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Abstract: Applying conventional methods for prediction of environmental impacts in agricultural
production is not actually applicable because they usually ignore other aspects such as useful energy
and economic consequence. As such, this article evaluates intelligent models for exergoenvironmental
damage and emissions social cost (ESC) for mushroom production in Isfahan province, Iran, by three
machine learning (ML) methods, namely adaptive neuro-fuzzy inference system (ANFIS), artificial
neural network (ANN), and support vector regression (SVR). Accordingly, environmental life cycle
damages, cumulative exergy demand, and ESC are examined by the ReCiPe2016 method for 100
tons of mushroom production after data collection by interview. Exergoenvironmental results reveal
that, in human health and ecosystems, direct emissions, and resources and exergy categories, diesel
fuel and compost are the main hotspots. Economic analysis also shows that total ESC is about
1035$. Results of ML models indicate that ANN with a 6-8-3 structure is the optimum topology for
forecasting outputs. Moreover, a two-level structure of ANFIS has weak results for prediction in
comparison with ANN. However, support vector regression (SVR) with an absolute average relative
error (AARE) (%) between 0.85 and 1.03 (based on specific unit), a coefficient of determination (R2)
between 0.989 and 0.993 (based on specific unit), and a root mean square error (RMSE) between
0.003 and 0.011 (based on specific unit) is selected as the best ML model. It is concluded that ML
models can furnish comprehensive and applicable exergoenvironmental-economical assessment of
agricultural products.

Keywords: cumulative exergy demand; life cycle assessment; artificial neural network; support
vector regression

1. Introduction

Button mushroom (Agaricus bisporus) is the most abundant cultivated mushroom,
which is well known for its considerable economic benefits and plentiful medicinal and
nutritional properties [1]. According to the FAO annual report in 2016, about 11 million tons
(t) of mushrooms were produced in the world; Asian countries accounted for a significant
share of this production [2]. Button mushroom production in Iran increased from 6997
to 152,378 t from 2001 to 2017, and approximately 10% of this was produced in Isfahan
province [3].

Global warming, which is defined as consecutive increases in the earth’s atmospheric
mean temperature, is one of the momentous topics in recent decades. It results from
increased GHG concentration in the atmosphere, caused by human activities such as fossil
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fuels burning and deforestation [4]. GHG emissions from the agriculture sector are a direct
result of food supply chains. Optimum and efficient use of energy and sources is the main
condition for sustainable agriculture [5]. Life cycle assessment (LCA) is a known and
powerful tool to assess environmental sustainability of technologies and products [6] and
provide a systematic way to evaluate the advancements in source productivity [7]. Input
production, storage, and distribution as well as usage with engine-based equipment lead
to combustion of fossil fuels and the release of GHGs such as CO2, N2O and CH4 into the
atmosphere and result in global warming [8].

Cumulative exergy demand (CExD) index is defined as the total exergy sum of all
inputs needed to produce a crop [9]. In other words, the aim of CExD analysis is to make
an efficient system or process to reduce loss or deterioration of exergy [10]. ESC is a
fundamental tool, presenting useful information to help assess policies. ESC is defined as
the marginal impact costs caused by emitting one extra t of greenhouse gas (CO2 eq) at any
point in time, including ‘non-market’ impacts on human and environmental health [11].
The computation of carbon social cost, which is defined as the marginal damage cost of
climate change, is a key strategy for the evaluation of climate policy [12].

For sustainable agricultural development, energy use, environmental effects, and
cost efficiency are three important aspects at the center of attention [13]. The relation-
ship between energy use and GHG emissions is intimate; therefore, there is a need to
manage energy use in agriculture sector to decrease environmental footprints associated
with input utilization. The energy consumption pattern varies according to management
and agricultural systems, climate, and other conditions. Determining the relationship
between environmental impacts and energy use is one of the most important steps in
sustainable agriculture.

In recent years, linear methods have been used to model various agricultural and
sometimes environmental phenomena. Their main disadvantage is that some real-world
phenomena simply do not conform to the linear model assumptions. Hence, the need to
use modern technologies, such as artificial intelligence and ML, increases significantly [14].
ML, within artificial intelligence, has been introduced as a useful tool to develop intelligent
predictive algorithms in different applications. ML approaches have the ability to handle
multivariate and multi-dimensional data and to discover hidden relationships within
data in dynamic and complex conditions [15]. The applicability of various ML methods is
generally quite different in various fields, problems, and types of data sets [16]. With respect
to the mentioned methods, ANN is one of basic models of ML that includes competent
soft computing techniques with effort simulating the human biological nervous system via
linking different artificial elements, termed neurons [17].

Another intelligent system for modeling and forecasting is ANFIS [18]. It is a suitable
method for the interpretation of non-linear systems [18]. Because ANFIS is the combination
of fuzzy and ANN systems, it has the benefits of both models. In engineering issues
where classical methods are too complicated to be used, this technique can be useful [19].
As the next model, SVM, based on Vapnik’s statistical learning theory, is widely used in
some practical problems. Its main idea is to detect a separating hyperplane in between
two parallel hyperplanes, where these two parallel hyperplanes are built according to the
maximum margin principle [20]. The SVR algorithm is a small sample learning machine
based on statistical learning theory [21]. It is founded on the structural risk minimization
principle and has unique benefits for small data collection and can keep a good development
and generalization ability.

Modeling of energy, environmental, and economic indices in agricultural produc-
tion has been conducted by different methods from several years ago, and each of them
investigated a sector as illustrated in Table 1. Although all studies listed in Table 1 are
valuable, but a comprehensive intelligent model that includes all environmental, exergy,
and economic parameters is not presented in any of them, and only one or two perspectives
have been examined.
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Table 1. Literature review on samples studies that have applied modeling, LCA, emissions cost, and
CExD in agri-food systems.

