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Abstract

Clustering uncertain data is an essential task in data mining and machine learning.

Possible world based algorithms seem promising for clustering uncertain data.

However, there are two issues in existing possible world based algorithms: (1) They

rely on all the possible worlds and treat them equally, but some marginal possible

worlds may cause negative effects. (2) They do not well utilize the consistency among

possible worlds, since they conduct clustering or construct the affinity matrix on each

possible world independently. In this paper, we propose a representative possible world

based consistent clustering (RPC) algorithm for uncertain data. First, by introducing

representative loss and using Jensen-Shannon divergence as the distribution measure,

we design a heuristic strategy for the selection of representative possible worlds, thus

avoiding the negative effects caused by marginal possible worlds. Second, we integrate

a consistency learning procedure into spectral clustering to deal with the representative

possible worlds synergistically, thus utilizing the consistency to achieve better

performance. Experimental results show that our proposed algorithm outperforms

existing algorithms in effectiveness and performs competitively in efficiency.
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1. Introduction

Clustering aims to automatically discover reasonable partitions for a collection

of objects, which is a fundamental task in machine learning and data mining [1].

Most existing clustering algorithms focus on certain data. Due to various reasons like

imprecision in physical measurement, randomness in data collection and transmission5

errors [2, 3, 4, 5], uncertain data is ubiquitous in many real applications, such as

sensor networks, biomedical measurement, location tracking, finance and market data

analysis, meteorological forecasting and so on [6, 7, 8, 9]. Uncertain data has posed

serious challenges to existing clustering algorithms.

Several algorithms have been proposed for clustering uncertain data. Partition-10

based algorithms, e.g., UK-means [10] and UK-medoids [11], extend traditional

k-means or k-medoids to deal with uncertain data by use of expected distance

or uncertain distance. However, they reduce complex probability distributions to

a single probability distribution or a determinate value, thus cannot handle the

uncertain information well [3]. Density-based algorithms, e.g., FDBSCAN [12] and15

FOPTICS [13], extend traditional DBSCAN [14] or OPTICS [15] for clustering

uncertain data by use of probabilistic definitions. However, they suffer from the

unreasonable independent distance assumption [16], thus are difficult to obtain

satisfactory performance.

Different from partition-based and density-based algorithms, possible world based20

algorithms, e.g., SC [17] and REP [16], employ multiple independent and identically

distributed realizations of an uncertain dataset to deal with data uncertainty, thus

reducing the loss of uncertain information and avoiding the independent distance

assumption. However, they still have two unaddressed issues: (1) They rely on all

the possible worlds and treat them equally, but some marginal possible worlds may25

cause negative effects on the clustering result. (2) They ignore the consistency among

different possible worlds and conduct clustering on each possible world independently.

Nevertheless, the consistency is important since different possible worlds can utilize it

to transfer useful information for improving the performance.

In this paper, we propose a representative possible world based consistent clustering30
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(RPC) algorithm for uncertain data, which improves existing algorithms from the

following aspects: (1) To alleviate the negative effects caused by marginal possible

worlds, we introduce the definition of representative loss, use Jensen-Shannon

divergence as the distribution measure, and then design a heuristic strategy for the

selection of representative possible worlds. This strategy can be used by any possible35

world based algorithms to improve the performance. (2) To utilize the consistency to

achieve better performance, we integrate a consistency learning procedure into spectral

clustering to deal with the representative possible worlds synergistically. Extensive

experimental results on real benchmark datasets and real world uncertain datasets

demonstrate the superiority of the proposed algorithm over the existing ones.40

The preliminary idea of this paper was presented in IJCAI 2019 workshops [18].

To ensure the paper to be more complete and self-contained, we have added a lot of

algorithm details, experimental results and comprehensive analysis. The rest of this

paper is organized as follows: In section 2 and 3, we review the related work and

introduce some preliminary knowledge; In section 4 and 5, we propose our algorithm45

and show the experimental results; Finally in section 6, we conclude the paper and

present the future work.

2. Related Work

2.1. Traditional algorithms

2.1.1. Partition-based algorithms50

UK-means [10] is the first partition-based algorithm for clustering uncertain data. It

extends the traditional k-means by using expected distance. To improve the efficiency

of UK-means, [19, 20, 21, 22] use various pruning techniques to avoid the computation

of redundant expected distances. CK-means [23] optimizes UK-means by resorting to

the moment of inertia of rigid bodies. DUK-means [24] is an improved version of55

UK-means, which is specifically designed for distributed network environment. UK-

medoids [11] employs uncertain distance to extend the traditional k-medoids. MMVar

[25] uses a novel objective function which aims to minimize the variance of cluster

mixture models. UCPC [26] introduces the notion of uncertain centroid and it is a
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local search based heuristic algorithm. All these algorithms can deal with uncertain60

data to some extent. However, the nature behind them is to reduce complex probability

distributions to a single probability distribution or a determinate value, thus they cannot

handle the uncertain information well [3].

