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Purpose: This study aimed to develop and evaluate CTVISVD, a super-voxel-based
method for surrogate computed tomography ventilation imaging (CTVI).

Methods and Materials: The study used four-dimensional CT (4DCT) and single-
photon emission computed tomography (SPECT) images and corresponding lung
masks from 21 patients with lung cancer obtained from the Ventilation And
Medical Pulmonary Image Registration Evaluation dataset. The lung volume of
the exhale CT for each patient was segmented into hundreds of super-voxels
using the Simple Linear Iterative Clustering (SLIC) method. These super-voxel
segments were applied to the CT and SPECT images to calculate themean density
values (Dmean) and mean ventilation values (Ventmean), respectively. The final CT-
derived ventilation images were generated by interpolation from the Dmean values
to yield CTVISVD. For the performance evaluation, the voxel- and region-wise
differences between CTVISVD and SPECT were compared using Spearman’s
correlation and the Dice similarity coefficient index. Additionally, images were
generated using two deformable image registration (DIR)-basedmethods, CTVIHU

and CTVIJac, and compared with the SPECT images.

Results: The correlation between the Dmean and Ventmean of the super-voxel was
0.59 ± 0.09, representing amoderate-to-high correlation at the super-voxel level.
In the voxel-wise evaluation, the CTVISVD method achieved a stronger average
correlation (0.62 ± 0.10) with SPECT, which was significantly better than the
correlations achieved with the CTVIHU (0.33 ± 0.14, p < 0.05) and CTVIJac (0.23 ±
0.11, p < 0.05) methods. For the region-wise evaluation, the Dice similarity
coefficient of the high functional region for CTVISVD (0.63 ± 0.07) was
significantly higher than the corresponding values for the CTVIHU (0.43 ± 0.08,
p < 0.05) and CTVIJac (0.42 ± 0.05, p < 0.05) methods.

Conclusion: The strong correlation between CTVISVD and SPECT demonstrates
the potential usefulness of this novel method of ventilation estimation for
surrogate ventilation imaging.
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1 Background

Lung cancer is the most common cause of cancer-related death
in both men and women (Wild et al., 2020). Radiotherapy (RT) is an
important treatment modality for lung cancer, especially in patients
in whom surgical resection is contraindicated or those with mid- or
late-stage lung cancers (Gadgeel et al., 2012). The functional lung
volume that can be irradiated in such patients is limited, as
irradiation of functioning tissue can lead to radiation
pneumonitis (RP) and respiratory failure. Currently, the
percentage of the lung volume receiving at least 20 Gy (V20) and
the mean lung dose (MLD) are used to predict the risk of pulmonary
injury (Lee et al., 2003) or the maximum acceptable dose to deliver to
a lesion (Baisden et al., 2007). However, these parameters are
evaluated across the whole lung volume and do not account for
functional differences between lung regions. Recently, regional lung
functionality assessment has been shown to enable highly functional
lung areas to be spared from irradiation and thus can be used to
design treatment plans that reduce the risk of injury (Hoover et al.,
2014; Bucknell et al., 2018; Lee and Park, 2020; Vinogradskiy et al.,
2022).

Lung ventilation images can provide regional functional
information. Clinical-standard lung ventilation imaging
techniques require radioactive gases or aerosols; for example,
single-photon emission computed tomography (SPECT) uses
Technetium-99 m (Tc-99 m) (Suga et al., 2004) and positron
emission tomography (PET) uses Gallium-68 (Ga-68) (Ament
et al., 2013). However, not all hospitals can perform PET or
SPECT scans, and the radiopharmaceuticals used for imaging
expose patients to additional radiation doses. Hyperpolarized
noble gas magnetic resonance imaging (MRI) ventilation (Cai
et al., 2007; Cai et al., 2009; Tustison et al., 2010; Roos et al.,
2015) is another non-invasive imaging technique used to
generate ionizing radiation-free ventilation images for lung
function assessment. However, MRI ventilation requires a
tracer gas and specialized equipment, which may limit the
availability of this modality in clinical practice. CT-derived
ventilation imaging (CTVI) is another method of generating
ventilation images. Moreover, as CT scans of patients
undergoing RT are routinely performed, CTVI methods could
potentially help patients avoid unnecessary radiation doses and
medical costs.

Current CTVI methods are mainly based on volume changes
(Jacobian-based, CTVIJac) or density changes (CTVIHU) and use
four-dimensional CT (4DCT) and deformable image registration
(DIR) (Vinogradskiy, 2019). In 4DCT-based methods, the peak-
inhale phase CT (CTin) and peak-exhale phase CT (CTex) are
selected from 4DCT data to represent the largest regional volume
differences and changes in HU values. The rationale underlying
density change-based methods is that each lung CT voxel
represents a combination of water-like and air-like tissues
(Simon, 2000), so the density of the lung voxel in the CTin

decreases when air is inhaled. The density change in each
voxel then can be calculated by applying DIR to map the
voxels between CT images of inhalation and exhalation. The
Jacobian-based methods use the volume change in a given lung
voxel due to inhaled air. The volume change can be calculated as
the Jacobian of the generated DIR (Reinhardt et al., 2008).

However, because these methods are performed at the voxel
level, their results are substantially affected by image artifacts
and DIR accuracy. Therefore, sub-regional level analysis methods
have been developed to improve the accuracy robustness of CTVI
(Szmul et al., 2019; Castillo et al., 2020). These methods have
yielded some improvements but they also are DIR-based, which
means that their accuracy depends on DIR algorithms; thus, they
are affected by the parameters of DIR algorithms and the
sensitivity of DIR to 4DCT image artifacts. Other CTVI
methods that do not use DIR have been devised. For example,
Kipritidis et al. (2016) devised a modified Hounsfield unit (HU)-
based method that generates robust ventilation images without
DIR. However, this method may overestimate areas with edges
between solid tissue and normal parenchyma within the lung,
such as the peritumoral lung and the pleural space. Some deep
learning-based methods can generate highly accurate functional
lung images (Zhong et al., 2019; Liu et al., 2020; Ren et al.,
2021a; Ren et al., 2021b), but these results lack anatomical
explanations.