Study Study Location Crop LCA Method Emissions
Cost CExD Modeling Method

Mobtaker et al. [22] Iran (Hamedan) alfalfa - No No Linear regression

Boulard et al. [23] France (Wide
regions) Tomato LCA Food DK No No -

Ozkan et al. [24] Turkey
(Antalya) Tomato - No No Linear regression

Taki et al. [25] Iran (Esfahan) Corn silage - No No ANN

Hakala et al. [26] Finland
(Jokioinen)

Red
clover-grass - No No -

Naderloo et al. [19] Iran (Ghazvin) Wheat - No No ANFIS
Abeliotis et al. [27] Greece (Athens) Bean CML baseline 2000 No No -

Soni et al. [28] Thailand (Khon
Kaen)

Agricultural
crops GHG coefficient No No -

Sefeedpari et al. [29] Iran (Tehran) Dairy - No No Linear regression +
ANFIS

Romero-Gámez et al.
[30] Spain Lettuce and

escarole - No No -

Safa et al. [31] New Zealand
(Canterbury) Wheat - No No ANN

Nabavi-Pelesaraei et al.
[32] Iran (Guilan) Kiwifruit GHG coefficient No No ANN

Sefeedpari et al. [33] Iran (Tehran) Egg - No No Linear regression +
ANFIS

Chen and Jing [34] China
(Yucheng) Wheat - No No PLSR + ANN

Fodor et al. [35] United
Kingdom

Soybean and
maize GHG coefficient No No -

Mousavi-Avval et al. [36] Iran (Golestan) Oilseed CML-IA No No ANFIS

Goossens et al. [37] Belgium
(Flanders) Apple ILCD impact

assessment No No -

Nabavi-Pelesaraei et al.
[17] Iran (Guilan) Paddy CML2 baseline

2000 No Yes ANN + ANFIS

Skunca et al. [38] Serbia
(Belgrade) Chicken meat IMPACT 2002+ No No -

Jiang et al. [39] China (Huang-
Huai-Hai) Wheat - No No ANN

Hosseini-Fashami et al.
[40] Iran (Alborz) Strawberry IMPACT 2002+ No Yes -

Grados and Schrevens
[41] Peru (Peruvian) Potato CML 2001 No No -

Nabavi-Pelesaraei et al.
[42] Iran (Guilan) Rice milling

factories
CML2 baseline

2000 Yes Yes ANN

Kaab et al. [18] Iran
(Khuzestan) Sugarcane CML2 baseline

2000 No Yes ANN + ANFIS

Ghasemi-Mobtaker et al.
[43] Iran (Hamedan) Wheat CML-IA baseline

V3.05 No Yes -

Saber et al. [44] Iran
(Mazandaran) Rice paddy IMPACT 2002+ Yes Yes -

Wang et al. [45] Australia (Wide
regions) Wheat - No No ML

Mostashari-Rad et al.
[46] Iran (Guilan) Horticultural

crops ReCiPe2016 No Yes -

Khanali et al. [47] Iran (Alborz) Walnut IMPACT 2002+ No No -

Jiang et al. [48] China (Wide
regions) Wheat ReCiPe2016 No No -

Present study Iran (Isfahan) Mushroom ReCiPe2016 Yes Yes ANN + ANFIS +
SVR
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Accordingly, the present study covers all mentioned parameters comprehensively
for modeling with ML methods as a novelty, and the aims are considered in the current
study: (i) evaluation of damage categories of button mushroom by LCA; (ii) computation
of energy forms by CExD analysis in button mushroom production; (iii) determination
of emissions costs of button mushroom; (iv) development of comprehensive model by
ML models including ANN, ANFIS, and SVR; and (v) offering the best method and
model for predicting environmental damages, energy forms of CExD, and ESC of button
mushroom production.

2. Materials and Methods
2.1. Case Study Description and Data Colleting Process

The current study follows our past studies that were performed on energy use pattern
and optimization in Isfahan province, Iran, [49,50] that is illustrated in Figure 1. Data
collected for the past studies are used to perform the present research.
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2.2. LCA Approach

LCA is a useful and appropriate approach to assess environmental impact of agri-
cultural production [51]. LCA structure includes four steps that contribute to a united
approach [52]: (i) scope and goal definition required for the determination of functional
unit (FU) and system boundaries; (ii) life cycle inventory (LCI) composed of a detailed
collection of all inputs or materials used in different processes and also total pertinent
outputs (pollution to water, soil, or air) in various steps of the entire life cycle; (iii) life
cycle impact assessment (LCIA) goals in order to quantify the relevant importance of entire
environmental harmful effects that are recognized in LCI; and (iv) result interpretation
step, in which the evaluation of results are undertaken to offer suggestions and conclusions
based on prior computations.

The scope and goal definition present the product system explanation in terms of
FU and system boundaries [53]. According to UNI EN ISO 14040, the reference unit that
quantifies the performance of a system in LCA is defined as FU [54]. In the current study,
FU is defined as 100 t of mushroom production (100 TMP). In LCA, the determination
of system boundaries is an important step [55]. The selection of system boundaries is a
critical and major measure at this phase because any change in a boundary may affect
LCA results [56]. Typical system boundaries in mushroom greenhouses include operation
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composting, spawning, casing, pinning, and harvesting. In Figure 2, an overview of system
boundaries for mushroom production is illustrated.
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2.2.1. LCI

LCI analysis is the second step of LCA. It includes collecting inventory and merging
primary data (gathered for the study) and secondary data (accessible from international
databases) [57]. Inventory is divided into three main sections in this research. The first part
is Off-Farm emissions, which include physical values of used inputs, emissions that are
results of production processes or processing performed on those inputs. The second part
is On-Farm emissions, which comprise the release of inputs in the system. It should be
noted that only some inputs have On-Farm emissions. In mushroom production, On-Farm
emissions include:

(a) Emissions derived from diesel fuel combustion in boilers to air and water, the standard
coefficients of which are extracted based on the U.S. LCA database [58].

