to return results.
Further, considering the relative performance of all methods mea-
sured by CA and NMI generally agree with that measured by AAMC
as shown in the results in Table 3, and the fact that ACMin is far
more efficient and scalable compared to its competitors as shown
in Section 5.2, we conclude that ACMin is the method of choice for
k-AGC on massive graphs in practice.
Modularity with varying k . Figure 4 reports themodularity of all
methods on all datasets when varying k in {5, 10, 20, 50, 100}. Again,
observe that, for all settings of k and all datasets (except TWeibo),
ACMin has the highest modularity. In particular, ACMin obtains
a substantial imporvement of up to 5%, 4.7%, 3.8%, and 4.1% on
Cora, Citeseer, Pubmed and Flickr, compared to the best competitor,
respectively. Note that modularity only considers graph topology
and ignores node attributes, indicating that modularity may not be
able to fully evaluate clustering quality of attributed graphs. This
may explain why on TWeibo the modularity of ACMin is slightly
lower than some competitors. Even so, ACMin still achieves high
modularity under most cases, meaning that the proposed attributed

Figure 3: AAMC with varying k (best viewed in color).
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AAMC obtained by all methods except for ACMin, which explicitly
aims to minimize AAMC. Meanwhile, we observe that relative per-
formance of all methods measured by AAMC generally agrees with
CA. These results demonstrate that AAMC effectively measures
effectively reflects clustering quality.

ACMin clearly and consistently achieves the best CA, NMI, and
AAMC on all datasets. Specifically, on small attributed graphs,
i.e.,Cora, Citeseer and Pubmed, compared with the best competi-
tors (underlined in Table 3) ACMin improves CA by 1.4%, 0.3%,
and 2.3%, and NMI by 0.2%, 0.1%, and 3.6%, respectively. The CA
and NMI of ACMin are also significantly better than the competi-
tors on moderate-sized/large attributed graphs (i.e., Flickr, TWeibo,
and MAG-Scholar-C). For instance, on Flickr, ACMin has CA 75.7%,
which is 28.6% higher than that of the best competitorAGCC, which
is only 47.1%. On TWeibo, ACMin is slightly better than AGCC;
note that on this dataset, ACMin is orders of magnitude faster than
AGCC as shown in Figure 2e. Hence, ACMin is overall preferable
than AGCC in these settings. Finally, ACMin is the only k-AGC
method capable of handlingMAG-Scholar-C, and achieves CA 65.9%
and NMI 49.7%. The superior clustering quality achieved by ACMin
demonstrates the effectiveness of the proposed AAMC optimization
objective in Section 2, as well as our approximate solution for this
optimization program described in Section 4.
AAMC with varying k . Figure 3 reports the AAMC achieved by
ACMin against all competitors on all datasets when varying the
number k of clusters in {5, 10, 20, 50, 100}. Observe that ACMin
consistently produces the smallest AAMC under all k settings on

all datasets (smaller AAMC indicates better results), which confirms
that the proposed ACMin algorithm (Algorithm 1) effectively mini-
mizes the proposed AAMC objective function defined in Section
2.4. In particular, as shown in Figure 3, when k = 10, ACMin has
AAMC better than the best competitor by a margin of 0.84%, 0.36%,
0.71%, 0.84% and 2.6% on Cora, Citeseer, Pubmed, Flickr and TWeibo
respectively. Figure 3f reports the AAMC achieved by ACMin on
MAG-Scholar-C, which is the only method able to return results.
Further, considering the relative performance of all methods mea-
sured by CA and NMI generally agree with that measured by AAMC
as shown in the results in Table 3, and the fact that ACMin is far
more efficient and scalable compared to its competitors as shown
in Section 5.2, we conclude that ACMin is the method of choice for
k-AGC on massive graphs in practice.
Modularity with varying k . Figure 4 reports themodularity of all
methods on all datasets when varying k in {5, 10, 20, 50, 100}. Again,
observe that, for all settings of k and all datasets (except TWeibo),
ACMin has the highest modularity. In particular, ACMin obtains
a substantial imporvement of up to 5%, 4.7%, 3.8%, and 4.1% on
Cora, Citeseer, Pubmed and Flickr, compared to the best competitor,
respectively. Note that modularity only considers graph topology
and ignores node attributes, indicating that modularity may not be
able to fully evaluate clustering quality of attributed graphs. This
may explain why on TWeibo the modularity of ACMin is slightly
lower than some competitors. Even so, ACMin still achieves high
modularity under most cases, meaning that the proposed attributed
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AAMC obtained by all methods except for ACMin, which explicitly
aims to minimize AAMC. Meanwhile, we observe that relative per-
formance of all methods measured by AAMC generally agrees with
CA. These results demonstrate that AAMC effectively measures
effectively reflects clustering quality.