2.1.2. Density-based algorithms

FDBSCAN [12] and FOPTICS [13] are the first density-based and hierarchical65

density-based algorithms for clustering uncertain data respectively. They introduce

a series of probabilistic definitions like distance density function, core object

probability, reachability probability, fuzzy core distance, fuzzy reachability-distance

to extend the traditional DBSCAN [14] and OPTICS [15]. Zhang et al. [3]

find the limitations of losing uncertain information, high time complexity and70

nonadaptive threshold in FDBSCAN and FOPTICS, and then propose novel density-

based algorithm PDBSCAN and hierarchical density-based algorithm POPTICS for

clustering uncertain data. However, these density-based algorithms rely on the

unreasonable independent distance assumption [16], thus are difficult to obtain

satisfactory clustering results.75

2.2. Possible world based algorithms

SC [17] is the first possible world based algorithm for clustering uncertain data. It

conducts clustering on each possible world independently and integrates the clustering

results into one final result. REP [16] also conducts clustering on each possible world

independently, but it selects the representative clustering result as the final result. The80

demo of REP can be found in [27]. Recently, [6] tries to leverage the consistency

principle for clustering uncertain data. It constructs the affinity matrix for each possible

world independently and then learns a consensus affinity matrix for clustering uncertain

data. However, the consistency learning method introduced in [6] lacks the procedure

of updating the affinity matrix of each possible world, thus reducing the ability of85

consistency learning. Possible world based algorithms avoid the issues in traditional

algorithms, thus seem more promising. However, as we point out hereinafter, there are

some unaddressed issues in existing possible world based algorithms.
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3. Preliminaries

3.1. Consistency Principle90

Consistency principle is a common assumption, which has been widely used in

machine learning domain, e.g., multi-view learning [28, 29], multiple kernel learning

[30], latent space learning [31] and so on. Its definition is as follows [32].

Definition 1. Consistency principle: Given a dataset which has multiple representa-

tions, consistency principle refers to an assumption that the class labels and cluster95

structures of the multiple representations are consistent.

By using consistency principle to minimize the disagreement of different repre-

sentations, we can improve the algorithm performance. The detailed proof can refer

to [33]. Here we take a simple example to explain the reason. Given a dataset D

which has two representations R1 and R2, f1 and f2 are the hypotheses of R1 and

R2 respectively. According to [33], by using consistency principle, we can have the

following inequality:

P (f1 6= f2) > max{Perror(f1), Perror(f2)}, (1)

where P denotes the probability, and Perror denotes the error probability. From

the inequality, it can be seen that the probability of the disagreement of two

different hypotheses is the upper bound of the error probability of each hypothesis

[33]. Therefore, by minimizing the disagreement of different hypotheses, the100

error probability of each hypothesis will be minimized. If we assume different

representations share a common hypothesis, by minimizing the disagreement between

each hypothesis and the shared hypothesis, the error probability of the shared

hypothesis will also be minimized.

3.2. Uncertain Data and Possible World105

Uncertain data can be considered at table, tuple or attribute level [34]. For

clustering uncertain data, we mainly focus on attribute level uncertainty. That is

to say, each uncertain object is represented as a random variable with a probability
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distribution, which is associated with the probability that the object appears at any

position in a multidimensional space.110

Possible world is an effective tool to model uncertain data [35, 34, 36]. Its definition

is as follows [36].

Definition 2. Possible world: Let UD = {O1, O2, ..., On} be an uncertain dataset.

A possible world pw = {o1, o2, ..., on} (oi ∈ Oi) is a set of instances such that

each instance is taken from each corresponding uncertain object. Let PW be115

the set of all the possible worlds, P (pw) be the existence probability of pw, then∑
pw∈PW P (pw) = 1.

Possible world can be generated through the inversion method. More information

and proofs can refer to [37, 38].

3.2.1. Consistency Principle for Possible World120

According to the definition of possible world, different possible worlds come from

the same uncertain dataset and they are a number of independent and identically

distributed realizations of an uncertain dataset [36]. Therefore, if we treat each possible

world as one representation of the uncertain dataset, by the concept of consistency

principle, we can have the following consistency principle for possible world: the class125

labels and cluster structures of different possible worlds are consistent.

In general, the consistency principle for possible world conforms to the reality well,

i.e., in most cases the class labels and cluster structures of different possible worlds are

consistent. For example, in Figure 1, O1, O2, O3 are uncertain objects, and oi1, oi2, oi3,

oi4, oi5 are the possible instances of Oi (i ∈ {1, 2, 3}). If we divide O1, O2, O3 into two130

clusters, based on the geometric information, O1 and O2 should belong to one cluster,

and O3 should belong to the other cluster. For the possible worlds pw1, pw2, pw3, pw4

with their components shown in Figure 1, it is easy to find that their class labels and

cluster structures are consistent.

However, the consistency principle for possible world is not absolute. In some135

cases, abnormal possible worlds violate the principle, and we call this kind of possible

worlds as the marginal ones. Formally, the definition of marginal possible world is as

follows.
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Figure 1: Consistency principle for possible world.

Definition 3. Marginal possible world: Let PW be the set of all the possible worlds,

marginal possible world refers to the possible world whose class label and cluster140

structure have large differences with most possible worlds in PW .

For example, in Figure 1, pw5 is a possible world which consists of some abnormal

instances. As the class label and cluster structure of pw5 are very different from most

possible worlds, pw5 is a marginal possible world.

3.3. Unaddressed Issues145

3.3.1. Negative effects caused by marginal possible worlds

Figure 2(a) shows the framework of existing possible world based algorithms.

