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Automatic generation of structural 
geometric digital twins from point 
clouds
Kaveh Mirzaei 1, Mehrdad Arashpour 1, Ehsan Asadi 2, Hossein Masoumi 1 & Heng Li 3*

A geometric digital twin (gDT) model capable of leveraging acquired 3D geometric data plays a 
vital role in digitizing the process of structural health monitoring. This study presents a framework 
for generating and updating digital twins of existing buildings by inferring semantic information 
from as-is point clouds (gDT’s data) acquired regularly from laser scanners (gDT’s connection). 
The information is stored in updatable Building Information Models (BIMs) as gDT’s virtual model, 
and dimensional outputs are extracted for structural health monitoring (gDT’s service) of different 
structural members and shapes (gDT’s physical part). First, geometric information, including position 
and section shape, is obtained from the acquired point cloud using domain-specific contextual 
knowledge and supervised classification. Then, structural members’ function and section family type 
is inferred from geometric information. Finally, a BIM is automatically generated or updated as the 
virtual model of an existing facility and incorporated within the gDT for structural health monitoring. 
Experiments on real-world construction data are performed to illustrate the efficiency and precision of 
the proposed model for creating as-is gDT of building structural members.

The structural health of building members affects the lives and safety of the  public1. Monitoring structural health 
consists of on-site observations, condition evaluation, data management, decision-making, planning, and execut-
ing the required  repairs2. Conventional monitoring methods rely on visual inspection and manual measurements 
of structural members, which are tedious and error-prone3. Also, the effectiveness of procedures depends on 
the skill and self-discipline of the responsible  personnel4. Considering a large number of aging buildings and 
infrastructure  projects5, an automated framework for proactive and accurate structural assessment and health 
monitoring is of the utmost importance in the Architecture, Engineering, and Construction (AEC)  industry6.

Digital Twins (DTs) have gained a plethora of attention due to improvements in data acquiring technologies, 
data processing and simulation capabilities, and accessibility of computing  infrastructure7,8.  DT9–11 is a compre-
hensive tool for collecting and simulating information with a feedback loop to ensure the coordination of the 
physical spaces and the digital model of cyberspace during the entire life cycle of a project for reasoning and 
decision-making8. The DT concept has been extensively developed in the manufacturing industry in different 
life cycle stages such as design  stage8 and configuration  stage12,13 and also for a variety of applications including 
but not limited to parallel controlling of smart  workshop14, designing of board-type furniture production  line15, 
and designing of automated flow-shop manufacturing  system16. In the construction industry, DT has substan-
tially contributed to improvements in applications such as construction quality monitoring and  management17, 
defect detection in construction  projects18, and construction asset  monitoring19,20. However, the lack of efficient 
and accurate algorithms, software, and clearly defined modeling procedures for building structural members 
hinders DT’s development for structural health monitoring  purposes21.

A DT consists of five main parts: (1) physical part; (2) virtual model; (3) connection, which is the device or 
technique used for obtaining data for integrating virtual and physical  spaces14; (4) data that is obtained from 
the physical part; and (5) service, which is the target application of  DT22. The foremost step and cornerstone of 
creating an efficient and accurate DT for structural health monitoring purposes is to generate a virtual geometric 
representation of the as-is  asset23 in a parametric and updatable  platform21, also known as a geometric Digital 
Twin (gDT)23,24. Building Information Model (BIM) has been proven to allow incorporating semantically rich 
information for a gDT modeling approach throughout the life cycle of a building to help various applications, 
including building structural health monitoring and  maintenance25. To adopt BIM as the gDT’s virtual model 
for structural health monitoring purposes, it should be accurate and contain updated information on building 
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structural members. However, most buildings’ existing information on structural members is out-of-date26 and 
primarily stored as 2D drawings in hard copy and/or electronic Computer-Aided Design (CAD)  formats23. The 
current approach for creating as-is BIM to be used as gDT’s virtual model is to manually obtain information 
from  buildings21,27 and create/update BIM in modeling and simulation software such as Autodesk Revit, which 
is tedious, time-consuming, and lacks accuracy due to difficulties associated with accessing structural members 
in the majority of  buildings28. Thus, there is a need to develop accurate and efficient methods capable of creating 
as-is BIM as gDT’s virtual model for building structural members.

Recently, the rapid development of surveying and non-contact sensing technologies has improved the accu-
racy and efficiency of generating gDTs’ virtual models of the existing facilities in the format of  BIM21. Noteworthy 
examples of such devices (i.e., gDT connection devices) for acquiring accurate data are radio-frequency identifi-
cation (RFID)29, 2D  camera30–32, 3D  camera33, and laser  scanner34–36. Laser scanners have shown a high level of 
accuracy in capturing data of the physical part in point clouds format (i.e., gDT data part)37. Point clouds store 
3D geometric information consisting of geometric or geodetic  coordinates38,39. However, laser scanners cannot 
obtain semantic information (e.g., object class) required for generating BIMs as gDTs’ virtual models and data 
processing approaches are needed to obtain and infer semantic information.

Xue et al.40 demonstrated the use of 2D images for developing semantically rich as-built BIMs, in which they 
categorized semantic information into two main categories of (1) geometric information, such as member posi-
tion, section shape, and dimensional tolerance, and (2) non-geometric information, such as member function 
(i.e., beam, column, etc.) and type (i.e., section family type). Geometric information can be obtained directly 
from point clouds for generating BIMs as gDT’s virtual models, non-geometric information should be interpreted 
and assessed from geometric information.