Current DIR-based CTVI methods are sensitive to both CT
image quality and DIR algorithms, so the images they generate
have a limited correlation with the gold-standard ventilation
images generated using SPECT and PET (Vinogradskiy, 2019).
Consequently, the results of CTVI are complicated and difficult
to interpret, meaning they may be unsuitable for clinical
application. The super-pixel concept was first proposed and
developed as an image segmentation technology in 2003 (Ren
and Malik, 2003). It uses pixel blocks that form specific patterns
with adjacent pixels that have a similar texture, color, and other
features. Images can be represented by a small number of super-
pixels, which significantly reduces the complexity of image
post-processing. A similar concept, the super-voxel, is used
for three-dimensional (3D) image analysis. An air exchange
unit is evaluated using a volume of approximately 2 cm3 (Levin
et al., 2017) that contains a cluster of CT voxels with a
resolution of approximately 1 mm × 1 mm × 3 mm. The CT
image of a patient with lung cancer can be pre-processed by
segmentation into a small number of super-voxels, where each
super-voxel contains a cluster of voxels with similar features
and forms perceptually meaningful anatomic features. Drawing
on this principle, the current study devised a super-voxel-based
method for generating robust lung ventilation images from the
mean CT density value (Dmean) of super-voxels. The ventilation
images generated are based on CT image features in the absence
of DIR. The results are robust and expected to be directly
interpretable and meaningful for predicting the outcomes of
patients with lung cancer.

2 Materials and methods

2.1 Workflow of the study

Figure 1 shows the main workflow of this study. The CTex and
CTin were used to calculate the ventilation images. A clustering
method was used to generate super-voxels, and the Dmean of each
super-voxel was used to calculate the ventilation images CTVISVD.
The results of CTVISVD and the DIR-based CTVIs (CTVIHU;
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CTVIJac) were compared with SPECT images. The details are
presented in the following sections.

2.2 Image data

The data of 21 patients with lung cancer were acquired from
the Ventilation And Medical Pulmonary Image Registration
Evaluation (VAMPIRE) dataset (Kipritidis et al., 2019). All of
the patients underwent 4DCT and diethylenetriamine
pentaacetate (DTPA)-SPECT scans at Stanford University,
United States (Yamamoto et al., 2014). All of the patients
provided written informed consent to participate in a clinical
trial of 4DCT ventilation imaging approved by the institutional
review board for a study by Yamamoto (Yamamoto et al., 2014).
Ten breathing phase CT images and a time-average CT with a
slice thickness of 2.0, 2.5, or 3.0 mm were available for each
patient. The average interval between the 4DCT and subsequent
DTPA-SPECT (including low-dose attenuation correction CT)
scans was 4 (±5) days. Rigid registration was performed
between each SPECT image and the time-average CT image
using Mattes mutual information rigid registration in
Plastimatch. The DTPA-SPECT scans were linearly
interpolated to match the dimensions of the time-average CT
image (Kipritidis et al., 2019). The lung masks for all of the CT
images (4DCT and attenuation correction CT) were also

acquired from the VAMPIRE dataset, which used a region-
growing method. The lung masks of the attenuation correction
CT images were also used as the masks of the SPECT images.
The CT values were converted to density values using Eq. 1, as
follows:

Density � HU + 1000
1000

(1)

2.3 DIR-based CTVI methods

The two main conventional DIR-based methods are
CTVIHU and CTVIJac. Both methods require DIR between
the CTin and CTex. In CTVIHU, a voxel at spatial position x
of the CTex is mapped toward a voxel at spatial position x′ of
the CTin by DIR. The ventilation value at position x can be
directly calculated using Eq. 2 (Kipritidis et al., 2019), as
follows:

Vent x( ) � −1000 × HUex x( ) −HUin x′( )( )
HUex x( ) × HUin x′( ) + 1000( ) (2)

In CTVIJac, the volume change of a voxel at position x is
calculated using the determinant of the Jacobian of the
deformation field at position x. This process is performed using
Eq. 3, as follows:

FIGURE 1
Flowchart of this study for comparing the CTVISVD, CTVIHU, and CTVIJac with SPECT.
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− 1 (3)

Both CTVIHU and CTVIJac images were calculated in this
study and used for comparison. DIR between the CTin and CTex

was performed using MIMvista 6.3.4 (MIM Software Inc.,
Cleveland, OH, United States) with a default spacing
resolution of 3 mm.

2.4 Super-voxel segmentation

Simple linear iterative clustering (SLIC) (Achanta et al., 2012) is
a clustering method applied to lung CT 3D images to generate super-
voxels with low computational power requirements. The SLIC
algorithm first initializes the Kinit seeds by resampling pixels on a
regular grid. Then, it assigns each voxel to the closest seed point to
generate Kinit clusters based on the distance (D), as described by
Eq. 4:

D �

���������������
dc

2 + ds

S
( )2

× m2

√√
(4)

where dc is the HU value difference, ds is the Euclidean distance, S is
the initial sampling interval S �

���
N
Kinit

√
, N is the total voxel number in

the lung volume, and m is a weighting value used to control the
compactness of the super-voxel. Next, the positions of the centers
are moved to the point with the smallest gradient to prevent
placement on the edges of an image or at a noisy voxel. The
above steps are repeated until the result converges. Only the
super-voxels in the lung mask were used in this study. An in-
house tool based on Matlab (MathWorks Inc., Natick, MA,
United States) was used, and Kinit was set as 1,500 for all of the
patients (refer to the Discussion section for commentary). The
number of super-voxels generated varied between the patients
according to their lung anatomy. All of the CT and SPECT
images were interpolated into images of the same size and with a
pixel size of with 2 mm ✕ 2 mm ✕ 2 mm, and a 3D median filter
with dimensions of 5 voxels✕ 5 voxels✕ 5 voxels was applied to the
images to reduce noise.