From the framework, it can be seen that existing possible world based algorithms

rely on all the possible worlds and treat them equally. However, marginal possible

worlds belong to the abnormal ones, their class labels and cluster structures have large150

differences with most possible worlds, which may disturb the integrating or selecting

procedure of existing possible world based algorithms and cause negative effects on the

clustering result. To solve this issue, we propose to select some representative possible

worlds to filter out marginal possible worlds. By representative possible worlds we

mean a subset of all the possible worlds which has a strong ability to represent all155

the possible worlds. As marginal possible worlds are abnormal and their representative

ability is weak, we can filter out marginal possible worlds and avoid the negative effects

by selecting representative possible worlds.
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(a) Existing algorithms

(b) The proposed algorithm

Figure 2: Frameworks of possible world based algorithms.

3.3.2. Ignoring the consistency principle for possible world

The consistency principle makes it possible to transfer useful information among160

different possible worlds, which can potentially improve the clustering quality.

However, as shown in Figure 2(a), existing possible world based algorithms ignore the

consistency principle for possible world and conduct clustering on each possible world

independently. To solve this issue, we propose a consistent spectral clustering method

which can minimize the disagreement of different possible worlds, thus achieving the165

consistency learning and improving the clustering performance.
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4. The Proposed Algorithm

The proposed algorithm consists of two parts: selecting representative possible

worlds and consistent spectral clustering. The framework is shown in Figure 2(b).

Notations: For an uncertain dataset UD = {O1, O2, ..., On} in a d-dimensional170

independent space, PW denotes the set of all the possible worlds, PW = {pwi|i =

1, 2, ...,M}, M is the number of possible worlds in PW . PWR denotes the

representative possible world set, PWR = {pwrj |j = 1, 2, ..., R}, R is the number

of possible worlds in PWR. PWU denotes the unrepresentative possible world set,

PWU = {pwuk|k = 1, 2, ...,M − R}, M − R is the number of possible worlds in175

PWU . Here PW = PWR ∪ PWU .

4.1. Selecting Representative Possible Worlds

By selecting representative possible worlds, we can filter out marginal possible

worlds and avoid the waste of time caused by redundant possible worlds. In order to

select representative possible worlds, we introduce the definition of representative loss,180

use Jensen-Shannon divergence as the distribution measure, and then design a heuristic

strategy for the selection of representative possible worlds.

4.1.1. Representative Loss

Intuitively, given any two possible worlds pw and pw′, if we want to use pw to

represent pw′, then the smaller the difference between pw and pw′, the less the loss185

that pw represents pw′. We aim to select PWR from PW to represent PW . As

PW = PWR ∪ PWU and the loss that PWR represents PWR is equal to 0, then

the loss that PWR represents PW is equal to the loss that PWR represents PWU .

Based on these observations, we have the following definition.

Definition 4. Representative Loss: Let PWR be the representative possible world set

and pwrj ∈ PWR, PWU be the unrepresentative possible world set and pwuk ∈

PWU . If using PWR to represent PWU , then the representative loss, denoted by

L(PWR→ PWU), can be defined as:

L(PWR→ PWU) =

M−R∑
k=1

min
pwrj

Φ(pwrj , pwuk), (2)
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where Φ(pwrj , pwuk) is the difference between pwrj and pwuk,M−R is the number190

of possible worlds in PWU .

From this definition, it can be seen that if we know how to compute the difference

between possible worlds, we can get the representative loss that PWR represents

PWU , i.e., the representative loss that PWR represents PW .

4.1.2. Jensen-Shannon Divergence between Possible Worlds195

As a possible world can be regarded as a probability distribution, we can compute

the difference between possible worlds by Jensen-Shannon divergence [39]. Compared

with KL divergence [40], Jensen-Shannon divergence is symmetric and finite, therefore

it is more suitable as the representative loss measure.

Given any two possible worlds pw and pw′, the Jensen-Shannon divergence

between them can be defined as:

JSD(pw||pw′) =
1

2
D(Ppw||H) +

1

2
D(Ppw′ ||H), (3)

where Ppw and Ppw′ are the probability distributions of pw and pw′ respectively,

and H = 1
2 (Ppw + Ppw′). D(P ||Q) is the KL divergence between two probability

distributions P andQ. For continuous probability distributions P andQwith a variable

x in a domain D, D(P ||Q) is defined as:

D(P ||Q) =

∫
D
f(x)log

f(x)

g(x)
dx, (4)

where f(x) and g(x) are the probability density functions of P and Q. According to

Eq.(4), D(P ||Q) can also be expressed as:

D(P ||Q) = E(log
f(x)

g(x)
), (5)

where E denotes the expectation. According to the law of large numbers and Eq.(5),

given a sample set S, D(P ||Q) can be estimated by:

D(P ||Q) =
1

|S|
∑
x∈S

log
f(x)

g(x)
, (6)

where |S| denotes the number of objects in S.200
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We employ the kernel density estimation method [41] to obtain the probability

density functions fpw and fpw′ of the probability distributions Ppw and Ppw′ .

Specifically, fpw can be estimated as:

fpw(x) =
1

|pw|
∏d

j=1 hj

∑
o∈pw

d∏
j=1

K(
x.Dj − o.Dj

hj
). (7)

In Eq.(7), o is an object in pw and it can be represented by (o.D1, o.D2, ..., o.Dd),

d denotes the total dimensionality, and |pw| denotes the number of objects in pw. K

denotes the kernel function, and we use the most common Gaussian kernel function.

hj denotes the bandwidth of the j-th dimension, which can control the smoothing

level. For Gaussian kernel function, we set hj = 1.06 × δj |pw|−
1
5 according to the205

Silverman’s rule of thumb [41], where δj is the standard deviation of the j-th dimension

of the objects in pw.