(b) Emissions derived from compost consumption in the farm to air, water, and soil, for
which the standard coefficients reported in previous studies were used [59–61].

(c) Emissions derived from human activity to air, which is about 0.7 kg CO2 eq. per
hour [62].

(d) Emissions derived pesticides to air and water based on the PestLCI 2.0 model. PestLCI
is an appropriative inventory model [63]. It should be noted that this method does
not cover emissions to soil derived from pesticides. As such, the standard coefficient
of emissions to soil by Margni et al. [64] was applied for this research. The last part of
inventory includes the product, which is mushroom yield in this study.

2.2.2. LCIA

In LCIA, environmental impacts are evaluated, and their potential and importance
are identified [65]. In studies conducted in different regions of the world, several models
and methodologies have been used to develop LCIA stages [37,38,41,66]. In the present
study employing SimaPro software, the ReCiPe2016 method is applied to estimate the life
cycle environmental effects of mushroom production. This model determines indicators at
seventeen midpoint and three endpoint levels [67].

Weighting as a final and optional phase in life LCIA is subjective and implies a
value judgment, which may influence the results of LCA. Weighting shows the relative
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importance of the impact category [68]. According to its practicability for comparing
impacts of different scenarios or products and supporting decision-making and result
communication, it is commonly applied in research [69].

2.3. CExD

The sum of all source exergy required to provide a product or process, which is
used for quantifying the entire life cycle exergy demand of a process or product, is called
CExD [9]. For a certain process or system, exergy is described as the maximum value of
work that can be obtained from the system in the process to balance with its surrounding
environment [70]. CExD includes seven forms of energy.

2.4. ESC Analysis

ESC determines the external cost of burning environmental emissions. Therefore,
pricing environmental emissions at its full social cost needs an estimate of ESC [71]. Quan-
tification of ESC is necessary for policymakers to formulate emissions tax [72]. ESC was
started in Iran in 2010 by Power Ministry of Iran, and its focus is mostly on electricity. All
taxes on emissions are determined according to the same internal standard. In fact, the
Iranian government has set the average amount of emissions of different environmental
indices per kWh and considered the dollar equivalent to remove their effects from society.
Environmental indices and coefficients related to their cost computations [73] that are used
in this research are shown in Table 2.

Table 2. ESC coefficients for production of mushroom in Isfahan province, Iran.

Emission Factor Unit
Emission Equivalent for
Electricity Consumption

(Unit per kWh)

ESC Coefficient
($ Unit−1)

1. NOX kg NOX eq. 2.79 × 10−3 0.6
2. SO2 kg SO2 eq. 3.12 × 10−3 1.82
3. CO kg CO eq. 0.65 × 10−3 0.19

4. SPM kg SPM eq. 0.13 × 10−3 4.3
5. CO2 kg CO2 eq. 716.18 × 10−3 0.01
6. CH4 kg CH4 eq. 0.02 × 10−3 0.21
7. N2O kg N2O eq. 0.003 × 10−3 4.58

2.5. ML Models

Based on the historical training data, ML models are able to customize an algorithm
that recognizes the main patterns of potentially instable organizations and enables them
to be recognized [74]. ML algorithms handle a variety of input data of different types
and scales without any need for pre-defined data structure. There are several algorithms
for modeling in different research areas. The most widely used ML algorithms are ANN,
ANFIS, and SVR, which are explained briefly in the following sections.

2.5.1. Development of ANN Model

ANN, as a basic tool applied in ML, is a computational and simulation model based
on the biological nodal cell structure, designed to simulate the way that human brain
processes and analyzes information [75]. ANN is able to construct a model relating the
output of network to existing data used as inputs. The structure of ANN includes three
layers, namely an input layer to take actual data, one or several hidden layers to link input
and output layers, and an output layer to produce computed results [76].

In this study, a back-propagation feed-forward ANN with one input layer, one to three
hidden layers, and one output layer was applied for estimating total weighted damages
(TWD), total cumulative exergy demand (TCD), and total emissions social cost (TESC)
of button mushroom production from the collected actual data. The input layer consists
of six independent variables (machinery, compost, pesticides, tap water, diesel fuel, and
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electricity) while the output layer includes 3 dependent variables (TWD, TCD, and TESC),
and different numbers of hidden layers with different neuron numbers are adopted to
find the best structure. Of this data, 75, 15, and 10% are utilized for training, testing, and
cross-validation of the network, respectively. Among different algorithms in ANN, the
Levenberg–Marquardt algorithm with an early stopping criterion to enhance the efficiency
and speed of network training is good at solving continuous modeling problems [77]. In
computing and mathematics, the Levenberg–Marquardt algorithm, also called the damped
least-squares method, is applied to solve non-linear least squares cases [78]. Accordingly,
the Levenberg–Marquardt algorithm is selected to apply in ANN model of this study.

The differences between the computed results and observed data are utilized for the
evaluation of ANN model performance. The error function utilized in the performance
evaluation is given by Equation (1) [79]:

E =
1
p∑

p
∑
k

(
tpk − zpk

)2
(1)

where k indicates the output vector index; p represents the input vectors index; tpk denotes
the kth element of the pth vector of the target pattern; and zpk is the kth output vector
element under input pattern p.