ACMin clearly and consistently achieves the best CA, NMI, and
AAMC on all datasets. Specifically, on small attributed graphs,
i.e.,Cora, Citeseer and Pubmed, compared with the best competi-
tors (underlined in Table 3) ACMin improves CA by 1.4%, 0.3%,
and 2.3%, and NMI by 0.2%, 0.1%, and 3.6%, respectively. The CA
and NMI of ACMin are also significantly better than the competi-
tors on moderate-sized/large attributed graphs (i.e., Flickr, TWeibo,
and MAG-Scholar-C). For instance, on Flickr, ACMin has CA 75.7%,
which is 28.6% higher than that of the best competitorAGCC, which
is only 47.1%. On TWeibo, ACMin is slightly better than AGCC;
note that on this dataset, ACMin is orders of magnitude faster than
AGCC as shown in Figure 2e. Hence, ACMin is overall preferable
than AGCC in these settings. Finally, ACMin is the only k-AGC
method capable of handlingMAG-Scholar-C, and achieves CA 65.9%
and NMI 49.7%. The superior clustering quality achieved by ACMin
demonstrates the effectiveness of the proposed AAMC optimization
objective in Section 2, as well as our approximate solution for this
optimization program described in Section 4.
AAMC with varying k . Figure 3 reports the AAMC achieved by
ACMin against all competitors on all datasets when varying the
number k of clusters in {5, 10, 20, 50, 100}. Observe that ACMin
consistently produces the smallest AAMC under all k settings on

all datasets (smaller AAMC indicates better results), which confirms
that the proposed ACMin algorithm (Algorithm 1) effectively mini-
mizes the proposed AAMC objective function defined in Section
2.4. In particular, as shown in Figure 3, when k = 10, ACMin has
AAMC better than the best competitor by a margin of 0.84%, 0.36%,
0.71%, 0.84% and 2.6% on Cora, Citeseer, Pubmed, Flickr and TWeibo
respectively. Figure 3f reports the AAMC achieved by ACMin on
MAG-Scholar-C, which is the only method able to return results.
Further, considering the relative performance of all methods mea-
sured by CA and NMI generally agree with that measured by AAMC
as shown in the results in Table 3, and the fact that ACMin is far
more efficient and scalable compared to its competitors as shown
in Section 5.2, we conclude that ACMin is the method of choice for
k-AGC on massive graphs in practice.
Modularity with varying k . Figure 4 reports themodularity of all
methods on all datasets when varying k in {5, 10, 20, 50, 100}. Again,
observe that, for all settings of k and all datasets (except TWeibo),
ACMin has the highest modularity. In particular, ACMin obtains
a substantial imporvement of up to 5%, 4.7%, 3.8%, and 4.1% on
Cora, Citeseer, Pubmed and Flickr, compared to the best competitor,
respectively. Note that modularity only considers graph topology
and ignores node attributes, indicating that modularity may not be
able to fully evaluate clustering quality of attributed graphs. This
may explain why on TWeibo the modularity of ACMin is slightly
lower than some competitors. Even so, ACMin still achieves high
modularity under most cases, meaning that the proposed attributed

Figure 5: AAMC with varying te (best viewed in color).