By using Jensen-Shannon divergence as the distribution measure to compute the

difference between possible worlds, i.e., replacing Φ(pwrj , pwuk) in Eq.(2) with

JSD(pwrj ||pwuk), we can get the representative loss.210

4.1.3. Selection Strategy

Our goal is to select a given number of possible worlds as the representative

possible worlds. In general, a good representative possible world set should have a

strong representative ability, i.e., its corresponding representative loss should be small.

Inspired by this observation, we propose the following selection strategy:215

Let PWR be the representative possible world set, and PWU be the unrepresen-

tative possible world set. Now select a possible world pwu∗ from PWU and move

pwu∗ to PWR, if we want the new representative possible world set PWR ∪ pwu∗

to be the best, then the selection strategy should ensure the representative loss that

PWR ∪ pwu∗ represents PWU\pwu∗ to be the minimum. Formally:

pwu∗ = arg min
pwu∗

L(PWR ∪ pwu∗ → PWU\pwu∗). (8)

From Eq.(8), it can be seen that pwu∗ should have a strong representative ability.

Marginal possible worlds belong to the abnormal ones and their representative ability

is poor, therefore this selection strategy can filter out marginal possible worlds.
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Based on the selection strategy, we design a heuristic method to select the

representative possible worlds, which is shown in Algorithm 1 (Part 1). After220

generating the set of all the possible worlds PW , it initializes the representative

possible world set PWR = ∅ and the unrepresentative possible world set PWU =

PW , and calculates the JSD between any two possible worlds in PW . Then

according to Eq.(8), it selects a possible world pwu∗ from PWU , moves it to PWR,

and updates PWR ← PWR ∪ pwu∗ and PWU ← PWU\pwu∗. Here pwu∗225

should ensure that the new representative possible world set PWR ∪ pwu∗ has the

minimum representative loss to represent PWU\pwu∗. This procedure is repeated

until the algorithm obtains the required number of representative possible worlds.

4.2. Consistent Spectral Clustering

We integrate a consistency learning procedure into spectral clustering to deal with230

the representative possible worlds synergistically.

4.2.1. Spectral Clustering

Assume that pwrj is a possible world from the representative possible world set

PWR and PWR = {pwrj |j = 1, 2, ..., R}, where R denotes the number of possible

worlds in PWR. W (j) is the similarity matrix of pwrj , which is computed by

the Gaussian kernel. L(j) is the normalized Laplacian matrix of pwrj and L(j) =

D(j)−
1
2W (j)D(j)−

1
2 . D(j) is a diagonal matrix and D(j)(i, i) =

n∑
l=1

W (j)(i, l), where

n denotes the number of objects in pwrj . For the representative possible world pwrj ,

the objective function of spectral clustering is:

max
U(j)

tr(U (j)TL(j)U (j)),

s.t. U (j)TU (j) = I,

(9)

where tr(·) denotes the trace of a matrix. U (j) ∈ Rn×k is composed by k eigenvectors

corresponding to the k largest eigenvalues of L(j).

4.2.2. Consistency Learning235

The eigenvector matrix U (j) can reflect the cluster structure of the representative

possible world pwrj . To meet the requirement of consistency, we assume that each
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eigenvector matrix U (j) ∈ Rn×k tends to a common eigenvector matrix U∗ ∈ Rn×k.

Then by minimizing the disagreement between each U (j) and U∗, we can achieve the

consistency learning among different possible worlds. For the disagreement between

U (j) and U∗, we use the squared Euclidean distance between the similarity matrices to

measure it:

Dis(U (j), U∗) = ||SU(j) − SU∗ ||2F ,

s.t. U (j)TU (j) = I, U∗
T

U∗ = I,
(10)

where SU(j) and SU∗ denote the similarity matrices of U (j) and U∗, and || · ||F denotes

the Frobenius norm of the matrix.

Considering the feasibility of optimization, we use the commonly adopted inner

product to compute the similarity matrix, i.e., SU(j) = U (j)U (j)T . Then with some

manipulations, minimizing Eq.(10) can be transformed as:

max
U(j),U∗

tr(U (j)U (j)TU∗U∗
T

),

s.t. U (j)TU (j) = I, U∗
T

U∗ = I.

(11)

4.2.3. Overall Objective Function and Optimization

By integrating the objective functions of spectral clustering and consistency

learning, we can get the overall objective function of consistent spectral clustering

as follows:

max
U(j),U∗

R∑
j=1

(tr(U (j)TL(j)U (j)) + tr(U (j)U (j)TU∗U∗
T

)),

s.t. U (j)TU (j) = I, ∀1 6 j 6 R, U∗
T

U∗ = I.

(12)

For Eq.(12), we can employ the alternative iteration method to solve it.

(1) Optimizing Eq.(12) with respect to U∗. Fix each U (j), then Eq.(12) becomes:

max
U∗

R∑
j=1

tr(U (j)U (j)TU∗U∗
T

),

s.t. U∗
T

U∗ = I.

(13)
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Algorithm 1 RPC
Input: Uncertain dataset UD = {O1, O2, ..., On}, the number of clusters k, the number of all

the possible worlds M , the number of representative possible worlds R.

Output: The clusters C1, C2, ..., Ck.