The first type of geometric information required for creating as-is BIM of structural members as gDT’s virtual 
model is position information consisting of (1) geometric definitions of structural members, such as columns 
being vertical members, and (2) spatial relationships between structural members, such as bracings positioned 
under  beams41. Segmentation algorithms have been used to congregate points with similar geometric features of 
structural  members41. Clustering  algorithms42 were widely used to detect similar patterns within a point cloud, 
also known as clusters based on different  features43, comprising spatial  position44, points normal  vector45, and 
density of points within point  clouds46. While research efforts have focused on detecting structural members 
using position  information41, relying solely on position information is error-prone47, sensitive to noise in point 
cloud datasets, and only labels point clusters as potential structural members.

Other research utilized machine learning methods, such as Convolutional Neural Networks (CNNs), to obtain 
section shape information from point clouds as the second type of geometric information required for creating 
an as-is virtual model of structural members for gDT creation. Machine learning methods have been deployed in 
various  applications48,49, such as construction waste  detection50. However, due to the irregularity, unorderdness, 
and unstructured nature of point cloud data, convolutional operations of CNN methods are incapable of being 
 established51. Other works have deployed deep learning methods. The first group of these methods converts the 
point cloud into a structured  grid52, which is memory-intensive and leads to losing much  information51. The 
second group of methods, like  PointNet53, directly applied deep learning to point clouds. PointNet acts as a local 
feature learner to generate a global point signature by aggregating individual point features. PointNet achieved 
state-of-the-art performance on a variety of benchmark datasets. Recent works have directly detected structural 
 members54 and Mechanical, Electrical, and Plumbing (MEP)  systems55 using machine learning-based methods. 
These methods required large numbers of pre-annotated real-world training datasets similar to their investigated 
case studies, which opposes a challenge for applying such techniques to other construction projects. Further 
research utilized slicing methods and image processing approaches to overcome such challenges for detecting 
section shapes within point cloud  datasets28,56. The obtained geometric information was used to infer two ending 
points of the component centerline and the corresponding section shape information for automatically modeling 
MEP components in a  BIM28. These research efforts achieved a high detection accuracy due to using matured 
image processing techniques and methods. However, the performance of such approaches is heavily impacted 
by the existence of large numbers of non-related objects in point clouds. Also, projecting 2D images to 3D space 
impacts the overall performance of such approaches.

Non-geometric information, inferred from point clouds, is also vital for creating the gDT’s virtual model of 
structural members. Recent works have inferred two ending points of the component centerline and the corre-
sponding cross-section information for automatically modeling MEP components in a  BIM28. While applicable 
for MEP components, the viability of this method for inferring non-geometric information from point clouds 
and modeling structural members in a BIM remains unproven.

Considering the body of research studied  above35,41,42,56–63, challenges in the automated creation of gDT’s 
virtual model from as-is point clouds for building structural health monitoring can be summarized in four 
categories: (1) manual processing steps for removing noise and occlusions from point cloud data and manually 
classifying and detecting structural members, which is not efficient and practical for creating a gDT’s virtual 
model; (2) heavy reliance of previous research on accurate local features in point clouds may not be reliable for 
real-world point cloud datasets with high levels of noise and occlusions; (3) limited applications of previous 
research to a specific type of building structure member or a structural section shape, which cannot be gen-
eralized to other building types and structural member section shapes; and (4) the need for adopting various 
technologies that leads to complex data processing  seps23. Due to the importance of efficiency, accuracy, and 
generalizability for the automated creation of gDT’s virtual model for realizing the target services of gDT, there 
is a strong need for methods capable of automatically obtaining semantic information from as-is point clouds 
and transforming such information into BIMs of building structural  members40,64.

Therefore, this study aims to develop an automated, accurate, and generalizable framework for creating 
gDT of building’ structural members including beams, columns, and bracing members (gDT’s physical part) 
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by obtaining and inferring semantic information from point clouds (gDT’s data) acquired from laser scanners 
(gDT’s connection) and storing it in updatable BIMs (gDT’s virtual model) for structural health monitoring 
purposes (gDT’s service). To reach this aim, we use geometric definitions and spatial relationships between 
structural members backed up by inputs from standards and regulations for automated detection of potential 
structural members and filtering out noises and non-structural members. Then, PointNet trained by synthetically 
generated models is implemented for detecting the section shape of structural members, followed by a general 
approach for inferring non-geometric information from point clouds using contextual information of building 
structural members. Finally, an Application Programming Interface (API) in Revit is developed to automatically 
model the detected structural members in a BIM. Specifically, we aim to answer the following research questions: 
(Q1) How is geometric information required for generating gDT obtained automatically from raw point cloud 
data? (Q2) What non-geometric semantic information is inferable from point clouds? (Q3) How can semantic 
information obtained from point clouds be translated into BIMs as gDT’s virtual models? (Q4) How accurate 
and efficient can the proposed automated point cloud processing method generate the as-is gDTs’ virtual model 
of structural members?