2.5 Super-voxel-based ventilation image
CTVISVD calculation

As shown in Figure 2, a super-voxel map was generated on CTex

images (as described in Section 2.4), and the Dmean of each super-
voxel was calculated. Other studies have used fixed threshold
intervals of −1,024 to −400 HU to generate the lung parenchyma
(Kemerink et al., 1998; Kuhnigk et al., 2005). In the current study,

FIGURE 2
The workflow of the generations of the CTVISVD and VISV.

Frontiers in Physiology frontiersin.org04

Chen et al. 10.3389/fphys.2023.1085158

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1085158


the same fixed threshold interval was applied to identify the non-
lung region; a super-voxel with aDmean greater than 0.6 according to
Eq. 1 was assigned a value of 0 to remove clearly false results from
consolidation of the tumor and abnormal tissues, which have a
high density but should have a low ventilation value. The super-
voxel segmentation results were then directly mapped on the
SPECT images, as both the SPECT and time-average CT data
were registered according to the VAMPIRE challenge, and the
time-average CT and CTex images shared the same position. The
mean ventilation value (Ventmean) was calculated using SPECT
image data. The correlation between the Dmean and Ventmean of
the super-voxels was determined using Spearman’s correlation
analysis.

Figure 2 shows the workflow for generating the CTVISVD
images and the ventilation images based on SPECT (VISV).
CTVISVD image generation requires only a CTex image, while
VISV images require both CTex and SPECT images. To
demonstrate the feasibility of generating a reasonable
ventilation image using hundreds of super-voxels, we
generated the VISV image and compared it with a SPECT
image. The details of CTVISVD are presented as follows. To
perform CTVISVD of the whole lung volume, we used the
geometric center of a super-voxel to represent the position of
the super-voxel, and the Dmean value as the ventilation value of
the center positions of the super-voxels. The ventilation values of
all of the voxels in a lung were then calculated via interpolation
with the Dmean of the super-voxels, as follows (Eq. 5):

V � WVsup (5)
wij � e−

rij
rmean
( )2 (6)

where V is the vector of the ventilation value of all voxels in a lungs;
Vsup is the vector calculated only using the Dmean of the super-voxel;
W is the interpolation weight matrix; wij is the element of the W
matrix, which is calculated based on the distance between voxel i and
the center position of super-voxel j, as shown in Eq. 6; rmean is the
mean distance between the super-voxels; and rij is the distance
between voxel i and super-voxel j. The lung volume was divided into
the left and right lungs. For each voxel, the ventilation value was
interpolated using only the super-voxels from the ipsilateral lung. To
smooth the final CTVIs, we applied a 3D Gaussian filter with a
kernel size of three voxels to each lung voxel. The same post-
processing steps were applied to all CTVIs. The Ventmean of the
super-voxels from SPECT was used to generate the VISV according
to the above-stated interpolation method and the correlation
between VISV and SPECT was evaluated. Two more super-
voxels-based ventilation images were also generated for
comparison. The Ventmean of the super-voxels from CTVIHU and
CTVIJac was used to generate the CTVISVHU and CTVISVJac with a
similar method as VISV, respectively. Their correlations with SPECT
were also evaluated.

2.6 Comparison of CTVISVD, CTVIHU, CTVIJac,
CTVISVHU, and CTVISVJac with SPECT

The CTVISVD images generated in this study were evaluated
with the corresponding SPECT images using voxel-wise

Spearman correlation analysis. Spearman correlation analysis
was also used to compare SPECT images with CTex, CTVIHU,
CTVIJac, CTVISVHU, and CTVISVJac images. The comparison
between the CTex and SPECT was used to show the
advantages of analysis at the super-voxel level compared to
the voxel level. To assess the concordance of high-functioning
regions between CTVI and SPECT, SPECT and CTVISVD images
from each patient were divided into two volumes by the 66th
percentile ventilation value in the lung, which is used to
distinguish high- and low-functioning lung regions. This value
has been used by other studies (Yamamoto et al., 2011; Ren et al.,
2021b). The Dice similarity coefficient index (DSC) was used to
assess the accuracy of CTVISVD in segmenting the high- and low-
functioning lung regions. The DSC was also used to compare the
high- and low-functioning lung regions segmented by SPECT
with those segmented by CTVIHU, CTVIJac, CTVISVHU, and
CTVISVJac. Only the intersection between the CT and SPECT
lung masks was analyzed in this study.

2.7 Impact of the super-voxel number on
CTVISVD experiments

The size of the super-voxels may influence the results of
CTVISVD. On the one hand, super-voxels that are too large may
not be able to identify small defects. On the other hand, super-
voxels that are too small may lose their structure-oriented
properties. A particular clustering may influence the results
of CTVISVD. For example, by increasing the number of super-
voxels, the size of clusters is reduced. To investigate how the size
of the super-voxels influences the results, we measured the
correlation of CTVISVD with SPECT for different numbers of
super-voxels. Performance was evaluated at various values of
Kinit (300, 500, 800, 1,000, 1,500, 2,000, 2,500, 3,000, 4,000,
8,000, 12,000, and 15,000) to cover an extensive range. A large
value of Kinit increases the calculation time and depletes the
memory needed to calculate the interpolation matrix W, as
described in Section 2.5. The computer used for this analysis
was equipped with an Intel® Core™ i9-11900K 3.50-GHz
processor and 64.0 GB of RAM.