2.5.2. Development of ANFIS Model

Fuzzy logic, as an artificial simulation technique, develops a numeric method using
if/then rules and permits for the simple display of production process knowledge [80].
ANFIS is an ML method that merges fuzzy logic theories and adaptive ANN rules to
constitute an adaptive network to make a reasonable relation between outputs and
inputs [81]. With the ANN method, the ANFIS model is expanded by data trained or
learned [82]. A schematic of the ANFIS model is shown in Figure 3, illustrating two
inputs (A; B) and one output (Si) in this model. Because of the large number of inputs
for ANFIS, firstly the input vector is divided into three categories. Figure 4 presents the
two-level ANFIS structure used in this study to predict the TWD, TCD, and TESC of
mushroom production.
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2.5.3. Development of SVR Model

The basic purpose of SVR is to exactly match a regression function y = f (x) in a ε-SVR
model for objects {yi} regarding a collection of input data {xi} by training data as D = {(x1,
y1), (x2, y2), . . . , (xN, yN)}, where xi ∈ RN is an input variables vector, and yi ∈ RN is the
scalar target value. In the real world and for non-linear issues, when it is not possible
for input data to correlate linearly to the required output, a linear model can be created
utilizing a nonlinear mapping function gi(x) in high-dimensional feature space as shown in
Equation (2).

f (X, ω) =
n

∑
i=1

ωigi(X) + b (2)

where gi(x) is the function termed feature, and ωi.gi(x) is the dot product in the feature
space F, and b is the bias. It acts based on minimizing structural risk law [83]. Using the
minimizing risk function, the coefficients can be estimated as:

R(C) = C
1
l

l

∑
i=1

Lc(yi, f (Xi, ω)) +
1
2
‖ω‖2 (3)

The risk function (Equation (3)) consists of two parts, namely an empirical error term

C 1
l

l
∑

i=1
Lc(yi, f (Xi, ω)) and a smoothness or flatness function 1

2‖ω‖
2. The empirical error

part includes a function ε insensitive loss function Lc(yi, f (Xi, ω)) and a factor C.

Lc(yi, f (Xi, ω)) =
y− f (ω)| − ε, f or|y− f (X, ω)| ≤ ε
0, f or|y− f (X, ω)|〉ε

(4)

where C is a measure of the trade-off amount among the flatness of model and the empir-
ical error. Slack variables ξ, ξ∗, as positive constants, are determined to compute errors
exceeding the limit ε. Using slack variables, the SVR problem is converted into a dual
optimization problem whose objective function is:

Minimization of

z(ω, b, ξ, ξ∗) = 1
2‖ω‖

2 + C
l

∑
i=1

(ξi + ξi
∗)

Subjected to constraint equation
yi − f (Xi, ω) ≤ ε + ξi
f (Xi, ω)− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(5)
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In order to solve the problem of convex optimization, the Lagrangian multiplier
method is applied. The transformed formula with the multipliers is expressed as follows:

f (X, αi, αi
∗) =

N

∑
i=1

(αi − αi
∗)
(

g(Xi).g
(
Xj
))

+ b (6)

where αi and αi* are the Lagrangian multipliers. The input vectors xi are termed support
vectors provided that their corresponding coefficients (αi − αi*) 6= 0. These vectors are
the representative of the entire support vector function because they comprise most of the
training data set information. In order to overcome the contradiction among the complexity
in computation and the high dimensional featured space, an appropriate kernel function
must be determined [83]. Each function that is positive, symmetric, and semi-definite
(Mercer’s condition) can be considered as a kernel function [84]. The Gaussian radial
basis function (RBF) is the most commonly used kernel function, which is described as
follows [85,86]:

K
(
Xi, Xj

)
=
(

g(Xi)g
(
Xj
))

= exp
(
− 1

2σ2 ‖Xi − Xj‖2
)
= exp

(
−γ‖Xi − Xj‖2

)
where, i, j = 1, . . . , N

(7)

where σ is the RBF width, and γ is equal to 1/(2σ2).
Therefore, all computations about g can be performed by an explicit method within

the input space itself using the kernel function, without really bothering the featured space.
The basic formula explaining the data modeling is as follows:

f (X, αi, α∗i ) =
N

∑
i=1

(αi − α∗i )
(
K
(
Xi, Xj

)
+ b
)

(8)

Using Karush–Kuhn–Tucker conditions, the parameter b can be determined as:

b = −1
2

N

∑
i=1

(α∗i − αi)g[(Xm, Xi) + K(Xn, Xi)] (9)

where xm and xn are the support vectors.
For optimizing the model parameters C = 100 and ε = 0.001 and the RBF kernel

parameter γ = 0.3, the grid search method in connection with 10 folds-cross validation
is applied. The model parameters C and e and the kernel parameter c are variables in
the ranges of (22–215), (2−10–25), and (2−10–24), respectively. It should be noted that in all
models the number of support vector was 89, and the number of training points was 207.

2.5.4. Evaluation of Model Performance

In order to assess the efficacy of various models, statistical analysis is performed
with three statistical indicators, namely absolute average relative error (AARE), root mean
square error (RMSE), and coefficient of determination (R2), as follows:

AARE =
1
n

N

∑
i=1

∣∣∣∣[YPi −YAi
YAi

]∣∣∣∣ (10)

RMSE =

√√√√√ N
∑

i=1
(YPi −YAi)

2

n
(11)



Agronomy 2023, 13, 737 10 of 23

R2 = 1−

√√√√√√√√
N
∑

i=1
(YPi −YAi)

2

N
∑

i=1
YAi

2
(12)

where n is number of training vector; YPi is the predicted value; and YAi is the actual value.
In addition to the above statistical indicators, two other indicators are used in SVR

including square correlation coefficient for leave-one-out cross-validation (Q2
LOO) and

square correlation coefficient of external validation (Q2
EXT).

Q2
LOO is a measurement of the internal prediction capability of SVR model and mostly

assessed as leave one out cross-validation on the training data [86].