To answer Q1, we adopted a clustering method based on contextual hard-coded knowledge of structural 
members along with a shape detection method backboned by the PointNet trained by synthetic structural shapes 
to obtain position and shape information. To answer Q2, we defined a set of conditional rules for detecting each 
structural member’s function and section family type using its geometric information. We answered Q3 by creat-
ing a database of semantic information obtained from raw point clouds and connecting that to the database of 
Revit for creating BIMs. To answer Q4, we evaluated the performance of the proposed method by comparing the 
obtained dimensions from BIM to the ground truth dimensions and the time required for point cloud process-
ing to the manual method of creating BIMs for two real-world case study construction projects (a) N1 Monash 
multi-level carpark (hereinafter referred to as multi-level carpark), and (b) Woodside Building for Technology 
and Design (hereinafter referred to as Woodside building), as shown in Fig. 1.

Results
The results section is divided into obtaining geometric information from point clouds, inferring non-geometric 
information, and creating BIM steps. The assumptions regarding processing algorithms inputs are limited to the 
multi-level carpark case study; the Woodside building case study produces similar results.

Obtaining geometric information from point clouds. The first geometric information required for 
detecting structural members within a point cloud dataset is position information. For that, we adopted con-
textual hard-coded knowledge and geometric definition of beams, columns, and bracing members. In struc-
tural design concepts, beams are usually geometrically defined as horizontal members leading to the congestion 
of points associated with beams in horizontal slices within point clouds. Therefore, to detect points with the 
geometric definition of beams (i.e., potential beam points), we sliced the point clouds of case study buildings 
with horizontal planes. While a higher number of slicing planes results in more accurate results, it would be a 
computationally heavy process due to the high number of points that should be processed. Considering the pro-
posed section shapes in AS/NZS 3679.1:201665–67, the lowest difference between section heights is 20 mm. Thus, 
the number of horizontal slices should be identified to yield a slice thickness of less than 10 mm (considering 
both the top and bottom of beams) to obtain the correct section dimensions. Considering the ceiling height of 
roughly 4 m, we sliced the multi-level carpark case study point cloud with 400 horizontal planes. The average 
number of points within potential beam slices was 100,000 points and for slices with non-beam objects was 5000 
points. Therefore, we extracted potential beam points using the statistical distribution of point numbers within 
slices. The outcome of this step is a point cloud of building beams. Thus, the MeanShift clustering method was 
utilized to cluster potential beam points based on the coordinates of each point to identify separate instances of 

Figure 1.  Image of the case study construction projects (a) multi-level carpark, and (b) Woodside building.
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beams. As for the point cloud investigated in this study, we used the MeanShift clustering function proposed in 
Scikit-learn with a quantile value of 0.4 and a sample number of  55068. The inputs of the MeanShift clustering 
algorithm were chosen based on the perpendicular distance of neighboring beam point clusters, which ranges 
from 3 to 6 m in typical buildings. Next, potential column points were geometrically segmented by estimating 
the point normal in the point cloud with a search radius of 0.7, meaning that points in the 0.7 m radius of each 
point were used for plane fitting and normal  calculation69. Potential column points were detected by filtering out 
the points with an absolute normal vector value in the Z direction (nZ) lower than 0.02, as recommended in AS/
NZS 5131:201670 for the permissible inclination of columns. Finally, we identified potential bracing members 
by considering them as members beneath the bounding box of potential beam instances. Figures 2a and 3a 
illustrate the result of obtaining positional information for detecting potential structural members of multi-level 
carpark and Woodside building, respectively. Also, Table 1 includes the inputs and thresholds used for finding 
position information in both case study buildings.

The shape information of object instances found in the previous step is the second geometric information 
required for detecting structural members within a point cloud dataset. For that, we created a synthetic training 
dataset consisting of Circular Hollow Sections (CHSs), Universal Beams (UBs), Rectangular Hollow Section 
(RHSs), and Channels (Cs) for the training of the PointNet network used for shape detection. A total of 6000 
synthetic 3D models evenly distributed between different categories were picked for training, and 2000 synthetic 
3D models were used for validation. We then converted 3D models into point clouds by evenly distributing a 
predefined number of points on their surfaces. The predefined number of points for converting synthetic 3D 
models to point clouds is related to the density of points in the case study point cloud. This number should cre-
ate a similar point density in the training dataset to the point density in the case study. Therefore, synthetic 3D 
models were automatically converted to point clouds with 15,000 points to create a point density in the training 
dataset samples similar to the point density generated by the laser scanner. Also, we applied a random rotation, 
noise, and occlusion to the training dataset to increase its similarity with the case study point cloud.

We trained the PointNet network with a dropout rate of 0.7, a learning rate of 0.001, and other hyperpa-
rameters, as suggested in its original  paper53. The network training took 200 epochs using a batch size of 32 for 
converging the loss function, which took 20–21 h. Next, we sliced object instances found in the previous step to 
make them similar to the training dataset and removed the length of structural members as a feature to increase 
the performance of the shape detection network. The outcome of the shape detection network is a probability 
vector. Thus, we utilized the Probability Vector Length (PVL) parameter to evaluate the confidence of the shape 
detection network using Eq. (1). A high value of PVL demonstrates a high variation between the parameters of 
the probability vector, meaning that the shape detection had a higher level of confidence for detecting section 

Beam Column Bracing

(a) (b)

RHS Universal Beams CHS Channels Not Identified

RHS Universal Beams CHS Channels

(c) (d)

Figure 2.  Applying the proposed method to the multi-level carpark case study: (a) Obtaining position 
information for detecting potential structural members. (b) Detection of section shapes. (c) Homogenization of 
structural shapes along the length of each member. (d) Automatically generated BIM model in Revit.
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shapes. The maximum value for the PVL is always equal to one, and the lowest value ( σ = 0) is related to the 
population of the probability vector. Since four categories of section shapes for classification were defined, the 
minimum value for PVL, i.e., lowest network confidence for prediction, was 0.5. We set the threshold for the 
lowest acceptable PVL to be 0.75, and the members with PVL lower than this threshold were labeled as “Not 

Beam Column Bracing

(a)

RHS Universal Beams CHS Channels Not Identified

RHS Universal Beams CHS Channels

(b)

(c) (d)

Figure 3.  Applying the proposed method to the Woodside building case study: (a) Obtaining position 
information for detecting potential structural members. (b) Detection of section shapes. (c) Homogenization of 
structural shapes along the length of each member. (d) Automatically generated BIM model in Revit.