3 Results

3.1 Super-voxel segmentation

The SLIC method was used to divide the lung volumes of the
21 patients into 380–715 super-voxels at a Kinit of 1,500.
Figure 3 shows an example of super-voxel segmentation of
the lung volume. Different colors indicate different super-
voxel regions. The mean correlation between VISV and
SPECT was 0.91 (range: 0.84–0.96). Figures 4B, C show a
comparison between SPECT and VISV images. The two
images have a similar function distribution. The strong
correlation between VISV and SPECT suggests that a
reasonable CTVI image of the whole lung volume can be
generated by analyzing hundreds of super-voxels.
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3.2 Comparison of CTVISVD, CTVIHU, CTVIJac,
CTVISVHU, and CTVISVJac with SPECT

The correlation between theDmean fromCT and theVentmean for
the super-voxel volume from SPECT was 0.59 ± 0.09, indicating that
super-voxels with a lower mean density tend to have a lower
function value than super-voxels with a higher mean density.
This moderate-to-strong correlation means that the Dmean of a
super-voxel can be used as a surrogate for Ventmean when
generating CTVISVD, as mentioned in Section 2.5. Figure 4
presents a comparison of SPECT with CTVISVD. The low-
functioning lung region, indicated by the red arrow in the CT
image and by the blue and black-blue area in the ventilation
image (Figure 4B), can be identified using CTVISVD (dark blue

area in Figure 4D). The mean correlation coefficient
between CTVISVD and SPECT was 0.62 (range: 0.37–0.77).
The mean correlation coefficients of SPECT with CTex,
CTVIHU; CTVIJac; CTVISVHU,; CTVISVJac were 0.16 ± 0.16,
0.33 ± 0.14, 0.23 ± 0.10, 0.39 ± 0.18, and 0.33 ±
0.15 respectively. These results indicate that CTVISVD is
closer to SPECT than conventional DIR-based methods. The
super-voxel based method can improve the correlations of the
DIR-based CTVIs by 0.06 and 0.10 for CTVIHU; CTVIJac,
respectively. A similar improvement was also reported by
Szmul’s study (Szmul et al., 2019).

The mean DSC values of the high-functioning (DSCh) and low-
functioning regions (DSCl) on CTVISVD images were 0.63 ±
0.07 and 0.81 ± 0.03, respectively. Because the criterion for

FIGURE 3
Super-voxel segmentation in the lungs of a patient. (A) Is the CT, (B) is the result of the super-voxel segmentation in the lung region.

FIGURE 4
Comparison of SPECT image and CTVISVD images for a representative case. (A) Is CT; (B) is the SPECT of the lung region superimposed onto the CT;
(C) is the VISV of the lung region superimposed onto the CT; (D) is the CTVISVD of the lung region superimposed onto the CT; (E) is the CTVIJac of the lung
region superimposed onto the CT; (F) is the CTVIHU of the lung region superimposed onto the CT. For all the figures, their 99th percentile and higher
values were scaled to 100 (to reduce the artifact effect caused by the tracer deposited at airways in SPECT for visual inspection), and the minimum
value was scaled to 0.
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dividing the lung is the 66th, the low-functioning region is larger
than the high-functioning region, andDSCl is higher thanDSCh. As
shown in Figure 4, the locations of the low-functioning regions on
the CTVISVD images matched those on the SPECT images, but the

highest-functioning regions (dark red area) just exhibited a certain
amount of overlap. The mean DSCh values of CTVIHU, CTVIJac,
CTVISVHU, and CTVISVJac were 0.43 ± 0.08 and 0.42 ± 0.05, 0.49 ±
0.11, and 0.48 ± 0.07, respectively, and the corresponding mean

FIGURE 5
Comparison of SPECT image and CTVISVD images for a representative case. (A) Is CT; (B) is the SPECT of the lung region superimposed onto the CT;
(C) is the origin CTVISVD of the lung region superimposed onto the CT; (D) is the corrected CTVISVD of the lung region superimposed onto the CT. For all
the figures, their 99th percentile and higher values were scaled to 100, and the minimum value was scaled to 0.

FIGURE 6
Two different super-voxel segmentations with different Kinit and the corresponding CTVISVD. The Kinit of the top row is 500, and the bottom row is
120000. (A,C) are the results of the super-voxel segmentation in the lung region. (B,D) are the CTVISVD of the lung region superimposed onto the CT.
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DSCl values were 0.70 ± 0.04, 0.70 ± 0.03, 0.74 ± 0.06, and 0.73 ±
0.04, respectively.

For some patients, CTVISVD yielded low correlation with
SPECT. However, this could be improved. As indicated by the
red arrow in Figure 5A, a defective lung region with a high
density at the top of the left lung caused a falsely high
ventilation value, as shown in Figure 5C. Such errors can be
corrected by manually contouring the defect regions via
assignment to a low ventilation value. In this case, the final
correlation coefficient increased to 0.52, as shown in Figure 5D.

3.3 Evaluation of the impact of the super-
voxel number on CTVISVD

Figure 6 shows super-voxel segmentation using two values of
Kinit. As the number of super-voxels increased, the size of the super-
voxels decreased. The generated CTVISVD images show high
similarity in highly ventilated regions. As shown in the bottom
left row of Figure 6, as the volume of the super-voxel decreased, it
becamemore difficult to contain the whole texture of the sub-region;
this presents an obstacle to analysis of the Ventmean with other
features of such a super-voxel. Table 1 shows the experimental
results obtained with different numbers of super-voxels. On average,
approximately 193, 280, 373, 413, 520, 615, 713, 802, 1,018, 1,788,
2,550, and 3,108 super-voxels were extracted from the lung volumes
of the 21 patients when Kinit was set as 300, 500, 800, 1,000, 1,500,
2,000, 2,500, 3,000, 4,000, 8,000, 12,000, and 15,000, respectively.
The correlation of Dmean with Ventmean was strongest when
approximately 520 super-voxels were extracted from the lung
volume and decreased as the number of super-voxels continued
to increase. A paired-samples t-test to compare the Dmean and

Ventmean obtained at a Kinit of 1,500 with those obtained at other
Kinit values revealed that a Kinit of 1,500 generated the most
reasonable number of super-voxels inside the lungs. The Dmean

exhibited a stronger correlation withVentmean at aKinit of 1,500 than
at Kinit values lower than 1,500 and higher than 3,000. The
correlation of CTVISVD with SPECT reached a plateau at
approximately 520 super-voxels and remained stable as the
number of super-voxels increased. Thus, Kinit was set as 1,500 to
retain as many structure-oriented properties as possible for each
super-voxel.

