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Introduction 
Glaucoma, currently the second leading cause of blindness in the world,1 causes 

irreversible visual field (VF) damage.2 The worsening of VF damage can be halted by 
reducing intraocular pressure (IOP),3-7 however, clinical interventions can cause serious 
complications8-13 and decrease patients’ quality of life.14,15 Thus, adequate and timely 
treatment decisions are very important in the management of glaucoma; in particular, 
accurate assessment of VF progression is essential to decision-making. At clinical 
settings, the assessment of VF progression often relies on applying simple ordinary 
least-squares linear regression (OLSLR) to VF measurements, such as threshold values 
(TH), over time. This approach is employed in the software PROGRESSOR® 
(Medisoft Ltd., Leeds, UK).16 It should be noted that VF TH fluctuate in the short17 and 
long-term,18 and VF measurements are associated with considerable noise even with 
good reliability indices,19,20 which hampers the accurate estimation of VF progression 
speed,21 in particular with point-wise linear regression (PLR).22 As a result, PLR is 
often unreliable unless a considerable number of VFs are obtained.23-27 

 
Glaucomatous VF damage results from the loss of retinal ganglion cells. Optical 

coherence tomography (OCT) is an imaging technology enabling high-resolution 
measurements of the retina, and is widely used to provide an objective evaluation of 
glaucomatous structural change, such as the thicknesses of the macular retinal nerve 
fiber layer (m-RNFL) and also the macular ganglion cell layer and inner plexiform layer 
(GCL + IPL).28 A merit of the OCT measurement is its high reproducibility,29-32 in 
contrast to VF measurements. A recent study suggested that RNFL thinning measured 
with OCT33 and also rim area reduction in the optic disc measured with Heidelberg 
Retina Tomograph (HRT, Heidelberg Engineering GmbH, Heidelberg, Germany)34 are 
predictive of future functional damage. Garway-Heath et al. developed a two-layered 
Bayesian model to incorporate OCT-measured cicumpapillary RNFL (cpRNFL) 
thickness into a VF regression model, which yielded more accurate predictions of future 
VF progression.35 The development of deep learning (DL) methods represents a 
revolutionary advance in imaging recognition.36 Indeed we have recently reported that it 
is advantageous to apply DL to OCT measurements in diagnosing glaucoma.37 This 
implies it may also be helpful to use DL methods in VF progression models with 
structural information from OCT integrated into the model. 

 
We recently developed a novel model to predict VF progression, which used 

OCT-measured m-RNFL and GCC thicknesses. The model was a deep learning method 
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known as deeply-regularized latent-space linear regression: DLLR. This new approach 
to measure VF progression significantly improved the prediction of future VF 
damage.38 However this model was trained with a relatively small amount of data (253 
eyes were used in five-fold-cross validation) and prediction performance was measured 
using internal cross-validation. The purpose of the current study was to generate a new 
DLLR model using a larger training dataset and validate its performance using an 
external validation dataset.    
 
Methods 

This study was approved by the Research Ethics Committee of the Graduate 
School of Medicine and Faculty of Medicine at the University of Tokyo, Osaka 
University, Kyoto Prefectural University of Medicine, Shimane University and also 
Hiroshima Memorial Hospital. The study complied with the tenets of the Declaration of 
Helsinki. Written consent was given by patients for their information to be stored in the 
hospital database and used for research, otherwise, based on the regulations of the 
Japanese Guidelines for Epidemiologic Study 2008 (issued by the Japanese 
Government) the study protocols did not require that each patient provide written 
informed consent, instead the protocol was posted at the outpatient clinic to notify study 
participants. 