Q2
LOO =

∑
nTraining
i=1 (YAi −YPi)

2

∑
nTraining
i=1

(
YAi −YMean

Pi
)2 (13)

Q2
EXT is the measurement of the external prediction capability of SVR model and

mostly assessed as leave one out on the test data [86].

Q2
EXT =

∑nTest
i=1 (YAi −YPi)

2

∑nTest
i=1

(
YAi −YMean

Pi
)2 (14)

Excel V16.0 is applied to perform analysis, statistical indices computation, and analysis
of ESC in this study. In addition, SimaPro V9.1.0 software is employed to implement LCA
analysis as well as CExD. Finally, Python V3.9.1 is used to develop ANN and ANFIS and
SVR models.

3. Results and Discussion
3.1. Environmental Analysis of Mushroom Production

The consumed inputs and resulting direct emissions for mushroom production in the
studied region are illustrated in Table 3. It can be observed that the total CO2 emission
discharged to the atmosphere due to utilization of diesel fuel in different mushroom
production operations is 224.02 kg ha−1. The reason for this is excessive and inefficient
use of diesel fuel to heat greenhouses in the region. Moreover, different stages of compost
production and consumption lead to the release of 945.091 t ha−1 of CO2. Inefficient usage of
diesel fuel in mushroom production has different reasons including old systems of heating
equipment, high heat losses of greenhouses, and old methods of compost production.

In the production process of compost, diesel fuel is used to supply heating required
by microorganisms. It is also used in the mushroom production process to maintain the
greenhouse temperature in optimal conditions. Low diesel fuel price in Iran, which leads to
its inefficient use in various industries, is one of the reasons of high diesel fuel consumption.
Heating systems used in mushroom greenhouses have low efficiency and consume large
amounts of fossil fuels due to the lack of intelligent heating system.

Thus, to reduce diesel fuel consumption and mitigate its negative effects, it is rec-
ommended that high efficiency heating systems with less pollution are to be applied.
Insulation of greenhouse walls and the use of materials with low heat transfer coefficient in
the construction of greenhouse walls and roofs can also be useful in preventing heat loss.
These strategies also reduce the energy consumption required for fuel transportation. Natu-
ral gas is less polluting than diesel fuel, and given that Iran is rich in natural gas resources,
the use of natural gas to provide heating in mushroom production is recommended as an
early return strategy.

Dorr et al. [87] studied the environmental effects of an urban mushroom farm in France.
They reported that in terms of climate change impact, the product system emitted about 3
kg CO2-eq. kg−1 mushroom, and On-Farm energy consumption was the top contributor to
all impact categories.
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Table 3. LCI of mushroom production in Isfahan province per hectare.

Item (Unit) Amount Item (Unit) Amount

A. Indirect emissions 3. Emissions to air by compsot
use (kg)

1. Machinery (kg) 59.09 (a). CH4 28.44
2. Compost (kg) 836,363.64 (b). VOC 1012.00
3. Pesticides (kg) 107.73 (c). N2O 76.95
4. Tap water (kg) 2177.27 (d). NH3 92.00
5. Diesel fuel (kg) 70,647.99 (e). CO2 945,090.91

6. Electricity (kWh) 103,286.36 (f). HC 29.27
B. Direct emissions (g). SOx 29.27

1. Emissions to air by diesel fuel in boiler
(kg) (h). CO 68.58

(a). As 5.46 × 10−6 (i). Pb 1.92 × 10−6

(b). Be 4.10 × 10−6 (j). HCl 1.92 × 10−4

(c). Cd 4.10 × 10−6 4. Emissions to water by
compsot use (kg)

(d). CO2 224.02 (a). BOD5 0.02
(e). CO 0.05 (b). COD 0.08
(f). Cr 4.10 × 10−6 (c). H2SO4 1.25
(g). Cu 8.19 × 10−6 (d). Fe 0.31

(h). Dioxin, 2,3,7,8 Tetrachlorodibenzo-p- 1.37 × 10−10 (e). NH3 2.43 × 10−3

(i). HCl 0.01 (f). Cr 5.77 × 10−6

(j). Pb 1.23 × 10−5 (g). Pb 2.59 × 10−6

(k). Mn 8.19 × 10−6 (h). Zn 3.76 × 10−5

(l). Hg 4.10 × 10−6 5. Emissions to soil by
compsot use (mg)

(m). CH4, fossil 5.02 × 10−6 (a). Cd 200,727.27
(n). CH4, dichloro-, HCC-30 4.40 × 10−5 (b). Cu 39,309,090.91

(o). Ni 4.10 × 10−6 (c). Zn 125,454,545.45
(p). NOx 0.24 (d). Pb 26,763,636.36

(q). Particulates, >2.5 µm, and <10 µm 0.01 (e). Ni 7,527,272.73
(r). Ethene, tetrachloro- 7.51 × 10−7 (f). Cr 6,690,909.09

(s). Phenols, unspecified 3.32 × 10−5 6. Emission to air by human
labor (kg)

(t). Radioactive species, unspecified 8.89 (a). CO2 14,041.36

(u). Se 2.05 × 10−5 7. Emissions to air by
pesticides (kg)

(v). SO 0.05 (a). Diflubenzuron 5.61
(w). VOC 1.98 × 10−3 (b). Diazinon 4.98

(x). Zn 5.46 × 10−6 8. Emissions to water by
pesticides (kg)

2. Emissions to water by diesel fuel in
boiler (kg) (a). Diflubenzuron 3.75

(a). Cl- 5.84 × 10−7 (b). Diazinon 1.82

(b). Cu 2.92 × 10−6 9. Emissions to soil by
pesticides (kg)

(c). Fe 2.92 × 10−6 (a). Diflubenzuron 53.06
(d). Oils 4.38 × 10−5 (b). Diazinon 38.51

(e). Suspended solids 8.76 × 10−5

Endpoint results by applying LCA method for 100TMP are illustrated in Table 4.
Human health damage category is 0.91 DALY per 100TMP. DALY is an overall measure of
disease burden, defined as the number of years lost because of disability, early death, or
ill-health. It is introduced as a method to compare the life expectancy and overall health
(Table 4).
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Table 4. ReCiPe2016 environmental damage results for 100TMP in the studied area.