4 Discussion

In this study, a super-voxel-based method was developed to
generate surrogate ventilation images directly from CT images. The
SLIC method was employed to generate super-voxels inside the lung
volume, and the Dmean of the super-voxels was used as a surrogate
for the mean ventilation value to calculate a whole-lung ventilation
image through interpolation. This novel CTVISVD method achieved
a mean Spearman’s correlation coefficient of 0.62 (range: 0.37–0.77)
with the ground-truth SPECT, which was significantly higher than
the correlation coefficients of SPECT with the DIR-based methods
CTVIHU (0.33 ± 0.14, p < 0.05), CTVIJac (0.23 ± 0.10, p < 0.05),
CTVISVHU (0.39 ± 0.18, p < 0.05), and CTVISVJac (0.33 ± 0.15, p <
0.05). The DSCh of CTVISVD was 0.63 ± 0.07, which was also
significantly higher than those of CTVIHU (0.43 ± 0.08, p < 0.05),
CTVIJac (0.42 ± 0.05, p < 0.05), CTVISVHU (0.49 ± 0.11, p < 0.05) and
CTVISVJac (0.48 ± 0.07, p < 0.05), and the DSCl of CTVISVD (0.81 ±
0.03) was higher than those of CTVIHU (0.70 ± 0.04, p < 0.05),
CTVIJac (0.70 ± 0.03, p < 0.05), CTVISVHU (0.74 ± 0.06, p < 0.05) and
CTVISVJac (0.73 ± 0.04, p < 0.05). By using this novel method, the

TABLE 1 The influence of the different numbers of the super-voxel.Kinit means the initial setting of the super-voxel number for the CT image, andKfinal means the
final extracted super-voxel number in the lung volume. The mean correlation value is the mean Spearman correlation value of all the patients. Dmean is the mean
density of the super-voxel, and Ventmean is the mean ventilation value of the super-voxel. The p-values are obtained from the paired-samples t-test of the Kinit of
other value with the Kinit of 1,500.

Kinit Kfinal Mean correlation value

Dmean vs. Ventmean p-value CTVISVD vs. SPECT p-value

300 193 0.49 0.0001 0.57 0.0002

500 280 0.50 0.0002 0.58 0.0003

800 373 0.57 0.0146 0.61 0.0915

1,000 413 0.57 0.0207 0.60 0.0012

1,500 520 0.59 — 0.62 —

2,000 615 0.57 0.0739 0.62 0.2733

2,500 713 0.58 0.2508 0.63 0.0606

3,000 802 0.57 0.0948 0.63 0.0738

4,000 1,018 0.54 0.0120 0.63 0.1480

8,000 1,788 0.48 0.0005 0.62 0.3097

12,000 2,550 0.46 0.0004 0.62 0.3142

15,000 3,108 0.45 0.0001 0.62 0.3376
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complexity of a ventilation imaging problem can be reduced from
calculating millions of ventilation values for all voxels to only
calculating hundreds of Ventmean values for super-voxels. The
Ventmean of a super-voxel can be directly derived from super-
voxel features. Thus, CTVISVD can be generated without DIR, so
the novel method is simpler and more robust than DIR-based
methods.

This study shows that the Dmean of a super-voxel is strongly
correlated with the Ventmean of a super-voxel, which means that a
lower super-voxel density is usually associated with less functional
ventilation than a higher super-voxel density. Similar results have
been shown in other studies (Lafata et al., 2019; Yang et al., 2021). As
shown in Figure 4, the region with low ventilation function
(indicated by arrows) is darker than the region with normal
function. The low-functioning region may correspond to a
defective lung region caused by emphysema, where healthy
pulmonary tissue has been replaced increasingly by air due to
alveolar damage and weakening and rupture of the inner walls of
the air sacs. This was a preliminary study of the use of the Dmean

of super-voxels to generate ventilation images, and only
21 patients were included. Other super-voxel features can be
analyzed and combined with Dmean to build a more accurate and
robust model for future CTVI studies involving more
patient data.

According to Eq. 4, the total super-voxel number and
compactness value affect segmentation of the super-voxels. The
SLIC algorithm used in this study can refine the compactness value
adaptively to reduce the influence of this variable without requiring
pre-assignment. The only variable required for SLIC is the total
number of super-voxels. The correlation between Dmean and
Ventmean is strongest when approximately 520 super-voxels are
extracted from the lung volume and decreases as the number of
super-voxels increases. Meanwhile, as the number of super-voxel
increases, the mean correlation between CTVISVD and SPECT
increases and then plateaus. A reasonable explanation for this
observation is that as the number of super-voxels increases, the
size of the super-voxels decreases, and some of the densities of these
small super-voxels are then affected by the bronchi, noise, or
artifacts with high-density values. The mean correlation between
the Dmean and Ventmean of the super-voxels decreases to tend to be
the pixel level results, which had the same value, 0.40 ± 0.19, as the
correlation between the CTex (after interpolation and denoising with
a median filter) and SPECT. However, these discrepancies can be
reduced by the smoothness of the Gaussian filter in the final image
processing. The correlation between CTVISVD and SPECT remains
stable. Accordingly, in this study, the Kinit setting that yielded the
strongest correlation between the Dmean and Ventmean was selected
to maintain the structure-oriented properties of the super-voxels to
the greatest extent possible. The correlation between the CTex and
SPECT was 0.16 ± 0.16, significantly lower than the result obtained
with CTVISVD method. This outcome is probably mainly
attributable to the technical limitations associated with SPECT
imaging. SPECT has an original resolution of 8 mm. We
resampled the SPECT image with a resolution of 2 mm in the
data process, so it could serve as a data smoothing process. This
process was similar to our method, wherein we calculated the mean
density of the super-voxel and then used interpolation to calculate
the value of each voxel.