generated according to a certain parametric distribution, there ex-
ist a collection of probabilistic-model-based clustering methods,
which statistically infer a probabilistic model for attributed graph
clustering, in order to generate clustering results. In particular,
PCL-DC [62] combines a conditional model of node popularity
and a discriminative model that reduces the impact of irrelevant
attributes into a unified model, and then finds the clustering result
that optimizes the model. CohsMix [63] formulates the clustering
problem by MixNet model [40] and then utilizes a varient of EM
algorithm to optimize it, in order to generate clustering results.
BAGC [54] designs a generative Bayesian model [8] that produces
a sample of all the possible combinations of a graph based on adja-
cency matrixA and attribute matrixX, and aims to find a clustering
result C maximizing a conjoint probability P(C |A,X). Note that
the optimization process to estimate the likelihood parameters in
these probabilistic-model-based clustering methods often incurs
substantial time overheads, as validated in our experiments (Section
5.2).
Embedding-based methods. In recent years, a plethora of net-
work embedding techniques are proposed for attributed graphs.
The objective of network embedding is to learn an embedding
vector for each node such that the graph topology and attribute

information surrounding the nodes can be preserved. We can di-
rectly employ traditional clustering methods (e.g., k-Means ) over
the embedding vectors to generate clusters [19, 41]. AA-Cluster
[2] builds a weighted graph based on graph topology and node
attributes, and then applies network embedding on the weighted
graph to generate embeddings.MGAE [53] proposes a marginalized
graph convolutional network to learn embeddings. CDE [29] learns
node embeddings by optimizing a non-negative matrix factoriza-
tion problem based on community structure embeddings and node
attributes. DAEGC [52] fuses graph topology and node attributes
via an attention-based autoencoder [48] to obtain embeddings, and
then generates soft labels to guide a self-training graph cluster-
ing procedure. AGCC[64] utilizes an adaptive graph convolution
method to learn embeddings, and then applies the spectral clus-
tering on the similarity matrix computed from the learnt embed-
dings to obtain clusters. The above methods either incur immense
overheads in learning embeddings or suffer from unsatisfactory
clustering quality. There are many attributed network embedding
methods proposed, e.g., [17, 31, 34, 55–57, 60, 66]. However, most of
them are not specially designed for clustering purpose, leading to
suboptimal clustering quality, as demonstrated in our experiments
when comparing with TADW, LQANR, PRRE and PANE.
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7 CONCLUSIONS
This paper presents ACMin , an effective and scalable solution for
k-AGC computation. ACMin achieves high scalability and effective-
ness through a novel problem formulation based on the proposed
attributed multi-hop conductance measure for cluster quality, as
well as a carefully designed iterative optimization framework and an
effective greedy clustering initialization method. Extensive experi-
ments demonstrate that ACMin achieves substantial performance
gains over the previous state of the art in terms of both efficiency
and clustering quality. Regarding future work, we plan to study
parallelized versions of ACMin , running on multi-core CPUs and
GPUs, as well as in a distributed setting with multiple servers, in or-
der to handle even larger datasets. Meanwhile, we intend to extend
ACMin to handle attributed heterogeneous graphs with different
types of nodes and edges.
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A PROOFS
Proof of Lemma 2.3. Let pℓ(vi ,vj ) be the probability that an at-
tributed random walk starting from vi stops at vj at the ℓ-th hop.
We first prove that

pℓ(vi ,vj ) = α(1 − α)ℓ · ((1 − β) · PV + β · PR )ℓ[vi ,vj ]. (18)

Note that if Eq. (18) holds, the overall probability that an attributed
randomwalk fromvi terminates atvj is