Endpoint Unit Amount

Human health DALY 0.91
Ecosystems species.yr 2.84 × 10−3

Resources USD2013 35,850.42

Hosseini-Fashami et al. [40] investigated environmental effects of strawberry pro-
duction and reported that human health per 100 t of greenhouse strawberry production
was 0.097 DALY. Mostashari-Rad et al. [46] studied environmental indicators for horticul-
tural crops and reported these indicators as 0.5 and 0.1 for 100 t of hazelnut and citrus
production, respectively.

Resources and ecosystems are other damage categories, which are determined by the
ReCiPe2016 method. As can be seen in Table 4, ecosystem damage category is 2.84 × 10−3

species.yr per 100TMP. Moreover, resources damage category is computed as 35,850.42
USD2013 based on FU.

Figure 5 shows the pattern of environmental impacts and contribution of various
inputs to mushroom production endpoints. The highest effect in ecosystems and human
health damage categories is direct emissions. Direct emissions are related to input con-
sumption in the production process of mushroom. Irregular diesel fuel use in compost
production is one of the most important factors on direct emissions. Based on these results,
the greatest effects in resources damage category is from diesel fuel. This shows that in
mushroom production, diesel fuel consumption brings great loss on environment, and its
usage must be decreased to diminish environmental risk. Electricity is another input that
has significant effect on resources damage categories. In greenhouses, electricity is used for
lighting, electric equipment, and sometimes for heating. Low efficiency of production and
transmission network of electricity as well as use of time-worn electrical equipment are
reasons for high electricity consumption in the studied greenhouses.
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Comparison between the greenhouses and farms indicated that the greenhouses have
more severe detrimental effects on environmental impacts. Fossil fuels are one of the most
important items for this result. With respect to the geographical position of studied area,
replacing renewable technologies especially solar systems can be an appropriate solution to
improve the environmental damage. Moreover, ground air collectors using phase change
materials are the cheapest and most popular methods during application of solar systems.
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In several studies similar results were reported that direct emissions had the greatest
effect in ecosystem and human health damage categories [44,46,88,89].

Because of different units of investigated damage categories, it is not possible to
compare them with one another. Thus, to overcome this problem, a weighting method is
applied. The weighting results demonstrated that, among three damage categories, human
health with about 15 kPt, is significantly category from the emission viewpoint. Direct
emissions (more due to diesel fuel consumption) have the greatest contribution in this
category, followed by compost. Ecosystems index is at the next place, and the share of
direct emissions is a major part of this impact.

Hosseini-Fashami et al. [40] used weighting analysis to compare damage categories
in greenhouse strawberry production and reported that from the emission viewpoint,
ecosystem quality is the major category.

3.2. Energy Form Assessment of CExD

The energy assessment results according to CExD in mushroom greenhouses are
shown in Table 5. The results demonstrate that TCD of mushroom production is about
3974 GJ 100 TMP−1. The category of non-renewable, fossil is the highest form of energy
consumption in mushroom production (about 98% of TCD). The non-renewable fossil value
is computed as 7088.05 GJ 100 TMP−1 (Table 5). In the mushroom production system, fossil
fuel usage is for heating propose, and because its utilization is high, this results in high
non-renewable, fossil form utilization in this system.

Table 5. CExD energy forms result analysis for 100TMP in the studied area.

Energy Form Amount (GJ 100 TMP−1)

Non-renewable, fossil 3899.31
Renewable, kinetic 3.09

Renewable, potential 34.61
Non-renewable, primary 20.30
Non-renewable, metals 11.42

Non-renewable, minerals 5.74
TCD 3974.47

In a study carried out in northwest of Iran, Nabavi-Pelesaraei et al. [90] employed
CexD for energy assessment of oil production from sunflowers. Their results demon-
strated that the category non-renewable fossil was about 173,499 MJ per one t of sunflower
oil production.

The percentages of different input energy forms of CExD for mushroom greenhouses
are illustrated in Figure 6. The results show that, in mushroom production, diesel fuel
has the largest percentage of share in the category non-renewable, fossil (around 70%)
and is followed by electricity (about 23%). Similar results have been reported in many
studies conducted in Iran where diesel fuel is the main factor in the category non-renewable,
fossil [17,44]. The results also indicate that, in non-renewable, potential, electricity has the
greatest energy usage among different inputs. Furthermore, in non-renewable, primary,
non-renewable, minerals, non-renewable, meals, and renewable, kinetic, compost has
the highest energy usage among different inputs. This displays that a large amount of
inputs are used inefficiently in compost production. Thus, a proper usage of inputs,
especially diesel fuel in compost production, can result in great energies reduction for
mushroom production.
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3.3. Evaluation of ESC

The results of ESC for 100 TMP are shown in Table 6. The results indicate that TESC
per 100 TMP in Isfahan province is equal to 1035.10$, in which a large part is related to ESC
of CO2, SO2, and NOX. In other words, the shares of CO2, SO2, and NOX are equal to 47.1,
37.3 and 11% of TESC, respectively. In another study about ESC of agricultural systems,
Nabavi-Pelesaraei et al. [42] estimated TESC for rice milling factories was about 31$ per t
of white rice in the Guilan province of Iran. Their results also showed that a large part of
this cost is related to CO2 emission.

Table 6. ESC results for 100TMP in Isfahan province, Iran.