  
Data collection 

All of the data collected in the current study were obtained from Tokyo 
University Hospital, Osaka University Hospital, Hospital of Kyoto Prefectural 
University of Medicine, Oike-Ikeda Eye Clinic, Shimane University Hospital and 
Hiroshima Memorial Hospital. Inclusion criteria were: 1) glaucoma was the only 
disease causing VF damage; 2) each patient had at least eight VF measurements with 
the 24-2 or 30-2 Humphrey Field Analyzer (HFA, Carl Zeiss Meditec Inc, Dublin, CA). 
All of the studied patients were those with primary open angle glaucoma, which was 
defined as: 1) presence of typical glaucomatous changes in the optic nerve head such as 
a rim notch with a rim width ≤0.1 disc diameters or a vertical cup-to-disc ratio of > 0.7 
and/or a retinal nerve fiber layer defect with its edge at the optic nerve head margin 
greater than a major retinal vessel, diverging in an arcuate or wedge shape; 2) 
gonioscopically wide open angles of grade 3 or 4 based on the Shaffer classification. 
Exclusion criterion were: 1) age below 20 years old; 2) possible secondary ocular 
hypertension in either eye. All patients had prior experience of VF measurement. These 
criteria were applied to both the training and testing datasets. 
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VF measurement 
VF measurements were performed using the HFA with either the 30-2 or 24-2 program 
(Swedish Interactive Threshold Algorithm Standard), but only the central 52 test 
locations overlapping with the 24-2 test pattern were used in subsequent analyses. Only 
reliable VFs were included, defined as Fixation loss (FL) rate <33%, False positive (FP) 
rate <33%, and also False negative (FN) rate <33%. 
 
OCT measurement 
OCT data were obtained using the RS 3000 (Nidek Co ltd., Aichi, Japan). Axial length 
(AL) measurements were obtained using the OA-2000 (TOMEY, Aichi, Japan). All SD-
OCT measurements were carried out after pupil dilation with 1% tropicamide and OCT 
imaging was performed using the laser scan protocol. Data with apparent eye movement 
or involuntary blinking or saccade during the measurement were carefully excluded. 
Following the manufacturer’s recommendation, imaging data with quality factor < 7 were 
also excluded. Similar to our previous report analyzing OCT data,39 the fovea was 
automatically identified as the pixel with thinnest retinal thickness close to the fixation 
point, and a square imaging area (30 x 30 degrees) was centered on the fovea, excluding 
the area of the optic disc and parapapillary atrophy. The magnification effect was 
corrected according to the manufacturer-provided formula based on Littman’s equation, 
40,41 using the measured AL value. Using software supplied by the manufacturer, 
thicknesses of i) m-RNFL, ii) GCL IPL, and iii) OS RPE (see Figure 1) were calculated. 
These were exported as 512 × 128 pixel images, and the mean thickness values in the 
whole analysis area (30 x 30 degrees) were calculated. The thickness of the outer segment 
and retinal pigment epithelium (OS RPE) was included in the DLLR model, because the 
structure-function relationship becomes stronger by including this layer, in addition to the 
m-RNFL and GCL IPL layers.42  
 
 
Training and testing datasets 
Eyes from Hiroshima Memorial Hospital, Osaka University Hospital, and Shimane 
University Hospital were employed as training data (998 eyes of 592 patients), whereas 
those from Hospital of Kyoto Prefectural University of Medicine were used as testing 
data (148 eyes of 84 patients). 
 
Prediction models 
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The standard PLR model was carried out; for each VF test point, the TH was regressed 
against time using simple ordinary least-squares linear regression (OLSLR). 
 
In brief, the DLLR model works as follows: 
1) all VF test points of a single eye were forced to share regression parameters in order 

to take into account the correlations among VF test points.  
2) eyes with similar VF values were forced to have similar regression parameters to 

avoid overfitting based only on their own data.  
3) both OCT measurements and VF TH were transformed into a common latent space 

such that the progression of VF TH can be regularized by that observed in OCT 
sequences. 