∑∞
ℓ=0 pℓ(vi ,vj ) = S[vi ,vj ],

which establishes the equivalence in Eq. (2). To this end, we prove
Eq. (18) by induction. First, let us consider the initial case that
the attributed random walk terminates at source node vi with
probability α . In this case, p0(vi ,vj ) = α if vi = vj ; otherwise
p0(vi ,vj ) = 0, which is identical to the r.h.s of Eq. (18) when
ℓ = 0. Therefore, Eq. (18) holds when ℓ = 0. Assume that Eq.
(18) holds at the ℓ′-th hop. Then the probability that an attributed
random walk from vi visits any node vl ∈ V at the ℓ′-th hop is
(1−α)ℓ′ ·((1−β)·PV +β ·PR )ℓ′[vi ,vl ]. Based on this assumption, for
the case ℓ = ℓ′+1, with probability 1−α , it will navigate to nodevj
according to the probability (1 − β) · PV [vl ,vj ] + β · PR [vl ,vj ],
and finally stop at vj with probability α . Thus, pℓ′+1(vi ,vj ) =∑
vl ∈V (1 − α)ℓ

′ · ((1 − β) · PV + β · PR )ℓ′[vi ,vl ] · (1−α)α((1− β) ·
PV [vl ,vj ]+ β · PR [vl ,vj ]) = α(1 − α)ℓ′+1 · ((1 − β) · PV + β ·
PR )ℓ′+1[vi ,vj ], which completes the proof. □

Proof of Lemma 3.1. By Eq. (6), for cluster Ci , we have vector
((YY⊤)− 1

2 Y)[ci ], where each entry ((YY⊤)− 1
2 Y)[ci ,vj ] = 1/

√
|Ci |

if vj ∈ Ci and otherwise ((YY⊤)− 1
2 Y)[ci ,vj ] = 0. Note that

2 · ((YY⊤)− 1
2 Y)[ci ] · (I − S) · ((YY⊤)−

1
2 Y)[ci ]⊤

=
∑
vj ,vl ∈V S[vj ,vl ] · (((YY⊤)−

1
2 Y)[ci ,vj ] − ((YY⊤)−

1
2 Y)[ci ,vl ])2

=
∑
vj ∈Ci ,vl ∈V \Ci S[vj ,vl ] · ((YY⊤)−

1
2 Y)[ci ,vj ]2 = Φ(Ci )

2 .

Then we have∑k
i=1 Φ(Ci )

k = 2
k

∑k
ci=1 ((YY⊤)

− 1
2 Y)[ci ] · (I − S) · ((YY⊤)−

1
2 Y)[ci ]⊤

= 2
k · trace(((YY⊤)−

1
2 Y) · (I − S) · ((YY⊤)− 1

2 Y)⊤),
which completes our proof. □

Proof of Lemma 3.2. First, we construct a weighted graph G =
(V, E) based on the input graph G = (V ,EV ,R,ER ) by letting
V = V and E = {(vi ,vj , S[vi ,vj ]) | vi ,vj ∈ V and S[vi ,vj ] > 0},
where S[vi ,vj ] signifies the weight of edge (vi ,vj ). Thus, Eq. (8)
can be reduced to the objective function of the min-cut problem on
G, which is proven to be NP-hard in [14, 51]. □

Proof of Lemma 3.3. Let λi (M) be the i-th smallest eigenvalue of
matrix M. Note that ∀Y ∈ Rk×n , ((YY⊤)− 1

2 Y) · ((YY⊤)− 1
2 Y)⊤ = I,

meaning that f (Y) = ((YY⊤)− 1
2 Y)⊤ · ((YY⊤)− 1

2 Y) is a projec-
tion matrix of rank k . Therefore, ∀i < n − k + 1, λi (f (Y)) = 0 and
∀i ≥ n − k + 1, λi (f (Y)) = 1. By Von Neumann’s trace inequality
[35] and the property of matrix trace, for any Y ∈ Rk×n , we have
the following inequality:

Ψ(Y) = 2
k · trace(((YY⊤)−

1
2 Y) · (I − S) · ((YY⊤)− 1

2 Y)⊤)
= 2

k · trace((I − S) · f (Y)) ≥ 2
k ·

∑n
i=1 λi (I − S) · λn−i+1(f (Y))

= 2
k ·

∑k
i=1 λi (I − S) = 2

k ·
∑k
i=1(1 − λn−i+1(S)). (19)

Note that F be the top-k eigenvectors of S, implying FF⊤ = I and
(I − S) · F[ci ]⊤ = (1 − λn−i+1(S)) · F[ci ]⊤ for 1 ≤ i ≤ k . Hence,