Table 1.  Inputs and thresholds used for finding position information from point clouds.

Algorithm input Structural member Multi-level carpark Woodside building

No. of horizontal planes for slicing Beams 400 400

MeanShift clustering quantile value Beams 0.4 0.5

MeanShift clustering sample number Beams 550 550

Normal vector search radius Columns 0.7 0.8
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identified”. Figures 2b and 3b depict the results obtained from the shape detection network for multi-level carpark 
and Woodside building point clouds, respectively.

Inferring non-geometric information. Structural member function information is the first non-geo-
metric information required to create building structural members’ virtual model. We manually labeled the “Not 
identified” point clouds using CloudCompare software. Then, considering the rarity of having multiple section 
shapes along structural members, we homogenized the section label along each instance by choosing the section 
label with the maximum number of points as the section label for the whole object instance, as shown in Figs. 2c 
and 3c for multi-level carpark and Woodside building point clouds, respectively. Next, we defined structural 
members as object instances that were geometrically labeled as structural members (beam, column, or bracing) 
with a structural section shape assigned to them and inferred their function by their geometric label.

The second non-geometric information required for creating a virtual model of structural members is section 
family type. To infer such information, we created a database consisting of structural member function (i.e., 
beam, column, bracing), section shape (i.e., UB, CHS, RHS, C), section width and height, member length, and 
section center points for the start and end of the structural member. Table 2 includes the obtained information 
from random point cloud examples within the dataset. This information was obtained by investigating the bound-
ing box around each structural member. Moreover, UB cross-sections were divided into IPE and IPB members 
based on the proportion between section height and width. Also, section names were defined similarly to the 
default families in Revit to create a connection between the obtained information and BIM model generation 
software. Finally, x0, y0, and z0 are the coordinate of the center of the bounding box section at the starting loca-
tion of the structural member, and x1, y1, and z1 are the coordinate of the center of the bounding box section 
at the end of the structural member.

Creating BIM. For creating a BIM of structural members from point cloud datasets to be used as gDT’s 
virtual model, we developed an API that connects the information stored in Table 2 to the database of Revit. The 
developed API reads each row of Table 2 for obtaining the required information such as section name, member 
length, member position, and member function for automatically creating object instances within the Revit, 
as depicted in Figs. 2d and 3d for multi-level carpark and Woodside building point clouds, respectively. The 
obtained BIM model is the as-is gDT virtual model of the case study buildings.

Discussion
Two main approaches were proposed for obtaining position and section shape information from point clouds. 
We utilized structural members’ geometric definitions and spatial relationships to get position information. 
The advantage of the proposed slicing method for geometric segmentation of potential beam points is that it 
is irrespective of the noise level and non-structural points in the point cloud due to the immersive difference 
between the number of points in potential beam slices and non-beam slices. This advantage will increase the 
generality and repeatability of the proposed framework by eradicating the need for manual noise removal and 
point cloud clearing steps. Also, the proposed method demonstrated a satisfactory performance for detecting 
potential column points. One of the challenges of the proposed method is finding the optimized parameters for 
the MeanShift clustering method in cases where the distance between side-by-side beams is not constant, such as 
the multi-level carpark case study. Overall, using contextual hard-coded knowledge and geometric definition of 
beams, columns, and bracing members not only segments out potential points belonging to structural members 
but also improves the performance of other steps by reducing the computational burden for the following steps 
by decreasing the number of points and also, removing noises and non-structural members without geometric 
definitions of structural members.

We utilized PointNet and trained it with a synthetically generated dataset and a slicing method for detecting 
section shape information. The trained network demonstrated satisfactory performance on the classification 
of the validation dataset with an average accuracy of 96% over different categories, as depicted in Fig. 4. The 
proposed method for identifying structural members represented a satisfactory performance of 94% accuracy 
if excluding “Not identified” sections from the results and 89% accuracy if considering “Not-identified” sections 
as incorrect predictions. The method mostly faced difficulty predicting cross-section shapes that were not fully 

(1)PVL =

√

nσ 2 +
1

n
.

Table 2.  Information obtained from structural members point clouds.