 
A more technical descriptions of DLLR follows. The transformation of VF TH into a 
latent space and the latent-space linear regression was realized by matrix factorization 
denoted: 
 
𝐹! =	𝐺!𝑊!𝑃!" + 𝜀, (1) 
 
where 𝐹! 	 ∈ ℝ#×"! was a matrix consisting of the sequence of VF TH for the 𝑖-th eye, 
D was the number of VF points and 𝑇! was the number of timestamps at which the VF 
tests were conducted, 𝐺! 	 ∈ ℝ#×%  and 𝑊! 	 ∈ ℝ%×&	were two factor matrices to be 
estimated, R was a pre-defined hyper-parameter, 𝑃!" was the transpose of 𝑃! ∈ ℝ"!×& 
which was defined as 𝑃! = [𝑡! , 1!]. Since 𝑡! ∈ ℝ"!×' was a column vector of timestamps 
and 1! 	 ∈ ℝ"!×' was a vector of ones, 𝑊!𝑃!" realized the linear regression of VF TH on 
time in the latent space. Then 𝐺! can be interpreted as a projection matrix that realizes 
the transformation of VF TH, and 𝜀 contains the errors of the transformation. 
 
In Eq. (1), the regression parameters in 𝑊! were shared by all VF test points to force all 
VF test points the share the same progression pattern in the latent space. The difference 
among VF test points in the raw data space were preserved in the projection matrix 𝐺!.  
 
The transformation of the OCT measurement into the latent space was realized by a 
convolutional neural network (CNN), considering the spatial relations among retina 
voxels and the non-linear relation between the OCT-measured retinal layers’ thicknesses 
and VF TH. CNN is currently the state-of-the-art model in capturing spatially-related 
information and non-linear transformation from one data space to another data space. To 
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regularize the progression pattern of VF TH, a CNN was employed to transform OCT-
measured retinal layers’ thicknesses directly to the parameters of the latent-space linear 
regression, which was realized by the following equation: 
 
𝑓(𝐶!; 𝜃) = 	𝑊! + 	𝜀 (2) 
 
where 𝐶! ∈ ℝ(×)!×*×+  was a four-dimensional array representing an OCT-measured 
retinal layers’ thicknesses, H and W were the height and width of the measurement, 
respectively, 𝑆! was the number of OCT-measured retinal layers’ thicknesses that were 
obtained on the 𝑖-th eye, and 𝑓(∙; 𝜃) was a function parameterized by a CNN model and 
𝜃  contained the parameters in the CNN model to be estimated. The regularization 
realized by Eq. (2) is motivated by the fact that functional damage is the result of 
structural damage in glaucoma.  
 
Figure 1 shows the summarized structure of the proposed DLLR. The time series of OCT 
measurements were concatenated to be transformed into the latent space by a CNN while 
each VF TH was transformed into the latent space by linear projection. Linear regression 
of VF TH on time was performed in the latent space. OCT information was utilized to 
regularize the coefficient and intercept of the linear regression.  
 
Since the number of OCT measurements varied from patient to patient, the size of the 
input, i.e., 𝐶! , to the CNN model was not fixed. To tackle this issue, the CNN was 
designed to have convolutional layers only because convolutional layers can process data 
of varied values in the data’s dimensions. The architecture of the CNN is illustrated in 
Figure 2. Besides, the convolution and max pooling, batch normalization and Rectified 
Linear Unit (ReLU) activation were associated with each layer except for the output layer. 
 
To avoid overfitting on each eye’s own data, the regression parameters of eyes with 
similar VF measurements were also forced to be similar. The relation between one eye 
and other eyes was defined as follows: 
 
𝑊! =	∑ 𝑧!,- ∗ 𝑊-.

-/! + 	𝜀, (3) 
 
where 𝑧!,- 	 ∈ ℝ was a similarity constant between the 𝑖-th eye and the 𝑗-th eye. 𝑧!,- 
was quantified by the following equation: 
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where 𝐹!

(6,7) was the value at the d-th low and the k-th column of the VF matrix of the 
𝑖-th eye, and 𝐹-∗ contained the VF THs interpolated by PLR, because the 𝑗-th eye may 
have different time stamps on which VF tests were conducted from those of the 𝑖-th eye. 