This study has some limitations. Pulmonary ventilation refers to
the air exchange between the atmosphere and the lungs. It involves
the inflow of air through the airway to the alveoli, where the air
exchange occurs, followed by outflow through the airway. Our
results show that lung regions with lower density values exhibit
lower ventilation values than those with higher density values. As
previously mentioned, the damaged alveoli in a patient with
emphysema lost their ability to expel air, leading to decreased
intensity. However, in some cases, abnormal lung regions
associated with pulmonary diseases can exhibit increased density,
known as opacities, and fall into four patterns: consolidation,
interstitial, nodules or masses, and atelectasis (L ung-disease,
2023). These diseases can also obstruct the airway or damage to
the parenchyma, leading to a loss of air exchange capability.
Consequently, some pulmonary diseases may affect the CTVI
results in this study. However, the clinical presentation of
pulmonary diseases on CT images can vary. Raju et al.
categorized the signs of the lung disease into 22 groups (Raju
et al., 2017). These signs can increase the difficulty of
automatically recognizing defect regions. In this study, the super-
voxel was the smallest unit of analysis and its features can be used
directly to classify it as a defect or normal region. In future work, we
will create a super-voxel-based model to automatically identify
defect regions and correct the ventilation value to increase the
accuracy of our method.

Moreover, some regions may have a low ventilation value due to
pressure placed by the tumor on the central airway and blood
vessels; this pressure can be recovered after radiotherapy (Yuan
et al., 2012). Such regions need to be carefully protected during the
treatment, and the dose should be as low as possible as normal lung
regions. In cases with such regions, the patient’s dyspnea may be
reduced and the lung function may increase if the tumor shrinks
after treatment. From this perspective, CTVI can provide more
information than SPECT. More investigation is needed to identify
these regions and thus guide treatment planning.

5 Conclusion

In this study, we developed a super-voxel-based method to
generate surrogate ventilation images from CT data. The
observed correlation between CTVISVD and SPECT indicates that
CTVISVD has high similarity with SPECT. Our results also show that
the Dmean can be used as a surrogate for the Ventmean in the context
of generating ventilation images.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed and
approved by Departmental Research Committee Department of

Frontiers in Physiology frontiersin.org09

Chen et al. 10.3389/fphys.2023.1085158

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1085158


Health Technology and Informatics. Written informed consent for
participation was not required for this study in accordance with the
national legislation and the institutional requirements.

Author contributions

ZC: data analysis, methodology, writing—original draft. Y-HH:
data acquisition and analysis, writing—editing. F-MK and WH:
result checking, writing—review. GR and JC: supervision,
writing—review and editing.

Funding

This work was partly supported by the General Research Fund
(GRF 15103520) from The University Grants Committee, and
Health and Medical Research Fund (HMRF 07183266, HMRF
09200576) from The Health Bureau, The Government of the
Hong Kong Special Administrative Regions.

Acknowledgments

We would like to acknowledge the data provided by the
VAMPIRE challenge.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. (2012). SLIC
superpixels compared to state-of-the-art superpixel methods. IEEE Trans. pattern
analysis Mach. Intell. 34 (11), 2274–2282. doi:10.1109/TPAMI.2012.120

Ament, S. J., Maus, S., Reber, H., Buchholz, H. G., Bausbacher, N., Brochhausen, C.,
et al. (2013). PET lung ventilation/perfusion imaging using 68 Ga aerosol (Galligas) and
68 Ga-labeled macroaggregated albumin. Recent Results Cancer Res. 2013, 395–423.
doi:10.1007/978-3-642-27994-2_22

Baisden, J. M., Romney, D. A., Reish, A. G., Cai, J., Sheng, K., Jones, D. R., et al. (2007).
Dose as a function of lung volume and planned treatment volume in helical
tomotherapy intensity-modulated radiation therapy-based stereotactic body
radiation therapy for small lung tumors. Int. J. Radiat. Oncology* Biology* Phys. 68
(4), 1229–1237. doi:10.1016/j.ijrobp.2007.03.024

Bucknell, N. W., Hardcastle, N., Bressel, M., Hofman, M. S., Kron, T., Ball, D., et al.
(2018). Functional lung imaging in radiation therapy for lung cancer: A systematic
review and meta-analysis. Radiotherapy Oncol. 129 (2), 196–208. doi:10.1016/j.radonc.
2018.07.014

Cai, J., Altes, T. A., Miller, G. W., Sheng, K., Read, P. W., Mata, J. F., et al. (2007). MR
grid-tagging using hyperpolarized helium-3 for regional quantitative assessment of
pulmonary biomechanics and ventilation. Magnetic Reson. Med. 58 (2), 373–380.
doi:10.1002/mrm.21288

Cai, J., Sheng, K., Benedict, S. H., Read, P. W., Larner, J. M., Mugler, J. P., et al. (2009).
Dynamic MRI of grid-tagged hyperpolarized helium-3 for the assessment of lung
motion during breathing. Int. J. Radiat. Oncology* Biology* Phys. 75 (1), 276–284.
doi:10.1016/j.ijrobp.2009.03.051

Castillo, E., Castillo, R., Vinogradskiy, Y., Nair, G., Grills, I., Guerrero, T., et al. (2020).
Technical Note: On the spatial correlation between robust CT-ventilation methods and
SPECT ventilation. Med. Phys. 47 (11), 5731–5738. doi:10.1002/mp.14511

Gadgeel, S. M., Ramalingam, S. S., and Kalemkerian, G. P. (2012). Treatment of lung
cancer. Radiol. Clin. 50 (5), 961–974. doi:10.1016/j.rcl.2012.06.003

Hoover, D. A., Reid, R. H., Wong, E., Stitt, L., Sabondjian, E., Rodrigues, G. B., et al.
(2014). SPECT-Based functional lung imaging for the prediction of radiation
pneumonitis: A clinical and dosimetric correlation. J. Med. Imaging Radiat. Oncol.
58 (2), 214–222. doi:10.1111/1754-9485.12145