Part 1: Selecting representative possible worlds (Lines 1-5)

1: Generate PW , initialize PWR = ∅ and PWU = PW , and calculate the JSD between

any two possible worlds in PW

2: Repeat

3: Select a possible world pwu∗ from PWU by Eq.(8)

4: PWR← PWR ∪ pwu∗, PWU ← PWU\pwu∗

5: Until |PWR| > R, |PWR| denotes the current number of possible worlds in PWR

Part 2: Consistent spectral clustering (Lines 6-12)

6: For ∀pwrj ∈ PWR, compute W (j), D(j), L(j)

7: For ∀pwrj ∈ PWR, compute the k eigenvectors corresponding to the k largest

eigenvalues of L(j) and use them to initialize the corresponding U (j)

8: Repeat

9: Update U∗ by solving Eq.(14)

10: Update each U (j) by solving Eq.(16)

11: Until Eq.(12) is convergent

12: Run k-means on U∗ and get the clusters C1, C2, ..., Ck

Eq.(13) can be written as:

max
U∗

tr(U∗
T

(

R∑
j=1

U (j)U (j)T )U∗),

s.t. U∗
T

U∗ = I.

(14)

It is easy to find that optimizing Eq.(14) is equivalent to solve the standard240

spectral clustering with a modified Laplacian matrix
R∑

j=1

U (j)U (j)T , i.e., the solution

U∗ is composed by k eigenvectors corresponding to the k largest eigenvalues of
R∑

j=1

U (j)U (j)T .
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(2) Optimizing Eq.(12) with respect to one of the U (j)s. Fix the other U (j)s and

U∗, then Eq.(12) becomes:

max
U(j)

tr(U (j)TL(j)U (j)) + tr(U (j)U (j)TU∗U∗
T

),

s.t. U (j)TU (j) = I.

(15)

Eq.(15) can be written as:

max
U(j)

tr(U (j)T (L(j) + U∗U∗
T

)U (j)),

s.t. U (j)TU (j) = I.

(16)

Optimizing Eq.(16) is similar with optimizing Eq.(14), therefore the solution U (j)

is composed by k eigenvectors corresponding to the k largest eigenvalues of L(j) +245

U∗U∗
T

. The overall procedure of consistent spectral clustering is shown in Algorithm

1 (Part 2).

5. Experiments

5.1. Datasets

5.1.1. Real benchmark datasets250

We conduct experiments on 7 real benchmark datasets. The details of the datasets

are shown in Table 1. These datasets are originally established as collections of data

with determinate values, we follow the method in [3, 16] to generate uncertainty

for these datasets. We generate uncertainty with 3 kinds of distributions: uniform

distribution (U), Gaussian distribution (G) and logistic distribution (L).255

5.1.2. Real world uncertain datasets

We also conduct experiments on 3 real world uncertain datasets: the movement

dataset 1, the NBA dataset 2 and the weather dataset 3.

1http://archive.ics.uci.edu/ml/
2http://espn.go.com/nba/
3http://bcc.ncc-cma.net/
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Table 1: Real benchmark datasets.

Dataset #Objects #Attributes #Classes

Wine 178 13 3

Glass 214 9 6

Ecoli 327 7 5

Image 2310 19 7

Libras 360 90 15

USPS 929 256 10

Waveform 5000 21 3

(1) Movement: it consists of 13197 radio signal records about 314 temporal

sequences. Each record has four dimensions which are respectively corresponding260

to four sensor nodes. According to user movement path, the dataset is divided into six

classes. Each temporal sequence is treated as an uncertain object and each record of

the temporal sequence is treated as a possible value of the uncertain object.

(2) NBA: it consists of 2197 records about the top 300 players in ESPN 2015

rank. Each record has five dimensions: points, rebounds, assists, steals and blocks.265

According to season average performance, they are divided into three classes: star

player, key player and role player. Each player is treated as an uncertain object and

each season average performance of the player is treated as a possible value of the

uncertain object.

(3) Weather: it consists of 18360 records about 153 stations around China. Each270

station contains the monthly average weather condition from 2006 to 2015. Each record

has two dimensions: average temperature and average precipitation. According to [42],

each station is labeled with a climate type. In total, we have three types of climates:

temperate continental climate, temperate monsoon climate and tropical/subtropical

monsoon climate. The stations with the same label are considered to be in the same275

class. Each station is treated as an uncertain object and each monthly average weather

condition of the station is treated as a possible value of the uncertain object.
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5.2. Experimental Setup

5.2.1. Baselines

We compare the RPC algorithm with the state-of-the-art clustering algorithms280

for uncertain data, including UK-means (UKM), CK-means (CKM), UK-medoids

(UKMD), MMVar (MMV), UCPC, FDBSCAN (FDB), FOPTICS (FOP), PDBSCAN

(PDB), SC and REP. We also compare with the improved versions of SC and REP,

which use our proposed selection strategy to select the representative possible worlds

and then perform the original SC and REP on the representative possible worlds, and285

we call them RP-SC and RP-REP.

5.2.2. Settings

For UK-means, CK-means, UK-medoids, MMVar, UCPC and RPC, the sets of

initial centroids or partitions are randomly selected. To avoid that the clustering

results are affected by random chance, we average the results over 10 different runs.290

For FDBSCAN, FOPTICS, PDBSCAN, SC, REP, RP-SC and RP-REP, since these

algorithms are sensitive to parameters, we adjust the parameters continuously until the

performance of each method becomes the best and stable. The methods of determining

the parameters can refer to [3, 12, 13, 16, 17].

5.2.3. Evaluation metrics295

We adopt two widely used metrics [1]: clustering accuracy (ACC) and normalized

mutual information (NMI) to evaluate the clustering results.