𝜎!  was the median of values (∑ ∑ (𝐹!
(6,7) − 𝐹-

∗(6,7))#
69'

"!
79' )& (𝑇!𝐷)&E  computed from 

the combinations of the 𝑖-th eye and all the other eyes. The definition of 𝑧!,- followed 
the Gaussian kernel, and was considered to be reasonable in the field of kernel 
regression.43  
 
To jointly consider the regularizations from the OCT-measured retinal layers’ thicknesses 
and other patients’ information, the learning objective of DLLR for a target eye indexed 
by 0 was quantified as follows: 
 
ℒ = 	∑ ||𝐹! −	𝐺!𝑊!𝑃!"||2&.

!9: +	𝜆' ∑ 𝑧:,-||𝑊: −𝑊-||2& +	𝜆& ∑ ||𝑓(𝐶!; 𝜃) −	𝑊!||2&.
!9: 	.

-9' ,  
(5) 
 
where the eyes of indices from j = 1 to N were utilized as auxiliary information for the 
learning of linear regression for the target eye, || ∙ ||2&  the square of Frobenius norm, and 
𝜆', 𝜆& ∈ ℝ	are hyper-parameters.  
 
Considering the small volume of data, regularizations on the model learning objective 
can help to avoid overfitting. In particular, auto-encoding regularizer on the CNN and 𝐿& 
regularization were employed. As a result, the final learning objective was obtained as 
follows: 
 
ℒ;!<=> = 	ℒ +	𝜆( ∑ ||𝐶! − 𝑔(𝑓(𝐶!; 𝜃); 𝜃?)||2& +.

!9: 𝜆@ ∑ (||𝐺!||2& + ||𝑊!||2&).
!9: , (6) 

 
where 𝜆(, 𝜆@ ∈ ℝ  were hyper-parameters, 𝑔(∙; 𝜃?)  was the decoder function with 
parameters being of a CNN that had a structure symmetric to that of 𝑓(∙; 𝜃). 
 
DL optimization algorithms, e.g., Adam 44, can be utilized to solve the learning 
objective. After the learning, the prediction of the VF THs at a future timestamp of 
interest can be obtained as follows: 
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predicted	VF	sesitivity = 	𝐺:𝑊:[time, 1]", (7) 
 
where [time, 1]"  is a matrix with two rows and a single column where time is the 
timestamp of interest for the target eye. Since valid VF TH values range from 0 to 40, the 
predicted values out of the range were clipped to be the floor and the ceiling values, 
respectively.  
 
The original OCT-measured thicknesses of i) m-RNFL, ii) GCL IPL, and iii) outer 
segment (OS) + retinal pigment epithelium (RPE) were stored in images that were 512 × 
128 pixels in dimension. We resized the images to be consistent with the more commonly 
used image size: 224 × 224 pixels. We achieved resizing by resampling using pixel area 
relation which is a preferred method for image decimation.  
 
Statistical analysis 
     The DLLR model was implemented in Pytorch, and Adam was employed as the 
learning algorithm. The values of hyper-parameters 𝜆' , 𝜆& , 𝜆(  and 𝜆@  were 
determined by grid search, and the value of the hyper-parameter 𝑅 was chosen as 4.           
       

Using TH at each of the 52 test points in VF1-2, the values in the eighth VF were 
predicted with standard PLR and the prediction error was calculated as the root mean 
squared error (RMSEPLR_1-2), defined as follows:  

 

RMSE

= [\
(predicted VF TH of the 𝑖th point− actual VF TH of the 𝑖th point)&

52

A&

!9'

. 
(1) 

This was iterated for other series lengths: from VF1-3, calculating RMSEPLR_1-3 to 
VF1-7, calculating RMSEPLR_1-7. 
 
Prediction errors were also calculated using mean absolute error (MAE) in order to 
assess clinical relevance. 
 