Kemerink, G. J., Lamers, R. J., Pellis, B. J., Kruize, H. H., and van Engelshoven, J. M.
(1998). On segmentation of lung parenchyma in quantitative computed tomography of
the lung. Med. Phys. 25 (12), 2432–2439. doi:10.1118/1.598454

Kipritidis, J., Hofman, M. S., Siva, S., Callahan, J., Le Roux, P. Y., Woodruff, H. C.,
et al. (2016). Estimating lung ventilation directly from 4D CT Hounsfield unit values.
Med. Phys. 43 (1), 33–43. doi:10.1118/1.4937599

Kipritidis, J., Tahir, B. A., Cazoulat, G., Hofman, M. S., Siva, S., Callahan, J., et al.
(2019). The VAMPIRE challenge: A multi-institutional validation study of CT
ventilation imaging. Med. Phys. 46 (3), 1198–1217. doi:10.1002/mp.13346

Kuhnigk, J.-M., Dicken, V., Zidowitz, S., Bornemann, L., Kuemmerlen, B., Krass, S.,
et al. (2005). Informatics in radiology (infoRAD): New tools for computer assistance in

thoracic CT. Part 1. Functional analysis of lungs, lung lobes, and bronchopulmonary
segments. Radiographics 25 (2), 525–536. doi:10.1148/rg.252045070

Lung-disease (2023). Lung diseases four-pattern approach. Available from: https://
radiologyassistant.nl/chest/chest-x-ray/lung-disease.

Lafata, K. J., Zhou, Z., Liu, J. G., Hong, J., and Kelsey, C. R. (2019). An exploratory
radiomics approach to quantifying pulmonary function in CT images. Sci. Rep. 9 (1),
11509–9. doi:10.1038/s41598-019-48023-5

Lee, H. K., Vaporciyan, A. A., Cox, J. D., Tucker, S. L., Putnam, J. B., Ajani, J. A., et al.
(2003). Postoperative pulmonary complications after preoperative chemoradiation for
esophageal carcinoma: Correlation with pulmonary dose-volume histogram
parameters. Int. J. Radiat. Oncol. Biol. Phys. 57 (5), 1317–1322. doi:10.1016/s0360-
3016(03)01373-7

Lee, S. J., and Park, H. J. (2020). Single-photon emission computed tomography
(SPECT) or positron emission tomography (PET) imaging for radiotherapy planning in
patients with lung cancer: A meta-analysis. Sci. Rep. 10 (1), 14864–14911. doi:10.1038/
s41598-020-71445-5

Levin, D. L., Schiebler, M. L., and Hopkins, S. R. (2017). Physiology for the pulmonary
functional imager. Eur. J. radiology 86, 308–312. doi:10.1016/j.ejrad.2016.09.027

Liu, Z., Miao, J., Huang, P., Wang, W., Wang, X., Zhai, Y., et al. (2020). A deep
learning method for producing ventilation images from 4DCT: First comparison with
technegas SPECT ventilation. Med. Phys. 47 (3), 1249–1257. doi:10.1002/mp.14004

Raju, S., Ghosh, S., and Mehta, A. C. (2017). Chest CT signs in pulmonary disease: A
pictorial review. Chest 151 (6), 1356–1374. doi:10.1016/j.chest.2016.12.033

Reinhardt, J. M., Ding, K., Cao, K., Christensen, G. E., Hoffman, E. A., and Bodas, S. V.
(2008). Registration-based estimates of local lung tissue expansion compared to xenon
CT measures of specific ventilation. Med. image Anal. 12 (6), 752–763. doi:10.1016/j.
media.2008.03.007

Ren, G., Lam, S. K., Zhang, J., Xiao, H., Cheung, A. L. Y., Ho, W. Y., et al. (2021).
Investigation of a novel deep Learning-Based computed tomography perfusion
mapping framework for functional lung avoidance radiotherapy. Front. Oncol. 11,
644703. doi:10.3389/fonc.2021.644703

Ren, G., Zhang, J., Li, T., Xiao, H., Cheung, L. Y., Ho, W. Y., et al. (2021). Deep
learning-based computed tomography perfusion mapping (DL-CTPM) for pulmonary
CT-to-perfusion translation. Int. J. Radiat. Oncology* Biology* Phys. 110 (5), 1508–1518.
doi:10.1016/j.ijrobp.2021.02.032

Ren, X., and Malik, J. (2003). “Learning a classification model for segmentation,”
in IEEE International Conference on Computer Vision, Nice, France, 13-
16 October 2003.

Roos, J. E., McAdams, H. P., Kaushik, S. S., and Driehuys, B. (2015). Hyperpolarized
gas MR imaging: Technique and applications. Magn. Reson. Imaging Clin. 23 (2),
217–229. doi:10.1016/j.mric.2015.01.003

Simon, B. A. (2000). Non-invasive imaging of regional lung function using x-ray
computed tomography. J. Clin. Monit. Comput. 16 (5), 433–442. doi:10.1023/a:
1011444826908

Frontiers in Physiology frontiersin.org10

Chen et al. 10.3389/fphys.2023.1085158

https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1007/978-3-642-27994-2_22
https://doi.org/10.1016/j.ijrobp.2007.03.024
https://doi.org/10.1016/j.radonc.2018.07.014
https://doi.org/10.1016/j.radonc.2018.07.014
https://doi.org/10.1002/mrm.21288
https://doi.org/10.1016/j.ijrobp.2009.03.051
https://doi.org/10.1002/mp.14511
https://doi.org/10.1016/j.rcl.2012.06.003
https://doi.org/10.1111/1754-9485.12145
https://doi.org/10.1118/1.598454
https://doi.org/10.1118/1.4937599
https://doi.org/10.1002/mp.13346
https://doi.org/10.1148/rg.252045070
https://radiologyassistant.nl/chest/chest-x-ray/lung-disease
https://radiologyassistant.nl/chest/chest-x-ray/lung-disease
https://doi.org/10.1038/s41598-019-48023-5
https://doi.org/10.1016/s0360-3016(03)01373-7
https://doi.org/10.1016/s0360-3016(03)01373-7
https://doi.org/10.1038/s41598-020-71445-5
https://doi.org/10.1038/s41598-020-71445-5
https://doi.org/10.1016/j.ejrad.2016.09.027
https://doi.org/10.1002/mp.14004
https://doi.org/10.1016/j.chest.2016.12.033
https://doi.org/10.1016/j.media.2008.03.007
https://doi.org/10.1016/j.media.2008.03.007
https://doi.org/10.3389/fonc.2021.644703
https://doi.org/10.1016/j.ijrobp.2021.02.032
https://doi.org/10.1016/j.mric.2015.01.003
https://doi.org/10.1023/a:1011444826908
https://doi.org/10.1023/a:1011444826908
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1085158