ACC: Given a result, the ACC can be calculated as

ACC =

∑n
i=1 χ(ri, li)

n
, (17)

where n denotes the number of objects, ri denotes the true label of object oi, li denotes

the label of object oi obtained from the algorithm, χ(x, y) is a logical judgement

function that equals 1 if x = y and equals 0 otherwise.300

NMI: Given a result, the NMI can be calculated as

NMI =

∑
ci∈C,c′j∈C′

p(ci, c
′
j) log

p(ci,c
′
j)

p(ci)p(c′j)√ ∑
ci∈C

p(ci) log p(ci)
∑

c′j∈C′
p(c′j) log p(c′j)

, (18)
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(c) Weather

Figure 3: The performance of RPC with different R on real world uncertain datasets.

where C and C ′ denote the cluster sets from the ground truth and the algorithm

respectively, p(ci) and p(c′j) denote the probabilities that an object arbitrarily selected

from the dataset belongs to the clusters ci and c′j respectively, and p(ci, c
′
j) is the

joint probability that this arbitrarily selected object belongs to the clusters ci and c′j

simultaneously.305

5.3. Parameter Investigation for RPC

(1) For parameter k, we follow the common practice [6, 16] to set k to the true

number of classes in the datasets.

(2) For parameter M , the investigation results in previous possible world based

methods show that setting M = 100 is enough to obtain satisfactory results [16, 17],310

so we set M = 100.
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(3) For parameter R, Figure 3 shows the performance of RPC with different R on

real world uncertain datasets. From the results, it can be seen that when R is within

10∼70, the clustering performance is always good and stable. When the parameterR is

larger than 70, the clustering performance will be affected seriously, which is because315

that the remaining 30 possible worlds contain many marginal ones. As selecting too

many representative possible worlds will result in a waste of time to some extent, in

this paper we set R = 10 and report the corresponding results.

5.4. Effectiveness

Table 2 and 3 show the effectiveness results. For each algorithm, the last two rows320

of these tables report: (1) the score averaged over all the datasets and distributions (all

avg.ACC/NMI); (2) the overall gain which is computed as the difference between the

overall average score of RPC and the overall average scores of other algorithms (all

avg.ACC/NMI.gain).

From the overall average scores, it can be seen that RPC performs the best. RP-325

SC and RP-REP respectively perform better than SC and REP, but not as well as

RPC. This is because that compared with SC and REP, RP-SC and RP-REP select the

representative possible worlds, thus avoiding the negative effects caused by marginal

possible worlds. However, compared with RPC, RP-SC and RP-REP do not make use

of the consistency principle among different possible worlds. UK-means, CK-means,330

UK-medoids, MMVar and UCPC perform worse than RPC. The reason is that these

algorithms reduce complex probability distributions to a single probability distribution

or a determinate value, which may cause the loss of uncertain information. FDBSCAN,

FOPTICS and PDBSCAN also perform worse than RPC. The reason is that they rely on

the unreasonable independent distance assumption. All in all, in terms of effectiveness,335

RPC performs much better than the compared algorithms.

5.5. Efficiency

We report the efficiency results (in milliseconds) on real world uncertain datasets,

which is shown in Figure 4. Other datasets have the similar trend. From the results,

it can be seen that UK-medoids is the slowest. RPC runs faster than FDBSCAN and340
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Table 2: Clustering results in terms of ACC.