RMSE values were also calculated for DLLR (from RMSEDLLR_1-2 to RMSEDLLR_1-7). 
Only OCT measurements within the VF observation period were used in the model. 
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RMSE values with PLR and DLLR were compared using the linear mixed model 
whereby values were nested within patients and test points and also the test points of the 
VF. The linear mixed model is equivalent to ordinary linear regression in that the model 
describes the relationship between the predictor variables and a single outcome variable. 
However, standard linear regression analysis makes the assumption that all observations 
are independent of each other. In the current study, measurements were nested within 
subjects and also test points, and hence, dependent of each other. Ignoring this grouping 
of the measurements will result in the underestimation of standard errors of regression 
coefficients. The linear mixed model adjusts for the hierarchical structure of the data, 
modeling in a way in which measurements are grouped within subjects to reduce the 
possible bias derived from the nested structure of data.45,46 
 
Results 

Demographic information for the training and testing datasets is shown in Table 
1. The age of the patients was 60.73 ± 13.47 (mean ± standard deviation: SD) and 61.21 
± 10.38 years, in the training and testing dataset, respectively. VFs were obtained over a 
period of 5.87 ± 1.93 and 5.39 ± 1.14 years, in the training and testing dataset, 
respectively. The mTD value in the initial VF was -6.21 ± 7.14 and -4.88 ± 4.55 dB, in 
the training and testing dataset respectively. The mTD progression rate with VF1-10 
was -0.33 ± 0.77 and -0.30 ± 0.71 dB/year, in the training and testing dataset 
respectively.  
 
Figure 3 shows the VF TH at each test point in the testing dataset. 
 
RMSE values for PLR and DLLR are shown in Figure 4 and Table 2. The results show 
that DLLR significantly (p < 0.001) outperformed PLR for with all sequences of VF.  
 
Table 3 shows the MAE values with PLR and DLLR. The results also show that DLLR 
significantly (p < 0.001) outperformed PLR for all VF sequences. 
 
Figure 5 shows the absolute prediction errors at each VF test point for PLR and DLLR. 
The values were significantly smaller with DLLR at all test points for series VF1-2 to 
VF1-5, in 46 test points in VF1-6 and nine test points in VF1-7. 

 
Discussion 
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In the current study, the usefulness of DLLR, which incorporates the thicknesses of m-
RNFL, GCL IPL, and OSL + RPE layers, into VF trend analyses was explored. As a 
result, a significant improvement in predicting VF progression was observed compared 
to PLR. In our previous study,38 the DLLR model was trained with a relatively small 
number of eyes (202 or 203 eyes) which resulted in the RMSE values between 4.33 dB 
(prediction with VF1-7) and 4.96 dB (prediction with VF1-2) when the eighth VF was 
predicted. In contrast, the DLLR model was trained using a much larger dataset (998 
eyes) in the current study, and as a result, the RMSE values were smaller; RMSEs 
ranged between 3.65 dB (prediction with VF1-7) and 4.57 dB (prediction with VF1-2) 
when the eighth VF was predicted, although it is not appropriate to compare these 
results, because of the different study designs (five-fold-cross validation was used in the 
previous study). The DLLR model uses OCT measurements and VF measurements; 
there are two broad differences between the two sets of measurements. First, the OCT 
measurements lie in a completely different data space to the VF TH, and, second, the 
OCT measurements may be obtained at different points in time to the VF 
measurements. DLLR address these two heterogeneities through the latent-space linear 
regression. For the data space heterogeneity, DLLR transforms both the OCT and VF 
measurements into a common latent space. For the time heterogeneity, DLLR focuses 
on the coefficient and the intercept of the latent-space linear regression of the sets of 
measurements. 
 

In the current study, VF data were obtained from real world clinics at multiple 
institutes in Japan. The average mTD progression rate was -0.30 ± 0.71 dB/year with 
the average (mean) baseline mTD value of -4.88 ± 4.55 dB, in the testing dataset. Heijl 
et al. reported a VF progression rate of -0.80 dB/year with an average baseline MD 
value of -10.0 dB (median), in 583 patients with open angle glaucoma, also from a read 
world clinic.47 In 587 patients with glaucoma, De Moraes et al. reported a -0.45 dB/year 
VF progression rate when the baseline MD value was equal to -7.1 dB (mean).48 We 
previously collected VF data from 710 eyes in 490 patients with open angle glaucoma at 
multiple clinics in Japan, and the VF progression rate and the average baseline MD 
value were very similar to the current study: -0.26 dB/year and -6.9 dB. 
 