2
k · trace(F(I − S)F⊤) = 2

k ·
∑k
i=1 (1 − λn−i+1(S)), (20)

which implies that Ψ(Y) is minimized when ((YY⊤)− 1
2 Y) = F. Sup-

pose Y∗ ∈ ⊮k×n is the optimal solution to Eq. (8). Therefore, with
Eq. (19) and Eq. (20), the following inequality holds

ϕ∗ = Ψ(Y∗) = 2
k
· trace(((Y∗Y∗⊤)− 1

2 Y∗)(I − S)((Y∗Y∗⊤)− 1
2 Y∗)⊤)

≥ 2
k ·

∑k
i=1(1 − λn−i+1(S)) = 2

k · trace(F(I − S)F⊤),
which finishes our proof. □

Proof of Lemma 3.4. Eq. (9) implies that XF→ (YY⊤)− 1
2 Y where

X⊤X = I. By the property of matrix trace, we have

Ψ(Y) = 2
k · trace((YY⊤)−

1
2 Y · (I − S) · ((YY⊤)− 1

2 Y)⊤)
→ 2

k · trace(XF(I − S)F⊤X⊤)
= 2

k · trace(X⊤XF(I − S)F⊤) = 2
k · trace(F(I − S)F⊤). (21)

By Lemma 3.3, we have Ψ(Y) → ϕ∗, completing our proof. □

Proof of Lemma 4.1.We need the following lemmas for the proof.

Lemma A.1 ([65]). If [λ, x] is an eigen-pair of matrix M ∈ Rn×n ,
then [∑t

ℓ=0wℓλ
ℓ , x] is an eigen-pair of matrix

∑t
ℓ=0wℓMℓ .
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Lemma A.2 ([20]). Given a M ∈ Rn×n satisfying
∑n
j=1M[i, j] =

1 ∀1 ≤ i ≤ n and each entry M[i, j] ≥ 0 ∀1 ≤ i, j ≤ n, the largest
eigenvalue λ1 ofM is 1.

Suppose that [λi , xi ] is an eigen-pair of (1 − β) · PV + β · PR
and λi is its i-th largest eigenvalue. Note that each row sum of
(1−β) ·PV +β ·PR is equal to 1 and each entry of (1−β) ·PV +β ·PR
is non-negative. Then, by Lemma A.2, we have λi ∈ [−1, 1] for
1 ≤ i ≤ n. Let f (λi ) =

∑t
ℓ=0 α(1 − α)ℓλℓi . Lemma A.1 implies that

any eigen-pair ∀i ∈ [1,n], [f (λi ), xi ] of (1 − β) · PV + β · PR is
an eigen-pair of S. By the sum of geometric sequence, we have
f (λi ) = α · 1−(1−α )

t+1λt+1i
1−(1−α )λi = α

1−(1−α )λi , which is is monotonously
decreasing when 1 ≤ i ≤ n. Hence, for 1 ≤ i ≤ n, f (λi ) and xi
are the i-th largest eigenvalue and the i-th largest eigenvector of
S. Recall that F is the top-k eigenvectors of (1 − β) · PV + β · PR .
Therefore, F is the top-k eigenvectors of S. The lemma is proved. □
Proof of Lemma 4.2. Let Z = V⊤X⊤U. Since U and V are the left
and right singular vectors, we haveUU⊤ = I andVV⊤ = I. Note that
ZZ⊤ = I, which implies that each Z[i, j] satisfies −1 ≤ Z[i, j] ≤ 1.
Also, Σ[i, i] is a singular value and thus Σ[i, i] > 0. Then,

trace((YY⊤)− 1
2 YF⊤X⊤) = trace(UΣV⊤X⊤) = trace(ΣV⊤X⊤U)

=
∑k
i=1 Σ[i, i] · Z[i, i] ≤

∑k
i=1 Σ[i, i].

Therefore, trace((YY⊤)− 1
2 YF⊤X⊤) is maximized when Z = I, which

implies that X = UV⊤. The lemma is proved. □
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