Dataset Dist. UKM CKM UKMD MMV UCPC FDB FOP PDB SC REP RP-SC RP-REP RPC

Wine

U 0.8180 0.8034 0.8017 0.8056 0.8354 0.7472 0.7640 0.8146 0.7079 0.7135 0.7303 0.7528 0.9719

G 0.8343 0.8213 0.8163 0.8056 0.8444 0.7247 0.7528 0.7303 0.7079 0.7416 0.7360 0.8034 0.9663

L 0.8567 0.8382 0.8337 0.8528 0.8500 0.7303 0.7921 0.7528 0.7022 0.7416 0.7753 0.8090 0.9775

Glass

U 0.4893 0.4818 0.4911 0.4313 0.4276 0.4112 0.4673 0.5047 0.4299 0.4346 0.5093 0.4953 0.5575

G 0.4846 0.4897 0.4776 0.4257 0.4551 0.4533 0.4579 0.5187 0.4112 0.4299 0.4953 0.5093 0.5565

L 0.4874 0.4860 0.4766 0.4322 0.4668 0.4019 0.4626 0.5000 0.4206 0.4439 0.4907 0.5000 0.5561

Ecoli

U 0.6661 0.6853 0.6413 0.6538 0.6557 0.5596 0.6177 0.6544 0.5810 0.6055 0.6606 0.6514 0.8070

G 0.6321 0.6300 0.6352 0.6309 0.5765 0.5260 0.6667 0.6575 0.6728 0.6667 0.7034 0.7278 0.8055

L 0.6489 0.5826 0.6456 0.6633 0.6419 0.5352 0.6116 0.6514 0.5902 0.6086 0.6606 0.7217 0.8116

Image

U 0.6872 0.6706 0.7129 0.5603 0.5621 0.5550 0.7065 0.6680 0.6108 0.6450 0.6844 0.7052 0.8475

G 0.6639 0.6425 0.6980 0.5945 0.5819 0.5494 0.7177 0.7299 0.5870 0.5636 0.6576 0.6545 0.8350

L 0.6724 0.6706 0.6627 0.6156 0.5808 0.5528 0.7429 0.7074 0.5264 0.5905 0.5792 0.6563 0.8459

Libras

U 0.5233 0.5083 0.5475 0.4231 0.4461 0.2056 0.2389 0.3139 0.2111 0.2361 0.2750 0.2944 0.6125

G 0.5322 0.5053 0.5294 0.4211 0.4414 0.2528 0.3417 0.3222 0.2611 0.3167 0.3083 0.3778 0.6006

L 0.5258 0.5208 0.5539 0.4236 0.4444 0.2750 0.2917 0.3306 0.2889 0.2861 0.3333 0.3472 0.6008

USPS

U 0.6844 0.6973 0.7097 0.5354 0.5197 0.4295 0.4790 0.5178 0.4047 0.4521 0.4930 0.5027 0.8029

G 0.6220 0.6245 0.6499 0.5107 0.5269 0.4101 0.4769 0.4833 0.4101 0.4456 0.4327 0.4639 0.7658

L 0.6868 0.6846 0.6226 0.5477 0.5425 0.4424 0.4822 0.4909 0.4198 0.4424 0.4822 0.5199 0.7825

Waveform

U 0.8335 0.8384 0.7480 0.6565 0.6626 0.3392 0.3352 0.5472 0.4274 0.4062 0.5004 0.4254 0.9583

G 0.8381 0.8382 0.7080 0.6569 0.6542 0.3428 0.3294 0.5938 0.4366 0.4386 0.4956 0.4524 0.9618

L 0.7797 0.7775 0.7075 0.6696 0.6843 0.3412 0.3316 0.5732 0.4248 0.4160 0.4874 0.4678 0.9573

Movement — 0.3490 0.3341 0.3478 0.3427 0.3494 0.2834 0.2643 0.3121 0.2548 0.2866 0.2866 0.3153 0.4315

NBA — 0.5463 0.5457 0.5403 0.5257 0.5473 0.5667 0.5067 0.5867 0.5133 0.5433 0.5667 0.5700 0.6133

Weather — 0.5869 0.6144 0.5961 0.6105 0.6033 0.5882 0.5163 0.6993 0.5294 0.5490 0.6340 0.6405 0.7176

all avg.ACC 0.6437 0.6371 0.6314 0.5748 0.5792 0.4676 0.5147 0.5692 0.4804 0.5002 0.5407 0.5568 0.7643

all avg.ACC.gain 0.1206 0.1272 0.1329 0.1895 0.1851 0.2967 0.2496 0.1951 0.2839 0.2641 0.2236 0.2075 —

FOPTICS, but slower than UK-means, CK-means, MMVar, UCPC and PDBSCAN.

Among possible world based algorithms, RP-SC, RP-REP and RPC perform almost
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Table 3: Clustering results in terms of NMI.