Suga, K., Kawakami, Y., Zaki, M., Yamashita, T., Shimizu, K., and Matsunaga, N.
(2004). Clinical utility of co-registered respiratory-gated 99mTc-Technegas/MAA
SPECT-CT images in the assessment of regional lung functional impairment in
patients with lung cancer. Eur. J. Nucl. Med. Mol. imaging 31 (9), 1280–1290.
doi:10.1007/s00259-004-1558-1

Szmul, A., Matin, T., Gleeson, F. V., Schnabel, J. A., Grau, V., and Papież, B. W.
(2019). Patch-based lung ventilation estimation using multi-layer supervoxels. Comput.
Med. Imaging Graph. 74, 49–60. doi:10.1016/j.compmedimag.2019.04.002

Tustison, N. J., Awate, S. P., Cai, J., Altes, T. A., Miller, G. W., de Lange, E. E., et al.
(2010). Pulmonary kinematics from tagged hyperpolarized helium-3 MRI. J. Magnetic
Reson. Imaging 31 (5), 1236–1241. doi:10.1002/jmri.22137

Vinogradskiy, Y., Castillo, R., Castillo, E., Schubert, L., Jones, B. L., Faught, A., et al.
(2022). Results of a multi-institutional phase 2 clinical trial for 4DCT-ventilation
functional avoidance thoracic radiation therapy. Int. J. Radiat. Oncology* Biology* Phys.
112 (4), 986–995. doi:10.1016/j.ijrobp.2021.10.147

Vinogradskiy, Y. (2019). CT-based ventilation imaging in radiation oncology. BJR|
Open 1, 20180035. doi:10.1259/bjro.20180035

Wild, C., Weiderpass, E., and Stewart, B. W. (2020). World cancer report: Cancer
research for cancer prevention. France: IARC Press.

Yamamoto, T., Kabus, S., Lorenz, C., Mittra, E., Hong, J. C., Chung, M., et al. (2014).
Pulmonary ventilation imaging based on 4-dimensional computed tomography:
Comparison with pulmonary function tests and SPECT ventilation images. Int.
J. Radiat. Oncology* Biology* Phys. 90 (2), 414–422. doi:10.1016/j.ijrobp.2014.06.006

Yamamoto, T., Kabus, S., von Berg, J., Lorenz, C., and Keall, P. J. (2011). Impact of
four-dimensional computed tomography pulmonary ventilation imaging-based
functional avoidance for lung cancer radiotherapy. Int. J. Radiat. Oncology* Biology*
Phys. 79 (1), 279–288. doi:10.1016/j.ijrobp.2010.02.008

Yang, Z., Lafata, K. J., Chen, X., Bowsher, J., Chang, Y., Wang, C., et al. (2021).
Quantification of lung function on CT images based on pulmonary radiomic filtering.
Med. Phys. 49, 7278. doi:10.1002/mp.15837

Yuan, S. T., Frey, K. A., Gross, M. D., Hayman, J. A., Arenberg, D., Cai, X. W., et al.
(2012). Changes in global function and regional ventilation and perfusion on SPECT
during the course of radiotherapy in patients with non-small-cell lung cancer. Int.
J. Radiat. Oncology* Biology* Phys. 82 (4), e631–e638. doi:10.1016/j.ijrobp.2011.07.044

Zhong, Y., Vinogradskiy, Y., Chen, L., Myziuk, N., Castillo, R., Castillo, E., et al.
(2019). Technical Note: Deriving ventilation imaging from 4DCT by deep
convolutional neural network. Med. Phys. 46 (5), 2323–2329. doi:10.1002/mp.
13421

Frontiers in Physiology frontiersin.org11

Chen et al. 10.3389/fphys.2023.1085158

https://doi.org/10.1007/s00259-004-1558-1
https://doi.org/10.1016/j.compmedimag.2019.04.002
https://doi.org/10.1002/jmri.22137
https://doi.org/10.1016/j.ijrobp.2021.10.147
https://doi.org/10.1259/bjro.20180035
https://doi.org/10.1016/j.ijrobp.2014.06.006
https://doi.org/10.1016/j.ijrobp.2010.02.008
https://doi.org/10.1002/mp.15837
https://doi.org/10.1016/j.ijrobp.2011.07.044
https://doi.org/10.1002/mp.13421
https://doi.org/10.1002/mp.13421
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1085158

	A super-voxel-based method for generating surrogate lung ventilation images from CT
	1 Background
	2 Materials and methods
	2.1 Workflow of the study
	2.2 Image data
	2.3 DIR-based CTVI methods
	2.4 Super-voxel segmentation
	2.5 Super-voxel-based ventilation image CTVISVD calculation
	2.6 Comparison of CTVISVD, CTVIHU, CTVIJac, CTVISVHU, and CTVISVJac with SPECT
	2.7 Impact of the super-voxel number on CTVISVD experiments

	3 Results
	3.1 Super-voxel segmentation
	3.2 Comparison of CTVISVD, CTVIHU, CTVIJac, CTVISVHU, and CTVISVJac with SPECT
	3.3 Evaluation of the impact of the super-voxel number on CTVISVD

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