Item Unit Amount ESC ($100 TMP−1)

1. NOX
kg NOX eq. 100

TMP−1 189.81 113.89

2. SO2 kg SO2 eq. 100 TMP−1 212.26 386.32
3. CO kg CO eq. 100 TMP−1 44.22 8.40

4. SPM
kg SPM eq. 100

TMP−1 8.84 38.03

5. CO2 kg CO2 eq. 100 TMP−1 48,723.83 487.24
6. CH4 kg CH4 eq. 100 TMP−1 1.36 0.29

7. N2O
kg N2O eq. 100

TMP−1 0.20 0.93

TESC $100 TMP−1 - 1035.10

The high consumption of diesel fuel in mushroom production can also be considered
in terms of TSC. Compared to other emissions, the unit cost of CO2 is small; nevertheless,
due to high utilization of diesel fuel in mushroom production which leads to high emission
of CO2, it will be one of the major portions of the whole cost. Therefore, saving diesel
fuel consumption can reduce TESC in mushroom production. Besides, a change in fuel
type used in compost production process and the application of renewable energy are
strongly recommended.

3.4. ANN Model Assessment

In the current study, a back-propagation feed-forward ANN was used for estimating
TWD, TCD, and TESC of button mushroom production. For all models, statistical metrics
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including R2, AARE, and RMSE were computed. The schematic diagram of the best
structure of ANN model by the maximum R2 and lowest AARE and RMSE values is
presented in Figure 7. As shown in Figure 7, the structure with one hidden layer is the best
ANN structure in all models (6-8-3).
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The statistical indicators of the ANN models in TWD, TCD, and TESC of mushroom
production are listed in Table 7. The results indicate that, for mushroom production, R2

ranges from 0.889 to 0.915 for the training stage, 0.886 to 0.912 for the testing stage, and
0.893 to 0.927 overall. The results also demonstrate that R2 ranges from 0.881 to 0.911 in
the validation stage. This indicate that the introduced model is able to forecast TWD, TCD,
and TESC in mushroom production.

Table 7. The results of ANN modeling for mushroom production.

Topology ANN Model
Section

Performance
Evaluation Index

Independent Variables

TWD TCD TESC

6-8-3 a

Overall
AARE (%) 2.15 2.20 2.72

RMSE 0.051 0.052 0.050
R2 0.921 0.918 0.927

Training
AARE (%) 2.93 3.01 3.47

RMSE 0.054 0.057 0.057
R2 0.915 0.913 0.913

Test
AARE (%) 3.55 4.69 4.87

RMSE 0.058 0.059 0.059
R2 0.912 0.912 0.911

Validation
AARE (%) 5.10 5.17 5.35

RMSE 0.061 0.063 0.063
R2 0.911 0.91 0.91
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Table 7. Cont.

Topology ANN Model
Section

Performance
Evaluation Index

Independent Variables

TWD TCD TESC

6-9-9-3

Overall
AARE (%) 5.63 5.82 6.18

RMSE 0.063 0.064 0.066
R2 0.908 0.907 0.905

Training
AARE (%) 6.22 6.76 6.85

RMSE 0.068 0.068 0.069
R2 0.905 0.902 0.901

Test
AARE (%) 6.85 7.03 7.19

RMSE 0.071 0.071 0.072
R2 0.898 0.897 0.896

Validation
AARE (%) 7.27 7.29 7.41

RMSE 0.072 0.074 0.075
R2 0.896 0.895 0.895

6-8-10-3

Overall
AARE (%) 7.52 7.64 7.79

RMSE 0.076 0.076 0.081
R2 0.894 0.893 0.893

Training
AARE (%) 7.98 8.12 8.14

RMSE 0.083 0.083 0.083
R2 0.892 0.891 0.889

Test
AARE (%) 8.63 9.10 9.16

RMSE 0.085 0.088 0.094
R2 0.887 0.886 0.886

Validation
AARE (%) 9.40 10.04 10.62

RMSE 0.094 0.097 0.1
R2 0.884 0.883 0.881

a. This topology is the best structure of ANN modeling.

High accuracy of ANN models was recognized in some previous researches such as
Bai et al. [91] for forecasting air pollutants concentrations, Gao et al. [92] for estimation
of ozone concentration, Acheampong and Boateng [93] for modeling carbon emission
intensity, and Gonçalves Neto et al. [94] for modeling of biogas production from food.

3.5. ANFIS Model Assessment

Statistical components of the two-level ANFIS structure in predicting TWD, TCD, and
TESC of mushroom production are shown in Table 8. According to results, ANFIS with
Gbell MFs for input layer and linear MF for output layer offers the best performance. In
other words, this hybrid learning method can simulate the communication among inputs
and outputs, specify the optimized MF contribution, and provide great precision.

The two-level ANFIS model (ANFIS 4) is shown in the results, with the highest R2

found for TESC (0.872). In this model, the RMSE is computed as 0.219. The results also
show that, in the two-level ANFIS model (ANFIS 4), R2 for TCD is 0.870, and AARE is 6.57.
Results of the current study agree with Kaab et al. [18], which applied ANFIS to forecast
output energy and environmental effects of sugarcane cultivation. Naderloo et al. [19] used
ANFIS model for forecasting of wheat grain yield in Iran. They clustered the inputs for
ANFIS into two categories and trained two networks. Electricity, diesel fuel, and chemical
fertilizer energies were inputs for ANFIS 1, and machinery, labor, chemicals, water, and
seed energies were considered for ANFIS 2. Their RMSE values were 0.013 and 0.018 for
ANFIS1 and ANFIS 2, respectively. Besides, R2 values were 0.996 and 0.992 for ANFIS 1
and ANFIS 2, respectively. Finally, they used these predicted values as the inputs of the
third ANFIS and found that RMSE and R2 were 0.013 and 0.996, respectively.
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Table 8. Characteristics of two-level ANFIS model with the best structure for mushroom production.