Section shape Section name Structure member function x0 y0 z0 x1 y1 z1

1 IPE 310UB40 Beam  − 68.57  − 9.16 279.16 15.18  − 9.16 279.1

2 CHS CHS273 Bracing  − 67.94  − 7.06 261.78  − 67.94 8.29 268.1

3 IPE 310UB40 Column  − 67.90  − 9.13 261.81  − 67.90  − 9.13 278.4

4 IPB 100UC15 Column  − 49.55  − 2.61 270.91  − 49.55  − 2.61 278.4

5 IPB 310UC98 Column  − 67.80 37.56 260.67  − 67.80 37.5 268.7

6 IPE 310UB40 Column  − 13.37  − 9.15 261.74  − 13.37  − 9.15 278.4
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captured during the scanning process. For example, the TLS device had a sharp angle for capturing structural 
members of the first floor in the multi-level carpark point cloud. Therefore, the point cloud quality was low in 
those areas, resulting in low prediction performance. Another challenge for the prediction model was detecting 
the bracing-beam connection members as they were not included in the training dataset, and the classification 
network correctly labeled them as “Not identified”. Also, the probability vector length of the correct prediction 
is mainly near the maximum value of one, demonstrating the model’s high confidence in predicting the correct 
section shapes, as shown in Fig. 5a,b for multi-level carpark and Woodside building point clouds, respectively.

Based on the results obtained from the section shape information step, the completeness of the point cloud 
significantly impacts the classification network’s performance. A shortcoming noted in the proposed method is 
that it relies on the similarity of training data and the case study point clouds in terms of noise level and point 
density. The impact of this phenomenon can be seen in the difference between the performance of detection 
of structural shapes in the Woodside building point cloud, which has a lower level of noise compared to the 
multi-level carpark case study as depicted in Fig. 5. Thus, it is suggested that future research focus on develop-
ing methods for generating training datasets with a dynamic level of noise and point density. In summary, the 
proposed method for obtaining geometric information from point clouds demonstrated satisfactory performance 
in getting position and section shape information, answering this paper’s first research question (Q1).

Figure 4.  PointNet performance in the validation dataset.

Figure 5.  Probability vector length of the classified (a) multi-level carpark, and (b) Woodside building.
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For inferring non-geometric information from point clouds, we applied a set of conditional rules based on 
the contextual knowledge definitions of building structural members. The function information was found based 
on the geometric information of the points. We fitted a bounding box around each member and utilized its 
dimensions for the type information. This method had a satisfactory performance in members without attached 
non-structural objects, such as MEP systems. The attached non-structural objects increased the bounding box’s 
size, resulting in incorrect size and type predictions in members. Thus, it is suggested that future research focuses 
on filtering out attached non-structural objects using RGB values before fitting the bounding box. Moreover, 
the homogenization step had a satisfactory performance for turning the obtained geometric information into 
construction-related information that can be used for various applications. The homogenization step considers 
the same weight for all section shape predictions. However, Fig. 5 shows that network confidence in predict-
ing section shape differs in different point cloud slices. Therefore, future research must focus on developing a 
homogenization method that applies confidence weights to the section slices. We found that structural member 
function and section family type information can be inferred from point clouds, answering this paper’s second 
research question (Q2).

We used the Revit database to generate the BIM of structural members required for gDT models. The pro-
posed method creates instances of objects in the Revit environment. One of the challenges observed is that 
object instances automatically created by the proposed API clash in the connection areas and require manual 
clash detection and removal procedures. Thus, one of the promising research areas for future endeavors is incor-
porating clash detection in the proposed API in the connection area of structural members. Also, connection 
types can be identified from the point cloud dataset to increase the level of details of the created BIM. While 
this paper focuses on generating a gDT of existing buildings through capturing the as-is condition of facilities 
in point clouds and processing that information offline to create a digital replica, a promising research area for 
future research is to create an online connection between the physical asset and the digital model with a feedback 
loop leading to the creation of DTs from gDTs. The online data received from the physical model can maximize 
the efficiency of DTs by providing a joint optimization decision-making system for the  facilities71. Also, cyber-
physical systems have demonstrated an excellent promise for integrating the virtual and physical  worlds14. In 
summary, we found that our proposed method is not only capable of connecting geometric and non-geometric 
information to Revit’s dataset using the developed API for creating a BIM for various object types but also cre-
ates a platform for cyber-physical models to be implemented, integrating physical and virtual worlds, answering 
the third research question (Q3).

Lastly, we evaluated the performance of the proposed method for not only creating gDT’s virtual model from 
point clouds but also the service of health monitoring via comparing the final results obtained with the ground 
truth information, as shown in Table 3. Also, to evaluate the accuracy of the proposed method for creating BIM 
of building structural members to be used as gDT virtual models for structural health monitoring purposes, the 
structural members of the case study building were manually measured five times, and the average value was 
reported. The responsible measuring personnel reported an average tolerance of ± 25 mm, which is slightly higher 
than the values reported in previous  literature72,73 due to difficulties in accessing building structure members 
for manual measurements.

The proposed method demonstrated an error tolerance of ± 24.06 mm from ground truth in multi-level car-
park and an error tolerance of ± 24.75 mm from ground truth in the Woodside building for obtaining the length 
of structural members from the automatically created BIM. Also, the model’s accuracy for detecting the length 
of structural members was calculated using Eq. (2).

Finding the correct length of bracing members opposed a challenge for the proposed method as they show 
higher error tolerance compared to manual measurements, primarily due to the lack of data within the point 
cloud dataset. Thus, it is recommended that future research focuses on optimizing the scanning locations to 
fully capture the as-is state of construction and civil infrastructure projects. Also, the proposed method could 
correctly detect section family types and shapes with an average accuracy of 81.63% in multi-level parking and 
86.31% in Woodside building for creating gDT’s virtual model. Also, the total processing time of the proposed 
method was 26 min on average for each case study building, which is generally shorter than traditional manual 
measurements. Overall, the proposed method promptly demonstrated a lower average error tolerance compared 
to manual measurement methods, showing its accuracy and efficiency to be utilized as a gDT creation method 
for structural health monitoring purposes, answering this paper’s fourth research question (Q4).