In the current study, with ordinary PLR, the prediction error was smallest with the 
maximum VF sequence (VF1-7, 3.98 ± 2.25 dB), as shown in Figure 4. This prediction 
error increased as the number of VFs used in the prediction decreased, up to 27.48 ± 
16.14 dB with VF1-2. This tendency was also observed with DLLR, however, the 
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magnitude of the prediction error was much smaller (from 3.65 ± 2.27 dB with VF1-9 to 
4.57 ± 2.71 with VF1-2). For instance, the mean RMSE value with VF1-2 using DLLR 
was almost identical to that with VF1-6 using PLR; VFs were measured approximately 
every six monthsso this suggests that DLLR can achieve similar accuracy to PLR, but 
two years earlier. 
 
We previously developed a variational Bayes linear regression (VBLR) model, in 

which PLR is optimized using a Bayesian technique that considers the spatial and 
temporal patterns of VF damage.49,50 This model achieved much smaller prediction 
errors compared to PLR.Garway-Heath et al. also developed an approach to improve VF 
regression modelling; the approach, coined Non-Stationary Weibull Error Regression 
and Spatial enhancement (ANSWERS), controls for heteroskedasticity of residuals 
(non-normally distributed residuals) using a mixture of Weibull distributions.51 It would 
be interesting to compare the prediction performance of DLLR with these previous 
models. In addition, it would be helpful to investigate whether the VBLR and 
ANSWERS models can achieve improved prediction by incorporating OCT 
measurements. 
 
Numerous studies have suggested the usefulness of structural measurements, such as 

OCT, for the diagnosis of glaucoma, such as 37,52-58. Much fewer studies have reported 
the utility of structural measurements to improve the estimates of future VF progression. 
Miki et al compared the rates of OCT-measured RNFL loss in patients suspected of 
having glaucoma who developed VF damage to those who did not develop VF damage. 
33 As a result, it was suggested that the rate of global RNFL loss was more than twice as 
fast in eyes that later developed VF damage compared with those that did not develop 
VF damage; a 1μm/year faster rate of RNFL thickness loss corresponded to roughly a 
twofold higher risk of developing VF damage. This study did not, however, propose 
how measurements of RNFL thinning could be used to improve VF trend analyses. 
Nonetheless, it supports the current results that VF regression models can be improved 
by incorporating OCT-measured m-RNFL, GCL IPL, OS RPE thicknesses. Russell et 
al. reported that a Bayesian linear regression model, in which an MD trend analysis was 
reinforced using HRT-measured rim area as a prior, outperformed the standard MD 
trend analysis.34 HRT requires subjective identification of the rim area and the 
instrument cannot measure the 3-dimensional structure of the optic disc, hence it is no 
longer frequently used in the clinical setting. Garway-Heath also reported that 
incorporating OCT-measured cpRNFL thickness into the ANSWERS model using a 
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two-layered Bayesian model (SANSWERS) further improved the prediction of future 
VF progression.35 The DLLR model proposed in the current study is somewhat similar 
to the SANSWERS model, however, the only structural information used in 
SANSWERS is cpRNFL thickness (one value for each VF test point), whereas the 
DLLR models uses m-RNFL, GCL + IPL, and RPE + PhR measurements. In DLLR, 
each of the three layers of m-RNFL, GCL + IPL, and RPE + PhR data consisted of 512 
x 128 pixels. One of the merits of machine learning methods, including DL, is that such 
dense data can be compressed to low dimensional features that effectively summarize 
the most essential information. The CNN is one such method to compress  the 
information into low dimensional data through the convolutional technique.59 We 
recently reported that analyzing raw OCT parameters at all locations is more useful than 
taking the averaged data of the scanned field when diagnosing glaucoma.37,52 However, 
a weakness of this approach is that it is usually applied to cross-sectional image data 
and additional modeling is needed to deal with time series data. In particular, VF data 
are usually acquired with irregular intervals which makes the direct application of 
CNNs difficult. Direct application of conventional time series DL methods, such as 
Long short-term memory (LSTM)60 is not appropriate in this condition. In the current 
study, this problem was overcome by applying the deep transformation approach in a 
latent space. 
 