Output ANFIS
Number

MF Type MF Number Learning
Method

Performance Evaluation Index

Input Output Input Epoch AARE (%) RMSE R2

TWD

(1) Gbell Linear 2.3 32 Hybrid 12.87 0.479 0.814
(2) Gbell Linear 2.3 32 Hybrid 12.02 0.457 0.815
(3) Gbell Linear 2.3 32 Hybrid 11.88 0.451 0.826
(4) Gbell Linear 2.3 32 Hybrid 7.15 0.271 0.867

TCD

(1) Gbell Linear 2.3 32 Hybrid 10.8 0.428 0.830
(2) Gbell Linear 2.3 32 Hybrid 9.31 0.423 0.832
(3) Gbell Linear 2.3 32 Hybrid 8.32 0.422 0.840
(4) Gbell Linear 2.3 32 Hybrid 6.57 0.245 0.870

TESC

(1) Gbell Linear 2.3 32 Hybrid 7.8 0.411 0.851
(2) Gbell Linear 2.3 32 Hybrid 7.72 0.391 0.854
(3) Gbell Linear 2.3 32 Hybrid 7.15 0.271 0.862
(4) Gbell Linear 2.3 32 Hybrid 5.79 0.219 0.872

3.6. SVR Model Assessment

The performance parameters including AARE, RMSE, Q2
LOO, and Q2

EXT are tabulated
in Table 9. The ranges of RMSE, Q2

LOO, and Q2
EXT AARE are between 0.85 and 1.03, be-

tween 0.003 and 0.011, between 0.161 and 0.179, and between 0.233 and 0.252 for TWD, TCD,
and TESC, respectively. The results of performance parameters reveal that the accuracy of
SVR model is very high. Other studies on application of SVR in agri-industrial modeling
confirmed the results in attaining high accuracy for predicting different parameters [95–97].

Table 9. Results of SVR modeling for mushroom production.

Output
Independent Variables

AARE (%) RMSE Q2
LOO Q2

EXT

TWD 1.03 0.003 0.161 0.237
TCD 0.97 0.011 0.174 0.233
TESC 0.85 0.008 0.179 0.252

3.7. Comparison between Evaluated ML Models

In the last section, the accuracies of different ML models are evaluated using coeffi-
cients of determination. Figure 8 shows R2 in different ML models, which indicates that
the R2 of the SVR model for predicting dependent variables including TWD, TCD, and
TESC are higher than the R2 of other models. In other words, SVR model outperforms
other models. Taheri et al. [98] applied ANN and SVR to model the drying of lentil in a
microwave fluidized bed. The results indicated that moisture ratio and temperature of
lentil could be predicted accurately using ANN and SVR. Performance evaluation of the
models with statistical parameters indicated that ANN provided relatively better accuracy
for prediction of lentil temperature.

Comparison of results between ANN and ANFIS shows that the ANN model outper-
forms the ANFIS model. In studies that used ANN and ANFIS for prediction, different
results have been reported. Depending on the type of data and the model case, one of these
two methods had better performance. In research performed by Kaab et al. [18], ANFIS and
ANN models were used to forecast energy output and environmental issue of sugarcane
farms. The results showed that in the plant farms, ANN was better than ANFIS in all
dimensions, but in the case of ratoon farms, the results were different, and ANFIS achieved
better prediction results than ANN.
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Figure 8. Comparison of modeling accuracies among ML methods.

Modeling results indicated that SVR had the highest performance for prediction
environmental damages, exegetic categories, and ESC with respect to statistical indicators.
In this sense, SVR models are more user-friendly, need less computation, and can use
multiple classifiers trained on various types of data. On the other hand, ANN can develop
better models in comparison. A low uncertainty rate in greenhouses production is the main
reason for this result. Finally, it is advised that more research such as optimization with
multi-objective approach (environmental, energy and economical) of mushroom production
will be used for improving environmental condition.

4. Conclusions

The current study investigates the applications of different ML methods including
ANN, ANFIS, and SVR for modeling environmental impacts, exergy categories, and emis-
sions social cost (ESC) of mushroom production. According to results of the current study,
the following conclusions can be drawn:

1. In general, in human health and ecosystem damage categories, direct emissions have
the highest portion. Furthermore, in resources damage category, diesel has the most
significant impact.

2. Diesel fuel and electricity have the highest and second highest portions in the cat-
egories of Non-renewable, fossil, respectively. In Non-renewable, primary, Non-
renewable, metals, Non-renewable, minerals, and Renewable, kinetic, compost has a
high share among energy consumption of inputs.

3. ESC results indicate that TESC per 100TMP is 1035.10$, in which a large part is related
to ESC of CO2, SO2, and NOX.

4. Results of ANN model show that 6-8-3 topology is the best structure for predicting
TWD, TCD, and TESC.

5. The best model of ANFIS that attains the highest accuracy is obtained by a two-level
structure with Gbell MFs for input layer and linear MF for output layer.

6. SVR modeling reveals that statistical indices including AARE (%), RMSE, and R2 vary
in ranges of 0.85–1.03, 0.003–0.011, and 0.989–0.993 for TWD, TCD, and
TESC, respectively.

7. Comparison between the investigated ML models indicates that the SVR model out-
performs others models in predicting TWD, TCD, and TESC. Moreover, the accuracy
of ANN model is better than ANFIS. The reason of this result is the certainty of data
in mushroom production in the studied area.

Finally, it should be noted that, although the prediction of exergoenvironmental index
and ESC can be useful to save time and costs by ML methods, it is recommended to focus
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on optimization methods for enhancement of input consumption efficiency and reduction
of negative exergoenvironmental effects of mushroom production for future studies.
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