Conclusion
An automatic method for creating BIMs as gDTs’ virtual models of building structural members (beams, col-
umns, and bracings) was introduced in this work. The proposed method directly processed unorganized point 
clouds defined by the coordinates (x, y, z) as data input for gDT, obtained from terrestrial laser scanners, as con-
nection input for DT. First, the method obtained geometric information such as position and section shape from 
the point cloud dataset using contextual hard-coded knowledge and geometric definition of structural members. 
The main geometric definitions used are: (1) points corresponding to beams are congested in horizontal slices 
within the point cloud, (2) points corresponding to columns have a horizontal normal vector, and (3) points 
associated with bracing members are located beneath beam points.

Then, PointNet, a deep neural network trained by a synthetic dataset, is used to detect the section shape of 
structural members. Next, structural sections were homogenized for each structural member, assuming that hav-
ing multiple section shapes along a structural member in a regular building is rare. After obtaining the geometric 

(2)Accuracy (%) = 100×

(

1−
|Obtained dimension− Ground truth dimension|

Ground truth dimension

)

.
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information, contextual knowledge and conditional statements were used to infer non-geometric information. 
Non-geometric information for creating a BIM consists of structural members’ function and family type infor-
mation. Lastly, geometric and non-geometric information was connected to the database of Revit by developing 
an API for creating a BIM as gDT’s virtual model.

The results indicated an error tolerance of ± 24.06 mm from ground truth in multi-level carpark and error 
tolerance of ± 24.75 mm from ground truth in Woodside building for obtaining the length of structural members 
from the automatically created gDT virtual model. Also, the proposed method could correctly detect section 
family types and shapes with an average accuracy of 81.63% in multi-level parking and 86.31% in Woodside 
building for creating the gDTs’ virtual models. Overall, it is concluded that the proposed automatic method for 
gDT generation using raw point cloud data stands out in terms of accuracy and efficiency compared to both 
traditional manual methods and previously proposed approaches.

Future work includes developing methods for reducing the time required for obtaining and registering as-is 
point clouds of construction and infrastructure projects. Also, more categories of construction-related objects, 
such as structural members’ connections, will be added to the method to enhance the proposed approach’s 
generality. Finally, a promising research area for future research is to create an online connection between the 
physical asset and the digital replica with a feedback loop to integrate virtual and physical spaces using the 
platform developed in this study.

Materials and methods
The BIM approach for the gDT generation of structural members in construction and civil infrastructure pro-
jects from point clouds is summarized into four significant steps: 1. Point cloud acquisition and preprocessing 2. 
Geometric information obtainment 3. Non-geometric information inference, and 4. BIM generation for creating/
updating the gDT model. The proposed method workflow is visually illustrated in Fig. 6.

Point cloud acquisition and preprocessing. Point cloud data were obtained by a terrestrial laser scan-
ner (FARO® Focus M70) from the interior and exterior environment of (a) multi-level carpark, and (b) Wood-
side building to validate the performance of the proposed gDT generation method, as shown in Fig. 1. A total of 
11 scans from the interior of each case study building with ¼ resolution and 4× quality settings were obtained 
with the average point number of 3× 106 points in each scan. The same scan parameters were used for both case 
study buildings to demonstrate the impact of different noise and point densities on the overall performance of 
the proposed method. Then, a point cloud registration was performed to merge the obtained scans from the case 

Table 3.  Comparison between the obtained dimensions and ground truth data for study building.

Case study building Member mark

Length (mm) Section shape detection accuracy

Ground truth Obtained Variation Accuracy (%)
No. of correct section 
predictions

Total no. of structural 
members in the group Accuracy (%)

Multi-level carpark

B1 8300 8267 33 99.60 9 9 100

B2 6000 6012 12 99.80 3 4 75

B3 25,760 25,750 10 99.96 1 1 100

B4 25,760 25,769 9 99.97 1 1 100

B5 25,760 25,780 20 99.92 1 1 100

B6 25,760 25,733 27 99.90 1 1 100

B7 2500 2512 12 99.52 3 4 75

B8 25,760 25,736 24 99.91 1 1 100

B9 25,760 25,779 19 99.93 1 1 100

C1 2550 2523 27 98.94 3 4 75

C2 2550 2536 14 99.45 4 4 100

C3 5250 5263 13 99.75 3 4 75

C4 2550 2522 28 98.90 7 10 70

BR1 6200 6152 48 99.23 1 2 50

BR2 3500 3435 65 98.14 1 2 50

Average length accuracy: 99.52 Average section type detection accuracy: 81.63

Woodside building

B1 9120 9102 18 99.80 7 8 87.5

B2 23,320 23,305 15 99.94 7 9 77.77

B3 9120 9142 22 99.76 2 4 50

C1 24,450 24,440 10 99.96 6 6 100

BR1 5000 4976 24 99.52 28 32 87.5

BR2 3450 3429 21 99.39 21 24 87.5

BR3 12,800 12,751 49 99.62 4 4 100

BR4 10,200 10,239 39 99.62 3 4 75

Average length accuracy: 99.7 Average section type detection accuracy: 86.31
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study building into a complete 3D point cloud using FARO® SCENE Software. The registration took 10–12 h 
using a desktop computer (Intel i7-9700 CPU @ 3.00 GHz, 32 GB RAM, and 500 GB SSD), resulting in a com-
plete 3D point cloud for each building. Finally, a mixed part of the point cloud from buildings was segmented 
manually to evaluate the proposed method’s performance and reduce computational time. Specifications of the 
laser surveys for obtaining point clouds of case study buildings are given in Table 4.