As described above, DLLR incorporates both OCT and VF data, for the purpose of 

predicting future VF progression. The construction of this model was motivated by the 
fact that functional damage is the result of structural damage in glaucoma. On the other 
hand, the progression of glaucoma (both structure and function) is largely associated 
with IOP.3-7 We have recently shown the usefulness of incorporating IOP in VF 
regression models when predicting future VF progression. For instance, it was 
advantageous to regress VF against the product of time and IOP rather than IOP.61 As 
another example, it was also useful to apply the segmented regression according to the 
status of IOP level.62 It would be of further interest to examine whether incorporating 
IOP with DLLR yielded an even better prediction of future VF progression. 
 
 One of the limitations of the current study is a lack of results from the HFA 10-
2 test which is the main corresponding region of the OCT scanning area. Recent studies 
have revealed that the HFA 24-2 test is not sufficient to assess damage in the central VF 
and therefore it is recommended to also measure the HFA 10-2 VF.63-68 In addition, 
damage to this area of the VF is more directly associated with patients’ vision related to 
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the quality of life69,70 A future study should be attempted shedding light on the 
usefulness of VF augmentation in the HFA 10-2 test. In addition, it may be helpful to 
implement the DLLR algorithm in clinical decision-supportsoftware. For instance, 
VBLR is now available at the clinical settings, being implemented in multiple medical 
software of NAVIS® (Nidek, co.ltd., Gamagori, Aichi) and GlaPre® (Beeline co.ltd, 
Tokyo, japan). 
 

In conclusion, we have investigated the usefulness of the DLLR method to 
measure VF progression. The approach appears to be much more useful than PLR, 
especially when the number of VFs available is small.  
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Table and Figure legend 
Table 1: Demographic information of training and testing datasets 
SD: standard deviation, AL: axial length, mTD: mean of total deviation, VF1-10: from 
1st to 10th visual field, m-RNFL: macular retinal nerve fiber layer, GCL IPL: macular 
ganglion cell layer and inner plexiform layer, OS: outer segment, RPE: retinal pigment 
epithelium 
 
Table 2: RMSE values with PLR and DLLR. 
Values were represented as mean (SD). 
RMSE: root mean squared error, PLR: point-wise linear regression, DLLR: deeply-
regularized latent-space linear regression 
 
Table 3. MAE values with PLR and DLLR. 
Values were represented as mean (SD). 
MAE: mean absolute error, PLR: point-wise linear regression, DLLR: deeply-
regularized latent-space linear regression 
 
Figure 1: The illustration of DLLR 
For each patient, VF time series are transformed into a latent space while OCT time series 
are simultaneously transformed into the same latent space. 
OCT: optical coherence tomography, VF: visual field, TH: threshold 
 
Figure 2: The architecture of the convolutional neural network. 
The first number in the kernel size corresponds to the number of channels, e.g., 4 in (4, 
3x3x2) denoted four channels. 
 
Figure 3. VF TH at each test point in the testing dataset. 
Values were represented as mean (SD). Right eyes were mirror imaged to left eye. 
VF: visual field, TH: threshold, SD: standard deviation. 
 
Figure 4: The RMSE values for PLR and DLLR. 
DLLR significantly (p < 0.001) outperformed PLR with all VF sequences. 
RMSE: root mean squared error, PLR: point-wise linear regression, DLLR: deeply-
regularized latent-space linear regression 
 
Figure 5: The absolute prediction error at each VF teste point for PLR and DLLR.  
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Right eyes were mirror imaged to left eye. The values were significantly smaller with 
DLLR at all (from VF1-5 to VF1-7), 46 (VF1-6) or nine test points (VF1-7). 

PLR: point-wise linear regression, DLLR: deeply-regularized latent-space linear 
regression 

 
 