Dataset Dist. UKM CKM UKMD MMV UCPC FDB FOP PDB SC REP RP-SC RP-REP RPC

Wine

U 0.6871 0.6002 0.6155 0.6398 0.6849 0.5303 0.6192 0.5510 0.4630 0.4762 0.5196 0.5519 0.8926

G 0.7091 0.6435 0.6880 0.6419 0.6795 0.5562 0.6277 0.6195 0.4817 0.5460 0.5434 0.5823 0.8782

L 0.7033 0.6649 0.7066 0.6898 0.6837 0.7002 0.7877 0.7239 0.6785 0.7384 0.7764 0.7887 0.9088

Glass

U 0.3335 0.3422 0.3351 0.2646 0.2850 0.3162 0.3562 0.4055 0.3693 0.3277 0.4016 0.4006 0.4101

G 0.3353 0.3401 0.3377 0.2624 0.2923 0.3668 0.3627 0.4177 0.3421 0.3649 0.4025 0.4016 0.4188

L 0.3580 0.3625 0.3455 0.2590 0.3074 0.3104 0.3428 0.4049 0.3536 0.3238 0.3998 0.4044 0.4120

Ecoli

U 0.6201 0.6055 0.6164 0.5986 0.5746 0.2335 0.5773 0.4960 0.5082 0.4357 0.5292 0.5549 0.6824

G 0.6102 0.6362 0.5912 0.5569 0.5588 0.2040 0.5917 0.5536 0.4973 0.5124 0.5858 0.5860 0.6871

L 0.6273 0.6384 0.5906 0.5838 0.6005 0.1898 0.5587 0.4602 0.5095 0.5121 0.5380 0.5907 0.7074

Image

U 0.7048 0.7041 0.6968 0.5941 0.5612 0.6661 0.7234 0.6628 0.6854 0.6607 0.7242 0.7186 0.7756

G 0.7115 0.6601 0.6818 0.6070 0.5933 0.6849 0.7464 0.7647 0.6182 0.5871 0.6925 0.6854 0.7838

L 0.7160 0.7016 0.6914 0.6386 0.6465 0.6836 0.7761 0.7403 0.6001 0.6235 0.6707 0.7026 0.7970

Libras

U 0.6595 0.6329 0.6352 0.5431 0.5703 0.4249 0.4251 0.6161 0.4096 0.3999 0.4642 0.5298 0.6841

G 0.6583 0.6555 0.6314 0.5490 0.5752 0.4814 0.5742 0.5637 0.4997 0.5752 0.5292 0.6100 0.7056

L 0.6580 0.6535 0.6530 0.5590 0.5739 0.5024 0.5298 0.5662 0.5049 0.4693 0.5327 0.5626 0.7019

USPS

U 0.7661 0.7593 0.7438 0.5544 0.5651 0.5103 0.6064 0.6842 0.4251 0.5057 0.5658 0.5587 0.8473

G 0.6797 0.6539 0.6574 0.5338 0.5326 0.4741 0.5622 0.5782 0.4939 0.5386 0.5242 0.5639 0.8082

L 0.7507 0.7413 0.6529 0.5433 0.5414 0.5221 0.5236 0.6035 0.5032 0.5651 0.5388 0.5936 0.8120

Waveform

U 0.6572 0.6662 0.5333 0.3632 0.4034 0.0676 0.0755 0.1949 0.1001 0.1005 0.1138 0.1107 0.8281

G 0.6667 0.6697 0.4554 0.4397 0.4046 0.0602 0.0667 0.2975 0.0931 0.0489 0.1061 0.1465 0.8400

L 0.5964 0.5886 0.4557 0.4090 0.4477 0.0506 0.0858 0.2245 0.0972 0.1385 0.1088 0.1579 0.8259

Movement — 0.2133 0.1935 0.2172 0.1837 0.1985 0.0445 0.0791 0.1170 0.0688 0.0975 0.1350 0.1361 0.2584

NBA — 0.1591 0.1648 0.1558 0.1647 0.1690 0.1443 0.0918 0.1759 0.0671 0.1446 0.1563 0.1571 0.1919

Weather — 0.4892 0.4690 0.4486 0.4183 0.3747 0.1937 0.4575 0.5277 0.2714 0.2761 0.3133 0.3724 0.5842

all avg.NMI 0.5863 0.5728 0.5473 0.4832 0.4927 0.3716 0.4645 0.4979 0.4017 0.4154 0.4530 0.4778 0.6851

all avg.NMI.gain 0.0988 0.1123 0.1378 0.2019 0.1924 0.3135 0.2206 0.1872 0.2834 0.2697 0.2321 0.2073 —

identically, and they are slower than SC and REP. The reason is that when selecting

representative possible worlds, the computation process of Jensen-Shannon divergence
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Figure 4: Clustering results in terms of efficiency.

is a little complex. In summary, RPC performs acceptably in efficiency.345

6. Conclusion

In this paper, we propose a representative possible world based consistent clustering

algorithm for uncertain data. It consists of two parts: selecting representative possible

worlds and consistent spectral clustering. By selecting representative possible worlds,

it avoids the negative effects caused by marginal possible worlds. By consistent spectral350

clustering, it makes use of the consistency principle to achieve better performance.

Experimental results show that the proposed algorithm outperforms the state-of-the-

art algorithms in effectiveness and performs competitively in terms of efficiency.

For future work, we will extend the idea to uncertain data stream clustering and
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classification, and apply our method in more real applications.355
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[16] A. Züfle, T. Emrich, K. A. Schmid, N. Mamoulis, A. Zimek, M. Renz,

Representative clustering of uncertain data, in: Proceedings of KDD, 2014, pp.

243–252.

[17] P. B. Volk, F. Rosenthal, M. Hahmann, D. Habich, W. Lehner, Clustering

uncertain data with possible worlds, in: Proceedings of ICDE, 2009, pp. 1625–400

1632.

[18] H. Liu, X. Zhang, X. Zhang, Q. Li, X. Wu, Clustering uncertain data via

representative possible worlds with consistency learning, in: Proceedings of

IJCAI Workshops, 2019.

24



[19] B. Kao, S. D. Lee, D. W. Cheung, W.-S. Ho, K. F. Chan, Clustering uncertain405

data using Voronoi diagrams, in: Proceedings of ICDM, 2008, pp. 333–342.

[20] B. Kao, S. D. Lee, F. K. F. Lee, D. W.-L. Cheung, W.-S. Ho, Clustering uncertain

data using Voronoi diagrams and R-tree index, IEEE Transactions on Knowledge

and Data Engineering 22 (9) (2010) 1219–1233.

[21] W. K. Ngai, B. Kao, R. Cheng, M. Chau, S. D. Lee, D. W. Cheung, K. Y. Yip,410

Metric and trigonometric pruning for clustering of uncertain data in 2D geometric

space, Information Systems 36 (2) (2011) 476–497.

[22] I. Lukic, M. Köhler, N. Slavek, Improved bisector pruning for uncertain data

mining, in: Proceedings of ITI, 2012, pp. 355–360.

[23] S. D. Lee, B. Kao, R. Cheng, Reducing UK-means to K-means, in: Proceedings415

of ICDM Workshops, 2007, pp. 483–488.

[24] J. Zhou, L. Chen, C. L. P. Chen, Y. Wang, H. Li, Uncertain data clustering in

distributed peer-to-peer networks, IEEE Transactions on Neural Networks and

Learning Systems 29 (6) (2018) 2392–2406.

[25] F. Gullo, G. Ponti, A. Tagarelli, Minimizing the variance of cluster mixture420

models for clustering uncertain objects, in: Proceedings of ICDM, 2010, pp. 839–

844.

[26] F. Gullo, A. Tagarelli, Uncertain centroid based partitional clustering of uncertain

data, in: Proceedings of VLDB, 2012, pp. 610–621.

[27] E. Schubert, A. Koos, T. Emrich, A. Züfle, K. A. Schmid, A. Zimek, A framework425
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