The role of a gDT is to be a dynamic digital representation of an asset during different life cycle phases. Thus, 
a gDT must be updated frequently due to unavoidable changes in the as-is condition of an asset over time (i.e., 
 gDT1,  gDT2,  gDT3,…,  gDTn). The frequency (i.e.,  t1,  t2,  t3,…,  tn−1) of capturing as-is data (i.e., point  cloud1, point 
 cloud2, point  cloud3,…, point  cloudn) and updating a gDT model is related to the service component of gDT. 
For structural health monitoring of buildings, an optimized frequency of capturing as-is data leads to in-time 
detection and rectifying defects with the right level of resources and inspection costs. Since structural health 
monitoring of buildings is a soft real-time task, in which the deadlines can be allowed for delays as long as the 
tasks are timely executed, a risk-based approach should be used to find the optimal frequency of capturing as-is 
data to update gDT. While the minimum frequency of capturing as-is data for structural health monitoring 
purposes is stated in standards and regulations for different construction  projects74, an increase in the level of 
building importance, defect risk, and hazard consequences can further escalate the frequency of capturing as-is 
data. Therefore, in consultation with designers, the statutory building inspector can set the frequency of capturing 
as-is data for a soft real-time structural health monitoring of buildings using the framework proposed in Fig. 6.

The preprocessing steps are primarily designed to (1) reduce the computational burden of point cloud process-
ing steps by removing floor and ceiling points within the dataset and (2) align structural members with the point 
cloud coordinate system. For the first step, Ceiling and floor planes are filtered out by an improved RANSAC 
algorithm operating on Normal Distribution Transformation (NDT)  cells75 through classifying point clouds into 
planar and non-planar cells. For aligning the structural members with the point cloud coordinate system, points 
within the point cloud should be multiplied by a transformation matrix as a vector (x, y, z), as shown in Eq. (3).

where θ is the rotation angle about the Z-axis since the Z-axis is correctly adjusted during the scanning and 
registration processes. While angle θ can be determined manually using visualization software such as Cloud 

(3)Rz(θ) =

[

cos(θ) −sinθ 0

sinθ cos(θ) 0

0 0 1

]

,

Figure 6.  The workflow for the geometric digital twin-driven dimensional quality inspection of building 
structural members.

Table 4.  Metadata of the case study buildings point cloud datasets.

Metadata Multi-level carpark Woodside building

No. of scans 11 11

No. of points in the point cloud 3,342,352 2,281,412

Scanner model FARO® Focus M70 FARO® Focus M70

Scanner range 0.6–70 m 0.6–70 m

Ranging errors at 10 m and 25 m  ± 1 mm  ± 1 mm

Registration error  ± 3 mm  ± 4 mm
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Compare, Principal Component Analysis (PCA) method is used for automated and exact identification of angle 
θ76.

Geometric information obtainment. Generating structural members’ BIM as gDT’s virtual model 
requires geometric and non-geometric information from point clouds. The first group of geometric information 
is position information. In the position information step, points possessing geometric definitions and relation-
ships of building structural members are segmented. Building beams are defined as horizontal members parallel 
to support horizontal structures like floors. Thus, it can be geometrically inferred that beam points are congested 
in horizontal slices within the point cloud dataset. Therefore, a slicing method is applied to create horizontal 
point cloud slices, as shown in Fig. 7. An optimal value of the horizontal slices can be found by using contextual 
information of standard structural section dimensions (e.g., AS/NZS 3679.1:201665) as shown in Eq. (4) as

where Zmax and Zmin are the maximum and minimum Z-axis coordinates, respectively, ds is the minimum differ-
ence between the height of standard structural sections as stated in standards, and N is the number of horizontal 
slices. After finding the N , the thickness of horizontal slices is calculated using Eq. (5) as

where t  is the thickness of the horizontal slices. Next, points are distributed between slices i and i + 1 using their 
Z-axis coordinates as Eq. (6) as

where 0 ≤ i ≤ N . After distributing the points between horizontal slices, the number of points within each hori-
zontal slice is statistically compared to find the slices with a relatively higher density of points. The outcome of 
this step is beam points associated with each floor of the building. Since point cloud segmentation aims to detect 
different instances of structural members, the MeanShift clustering algorithm is used to segment the beam points 
of each floor based on the X and Y coordinates into single instances of beam members. Next, columns will be 
geometrically detected within the point cloud dataset. Columns are geometrically defined as vertical structural 
members for transferring compressive force in the building. Points belonging to vertical members within a point 
cloud dataset can be detected by calculating the normal vector of that point as an array of [ nx , ny , nz ], in which 
if the absolute value of nz is close to zero, that point can be considered a potential column point. The outcome of 
this step is a group of points that have the geometric definition of a column; therefore, the MeanShift algorithm 
is used to cluster out different instances of columns based on the X and Y coordinates of points. Lastly, bracings 
are geometrically defined as diagonal members existing beneath beams in buildings. Thus, points associated 
with bracings in a point cloud dataset can be geometrically detected as points with the X and Y coordinates 
within each beam’s X and Y boundaries with a Z coordinate less than the minimum Z coordinate of beam points.

The next group of geometric information required for generating gDT of building structural models from a 
point cloud dataset is section shapes of the geometrically segmented members obtained from the previous step. 
A supervised classification method is proposed for detecting different section shapes of geometrically segmented 

(4)
Zmax−Zmin

N
≤

ds

2
,

(5)t =
Zmax−Zmin

N
,

(6)Zmin + (t × i) ≤ z ≤ Zmin + (t × (i + 1)),

Figure 7.  Horizontal slicing of a frame.
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point clouds. For this purpose, PointNet, a deep neural network, is utilized for predicting the section shape of 
each geometrically segmented point  cloud53. PointNet uses a symmetric function (i.e., max pooling) that is order-
invariant to act as a local feature learner and aggregate local features to acquire global features from each point. 
Thus, PointNet architecture can deploy multilayer perceptrons without converting point clouds into structured 
grid datasets for classifying the shape of geometrically segmented members.

PointNet heavily relies on precise and abundant training data as a deep learning method. Thus, a synthetic 
training dataset of structural shapes is proposed to compensate for the lack of a publicly available dataset of 
structural section shapes. This dataset consists of point cloud sections automatically generated from 3D shapes. 
Also, random levels of noises, rotations, and occlusions are applied to the training dataset to increase its similarity 
to real-world point clouds. While PointNet trained by synthetic dataset is capable of being directly used on geo-
metrically segmented members for classifying point cloud section shapes, the length of geometrically segmented 
point clouds opposes a problem for the classification network as the network considers the members’ length as 
the main feature of the point cloud instead of its section shape. Thus, prior to applying PointNet for classifying 
section shapes, geometrically segmented members are sliced into smaller sections to increase the classification 
network’s performance.

The output of the classification network on each point cloud slice is a probability distribution over the set of 
section categories. Therefore, the confidence of the classification network is inferred by calculating the PVL of 
each classified point cloud slice using Eq. (1). In Eq. (1), n is the size of the probability vector population, and 
σ is the standard deviation of the probability vector population. The value of PVL highlights the differences 
between the probability values in the classification network outcome’s probability distribution. A higher value 
of PVL means a more significant disparity between probability values, showing a higher confidence level for the 
classification network. Finally, the section label will be added to each point cloud slice as an attribute required 
for generating a BIM model. Section shapes identified with low confidence are labeled as “Not identified”, which 
the user should manually label.

Non-geometric information inference. Non-geometric information, such as member function and 
section family type, is necessary for generating the BIM as a gDT virtual model of structural members. However, 
only geometric information can be directly obtained from point clouds. To cover this gap, contextual knowledge 
of structural members is used for inferring non-geometric information from geometric information. Mem-
ber function information is the first non-geometric information required to create a structural members’ gDT 
virtual model. First, the section shape along each structural member should be homogenized since structural 
members were sliced in the semantic segmentation step, and each can have a different section label. To homog-
enize section shapes along a structural member, the section shape with the most significant number of points is 
assigned as the section shape for the whole structural member. A conditional rule is defined for inferring mem-
ber function from geometric information as “if a point is geometrically labeled as a structural member AND 
geometrically labeled to be a part of structural section shape, then it can be inferred that the member function of 
that point is the same as its geometrical definition label”. This conditional rule filters out non-structural objects 
possessing structural members’ geometric definitions from the point cloud.

The next group of non-geometric information required for generating BIM as gDT virtual replica of structural 
members is section family type. This information is inferred by drawing a bounding box around each member 
to get section size (i.e., section width, height, length) and conditional rules to detect the subcategory of section 
shapes (i.e., IPE and IPB in the UB category). For labeling the section dimensions, the maximum and minimum 
values of X, Y, and Z coordinates are subtracted from each other. Their highest value corresponds to the elonga-
tion of the structural member and is labeled as member length. As for the other two values, the smaller one is 
labeled as section width, and the other is labeled as section height. For members with the UB section label, if the 
height is 50% bigger than the width, that section is labeled as IPE; otherwise, it would be labeled as IPB. To find 
the start and end point of the section, the coordinate of the center of mass of the section is calculated, which is 
the same in both starting and endpoints. For the third coordinate, the maximum value of the elongation dimen-
sion is the endpoint, and the minimum value is the starting point. Next, the obtained information from each 
structural member is saved within a database.

BIM generation. Finally, Revit generates the BIM model as gDT’s virtual model. The underlying architec-
ture of Revit is a database used to store and share information. Thus, after obtaining the necessary information 
for generating a BIM model, the obtained database is connected to the Revit database to automate the generation 
of BIM models. To reach this purpose, first, a list of all of the family symbols loaded in the Revit is acquired by 
applying the “FilteredElementCollector” command within the Revit dataset. Then, for each structural mem-
ber, if the obtained section name from the point cloud matches any section names in the Revit database, that 
section name in the Revit database and its corresponding family symbol would be chosen as the input for the 
“CreateNewFamilyInstance” command in Revit. Next, the member starting and endpoints saved in the database 
obtained from labeled point clouds are used for defining the line on which the structural member is drawn in 
Revit. Finally, the structural function (i.e., beam, column, bracing) read from the point cloud dataset is the final 
input for creating the new family instance inside Revit. After repeating the procedure for all structural member 
point clouds, the BIM required for gDT is generated. Table 5 includes the pseudocode for creating BIM from the 
geometric and non-geometric information obtained from case study buildings’ point clouds.
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